On Compact Encoding of Pagenumber k Graphs
Cyril Gavoille, Nicolas Hanusse

To cite this version:

HAL Id: hal-00402218
https://hal.archives-ouvertes.fr/hal-00402218
Submitted on 13 Jun 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
On Compact Encoding of Pagenumber \(k \) Graphs

Cyril Gavoille\(^1\) and Nicolas Hanusse\(^1\)

\(^1\) LaBRI, CNRS, Univ. Bordeaux, 351, cours de la Libération, 33405 Talence, France. gavoille,hanusse@labri.fr

In this paper we show an information-theoretic lower bound of \(kn - o(kn) \) on the minimum number of bits to represent an unlabeled simple connected \(n \)-node graph of pagenumber \(k \). This has to be compared with the efficient encoding scheme of Munro and Raman of \(2kn + 2n + o(kn + m) \) bits (\(m \) the number of edges), that is \(4kn + 2n + o(kn) \) bits in the worst-case.

For \(m \)-edge graphs of pagenumber \(k \) (with multi-edges and loops), we propose a \(2m \log_2 k + O(m) \) bits encoding improving the best previous upper bound of Munro and Raman whenever \(m \leq \frac{1}{2} kn / \log_2 k \). Actually our scheme applies to \(k \)-page embedding containing multi-edge and loops. Moreover, with an auxiliary table of \(o(m \log k) \) bits, our coding supports (1) the computation of the degree of a node in constant time, (2) adjacency queries with \(O(\log k) \) queries of type \texttt{rank}, \texttt{select} and \texttt{match}, that is in \(O(\log k \cdot \min\{\log k / \log \log m, \log \log k\}) \) time and (3) the access to \(\delta \) neighbors in \(O(\delta) \) runs of \texttt{select}, \texttt{rank} or \texttt{match}.

\textbf{Keywords:} encoding of graphs, \(k \)-page embedding, lower bound

1 Introduction

A book is a singular surface composed by the union of closed half-planes, called the \textit{pages}, whose intersection is a line, called the \textit{spine}, being the boundary of each of the pages. A \(k \)-page embedding of a graph consists of a linear ordering of the nodes drawn in the spine and of a partition of the edges into \(k \) \textit{pages} so that edges residing on the same page do not cross \((i)\) (see Fig. 1 for an example). Such an embedding is called \textit{book-embedding}. See [Bil92, DW04] for a survey. Graphs having a \(k \)-page embedding are called \(k \)-page graphs. The \textit{pagenumber} of a graph \(G \) is the smallest integer \(k \) such that \(G \) is a \(k \)-page graph.

The question of the compact coding of a graph (or a part of its topological structure) arises in the field of compact routing [PU89], implicit representation [AR02, KNR92, Lu02], compact representation of 3D-models in computer graphics [KADS02, KR99], distance labeling of graphs [GPR01] and other label-based informative systems [AKM01, Pel00]. For instance, in the field of compact routing, the goal is to code in the memory of each node \(s \) of a graph (representing a communicating network) a routing table that specifies for each destination \(d \) the edge to use to route a message from \(s \) to \(d \). Pre-computation on

\(^{(i)}\) Assuming that \(u < v, u' < v' \) and \(u < u', \text{edge} (u,v) \) and \(\text{edge} (u',v') \) cross whenever \(v < v' \).

1365–8050 © 2008 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
the graph structure allows us to reduce the size of routing tables, for instance, assigning suitable address names to the nodes of the graph. (On an \(n\)-node ring graph, nodes could be labeled from 1 to \(n\) around the ring in order to simplify the routing table data structures and speed up the query time.) For shortest path routing in general \(n\)-node graphs, there exists an optimal lower bound of \(\Omega(n \log n)\) bits per node [GP96]. However, it as been shown that \(O(n \log k)\) bits per node are enough to represent shortest path routing tables for \(k\)-page graphs [GH99].

Graphs of pagenumber 1 are the outerplanar graphs (including trees), and graphs of pagenumber 2 are subgraphs of Hamiltonian planar graphs (including series-parallel graphs), cf. [Bil92]. It is NP-hard to compute the pagenumber for general graphs, but there is a linear time algorithm to compute a 4-page embedding of any planar graph. This implies that the pagenumber of every planar graph does not exceed 4 [Yan89]. There are also non-planar graphs with pagenumber \(k \leq 4\). For instance \(K_5\) has pagenumber 3.

For arbitrary graphs, there are few algorithms to compute a \(k\)-page embedding. Using a probabilistic approach, Malitz [Mal94] proved that the pagenumber of an \(m\)-edge graph of genus \(\gamma\) is \(O(\sqrt{m})\), implying that the pagenumber is \(O(\sqrt{m})\) since \(\gamma \leq m\). Shahrokhi and Shi [SS00] proposed a deterministic algorithm to embed a node \(c\)-colored graph into \(O(\sqrt{cm})\) pages whereas Wood [Woo02] described a Las Vegas algorithm to embed a graph of maximal degree \(\Delta\) into \(O(\sqrt{m\Delta/\delta})\) pages such that there are at most \(\delta\) incident edges per page for every node.

The structure of the paper is the following: Section 2 presents a lower bound of \(kn - o(n)\) bits for the representation of graphs with pagenumber \(k\). To our best knowledge, this is the first lower bound on the coding of \(k\)-page graphs.
In Section 3 we propose a coding scheme for \(m \)-edge \(k \)-page embeddings, allowing multiple edges and loops. If the graph has no isolated nodes, i.e., no connected components with one node, then the length is at most \(2m \log_2 k + 4m \) bits. This improves the Munro and Raman’s scheme of \(2kn + 2m \) bits [MR01], whenever \(m \leq \frac{1}{2} \frac{kn}{\log_2 k} \), that is in many practical cases since a \(k \)-page graph has at most \(kn + n - 3k \) edges [BK79]. For bounded \(k \) and adding an auxiliary table of \(o(m) \) bits, our coding supports constant time adjacency queries. For unbounded \(k \), the auxiliary table takes \(o(m \log k) \) bits and fast queries can be done: the adjacency test performs in \(O(\tau \cdot \log k) \) time, and the degree computation in \(O(\tau) \) time, where \(\tau = \min\{\log k / \log \log m, \log \log k\} \) are currently the best time complexity for rank and select operations.

2 Lower Bound

First, we show that \(\Omega(kn) \) bits are required in general to code a graph of pagenumber \(k \). On the other hand, Jacobson has shown in [Jac89] that \(O(kn) \) bits suffice. So, \(\Theta(kn) \) is the optimal length to code a pagenumber \(k \) graph on \(n \) nodes. For that purpose, we construct a large family of pagenumber \(k \) graphs that are pairwise non-isomorphic, and we show that the logarithm of the cardinality of this family is \(\Omega(kn) \).

Theorem 1 The number \(U_{n,k} \) of unlabeled simple connected graphs of \(n \) nodes, and pagenumber \(k \), \(1 \leq k \leq n/2 \), satisfies

\[
U_{n,k} \geq \frac{(2^k (2^k - 1))^{n/2-k}}{2^k!} .
\]

Proof: Here is a simple proof to show that \(U_{n,k} = 2^{\Theta(kn)} \) for each \(k \). No attempt is made to optimize the constants involved in the calculations. To lower bound \(U_{n,k} \), we construct a family of connected graphs of \(n \) nodes and pagenumber \(k \). For \(k = 1 \), \(U_{n,1} \) is lower bounded by the number of unlabeled trees (which are 1-page graphs [CLR87]) which is given by Otter’s formula (cf. [Ric48, Rei05, page 53]):

\[
U_{n,1} > 0.5349485 \cdot (2.95576)^n \cdot n^{-5/2} > \frac{2^{n/2-1}}{2^1} .
\]

Moreover, the formula trivially holds for \(n = 2k \), so we assume that \(k \geq 2 \) and \(n > 2k \geq 4 \). Note that the pagenumber (as a function of \(n \)) is maximal for the complete graph of \(n \) nodes, \(K_n \) (the family of pagenumber \(k \) graphs is hereditary). In this case \(k = \lceil n/2 \rceil \), for every \(n \geq 4 \), and \(k = 1 \) otherwise (cf. [CLR87]). Let \(\mathcal{M} \) be the set of \(k \times (n-2k) \) boolean matrices such that every even column has at least one 0-entry. By convenience, this last condition is called the 0-entry condition. For each matrix \(M \in \mathcal{M} \) we define an \(n \)-node graph, \(G_M \), as follows: \(V(G_M) = \{1, \ldots, n\} \), and \((i, j) \in E(G_M) \) if at least one of the following three cases occur:

1. \(|i - j| = 1\);
2. \(i, j \leq 2k\);
3. \(i = 2p - 1, p \in \{1, \ldots, k\}, j > 2k\), and \(M_{p,j-2k} = 1 \).
Construction of an \(n \)-node graph of pagenumber \(k = 3 \). The matrix \(M \) denotes adjacency between the nodes \(\{1, 3, 5\} \) and \(\{7, 8, 9, 10\} \). Solid, dashed and dotted lines correspond respectively to page 1, 2 and 3.

See Fig. 2 for an example with \(k = 3 \) and \(n = 10 \).

\(G_M \) has a Hamiltonian path \(1, 2, \ldots, (i, i + 1), \ldots, (n - 1, n) \), therefore \(G_M \) is connected. Since for all \(i, j \leq 2k \) the edge \((i, j)\) exists, \(G_M \) has a clique of size at least \(2k \). It follows that its pagenumber is at least the pagenumber of the complete graph \(K_{2k} \), i.e., \(k \) since \(2k \geq 4 \). As we will see later, the 0-entry condition implies the uniqueness of a complete graph \(K_{2k} \) in \(G_M \). Let us show that \(G_M \) has a \(k \)-page embedding, and hence that \(G_M \) is connected, has \(n \) nodes, and has pagenumber \(k \) exactly.

The following lemma deals with a specific embedding of a complete graph \(K_{2k} \) proposed in [CLR87]:

Lemma 1 For every \(k \geq 1 \), \(K_{2k} \) has a \(k \)-page embedding such that for every page \(p \in \{1, \ldots, k\} \) there is no edge \((a, b)\) embedded on page \(p \) with \(a < 2p - 1 \) and \(b > 2p - 1 \).

Proof: Nodes of \(K_{2k} \) are labeled from 1 to 2\(k \). We will assume in the following that the labels of the nodes are given modulo 2\(k \). We first propose an embedding with 2\(k \) edges per page and then we prove that no pair of edges belonging to the same page cross. Page \(p \in \{1, \ldots, k\} \) contains the set of edges \(\{1 + p + i, 2k - i + p\} \) for \(i = 0, \ldots, k - 2 \) and the edges \(\{p + k, p + k + 1\} \), that is edge \((u, v)\) belongs to page \(p \) whenever either \(u + v \equiv 2p + 1 \mod 2k \) or \(u + v \equiv 2p + 2 \mod 2k \).

There is no edge \((a, b)\) drawn on page \(p \) such that \(a < 2p - 1 \) and \(b > 2p - 1 \). Indeed, suppose \(a < b \leq 2k \) and \(a < 2p - 1 \), it follows that \(i < p - 2 \). For all \(i < p - 2 \), \(2k + p > b = 2k - i + p > 2k + 2 \) and \(b \) is renamed between 2 and \(p \). This implies that \(b < a \) which is in contradiction with the hypothesis.

To finish, no pair of edges \((u, v)\) and \((u', v')\) belonging to the same page can cross. Assume without lost of generality that \(u < v \), \(u' < v' \) and \(u < u' \). By definition of the edges embedding, we have \(|u + v - u' - v'| \leq 1 \). This implies that \(v - v' \geq 0 \) and \(v \geq v' \). \(\square \)

To embed \(G_M \), first draw the nodes 1, 2, \ldots, \(n \) on a straight line, and the edges \((2k, 2k + 1), \ldots, (n - 1, n) \) on the first page. All the edges of the clique (point 2 of the definition of \(G_M \)) are drawn as in Lemma [1]. Then, for each page \(p \in \{1, \ldots, k\} \), we draw the edges \((2p - 1, j) \) for every \(j \in \{2k + 1, \ldots, n\} \) and \(M_{p,j-2k} = 1 \). This is possible because these new edges are all incident on the
same node, $2p - 1$, and by Lemma 1 there is no edge of K_{2k} that spans the node $2p - 1$. Hence G_M has a k-page embedding.

Let $G_{n,k}$ be the set of labeled graphs defined from the set \mathcal{M}. Counting the number of ways to fill odd and even columns of matrices of \mathcal{M}, we have:

$$|G_{n,k}| = |\mathcal{M}| = \left(\begin{array}{c}2k\end{array}\right)^{(n-2k)/2} \left(\begin{array}{c}2k \end{array}\right)^{(n-2k)/2} \geq \left(2^k (2^k - 1)\right)^{n/2-k}.$$

In order to lower bound $U_{n,k}$, let us upper bound the number of non-isomorphic graphs in $G_{n,k}$. Let $G \in G_{n,k}$. Let K be a clique of G of maximal size, i.e., with a maximum number of nodes. Note that, by construction, G has a clique of size $2k$ (the first $2k$ nodes), and also that the size of the maximal clique is at most $2k$ otherwise the pageno of G would be at least $\lceil (2k + 1)/2 \rceil > k$.

Let us show that K is unique in G, and thus is composed of the nodes labeled $1, \ldots, 2k$. It suffices to show that every node $u > 2k$ belongs to a clique of size at most $k + 1$, and thus cannot belong to K, since for every $k \geq 2, k + 1 < 2k$. Let K_0 be the k odd nodes of $\{1, \ldots, 2k\}$. The j-th column of M corresponds to the node $u = j + 2k$, and defines the connections between u and K_0. Note that there is no edge between $u - 1$ and $u + 1$, even for $u = 2k + 1$. Assume that u is even. In this case, u has degree at most $k + 1$ because u neighbors $u - 1$, $u + 1$, and at most $k - 1$ nodes of K_0 since j is even and the 0-entry condition. Thus, u belongs to a clique of size at most $k + 2$. However, $u - 1$ and $u + 1$ are not connected. Therefore, either $u - 1$ or $u + 1$ does not belong to its clique. So, u belongs to a clique of size at most $k + 1$. Now, assume u odd. u is of degree at most $k + 2$. u belongs to a clique of size $k + 3$ if $u - 1$ and $u + 1$ both belong to the same clique. If the maximal clique of u contains $u - 1$ or $u + 1$, its size is at most $k + 1$ since $u - 1$ and $u + 1$ are even, and applying the previous case. Finally, if u contains neither $u - 1$ nor $u + 1$, the clique is of size at most $k + 1$, completing our claim.

$G_{n,k}$ contains labeled graphs. Remind that two labeled graphs $G = (V, E)$ and $G' = (V', E')$ (defined on the same set of nodes V) are isomorphic if it exists a permutation $g : V \rightarrow V$ of the labels of the nodes such that (u, v) is an edge of G iff the edge $(g(u), g(v))$ belongs to G'. The automorphism group $Aut(G)$ of a graph G is the group of permutations preserving the adjacency, that is the set of isomorphisms of G to itself ($E' = E$). Let $\gamma = \{g\}$ be the set of isomorphisms mapping $G_M \in G_{n,k}$ to $G_M' \in G_{n,k}$. We have that the number of labeled graphs isomorphic to G_M is equal to $|\gamma|$. The observation of uniqueness of the clique K' and the chain $C = 2k + 1, \ldots, n$, for any isomorphism g of G, implies that $u \in K' \Leftrightarrow g(u) \in K'$. More precisely, we have in $K': k + i$ nodes of degree $2k$ (k even nodes and i odd nodes not linked to C) and $k - i$ nodes of degree more than $2k$. Moreover, by definition of the graphs of $G_{n,k}$, for each node u of the chain $C, g(u) \in \{2k + 1, \ldots, n\}$ and $|g(u) - g(u + 1)| = 1$. This last property means that there are only two ways of connecting to K (and labeling) the $n - 2k$ nodes of C.

Via an isomorphism g, nodes u and $g(u)$ have the same degree, which implies that $|\gamma| \leq 2 \cdot (k + i)!(k - i)!$. Some of the isomorphisms applied to a given graph G_M leads to a graph $G_M' = G_M$: the automorphisms.

We trivially have at least $(k + i)!$ automorphisms of the nodes of degree $2k$ in K. So, each graph is isomorphic to at most $2 \cdot (k - i)! \leq 2 \cdot k!$ graphs in $G_{n,k}$. Therefore there are at least $|G_{n,k}|/(2k!)$ non-isomorphic graphs in $G_{n,k}$, completing the proof.
From the previous counting, \(\log_2 U_{n,k} \geq k(n - 2k - O(\log k)) \). For every \(k = o(n) \), \(\log_2 U_{n,k} \geq kn - o(kn) \). The Munro and Raman’s scheme of \(2kn + 2m \) bits \([MR01]\), available not only for simple graphs but also for \(k \)-page embeddings with multiple edges and loops, implies that \(\log_2 U_{n,k} \leq 4kn + 2n - 6k \) since \(m \leq kn + n - 3k \) \([BK79]\).

Corollary 1 For any \(k = o(n) \), every coding scheme of \(k \)-page \(n \)-node graphs needs at least \(kn - o(kn) \) bits for some worst-case graph, which is tight up to a multiplicative factor 4.

Remark also that for \(k = cn \) for \(c \) strictly less than \(1/2 \), the Munro and Raman’s scheme is still optimal up to a constant factor depending on \(c \) that could be larger than 4.

An interesting combinatorics question would be to tighten the range on the growth constant for \(k \)-page graphs, defined by \(\sup_k \lim_{n \to \infty} U_{n,k}^{1/(kn)} \), and similarly for \(k \)-page embeddings.

Observe that any graph of the family \(G \) introduced in the proof of Theorem 1 has at least \(m \geq n - 2k + 2k(2k - 1)/2 = n + \Theta(k^2) \) edges. It follows that for each \(m \) and \(n \) there is an \(m \)-edge \(n \)-node graph of pagenumbers at least \(\Omega(\sqrt{m} - n) \). So for \(m - n = \Omega(m) \), the general \(O(\sqrt{m}) \) upper bound on the pagenumber is tight.

3 An Encoding Scheme

The coding of \(k \)-page graphs of Jacobson \([Jac89]\) in \(9kn \) bits shows that the lower bound of Corollary 1 is asymptotically tight up to a multiplicative constant. Munro and Raman in \([MR01]\) improved this bound to \(2kn + 2m + o(kn + m) \) bits, where \(m \) is the number of edges, supporting \(O(k) \) time adjacency queries (in a word-RAM model with \(O(\log m + \log n) \)-bit words). This coding is always less than \(4kn + 2n + o(kn) \) bits since the maximum number of edges of a \(k \)-page graph is \(n(k + 1) - 3k \) \([BK79]\). We can also use the following \(2m \log_2 k + 4m \) bit encoding which improves the previous one whenever \(m \leq \frac{1}{2} kn / \log_2 k \) and the graph does not contain isolated nodes.

In the following, \(S \) and \(B \) are respectively a string defined on the alphabet \{ (1), (2), ..., (k) \} and a bitmap. For fixed \(p \), the substring of parentheses composed of parentheses of type \((p) \) is balanced if it contains the same number of open and closed parentheses and such that any prefix of the string contains a majority (or equality) of open parentheses. W.l.o.g. a string of multiple parentheses is balanced if all of its substring of type \(p \) is balanced.

To provide quickly adjacency queries, we use the following operations:

- Let \(\text{select}(i) \) be the position of the \(i \)-th occurrence of 1 in \(B \) and \(\text{select}_p(i,b) \) be the \(i \)-th position of the parenthesis \(b \in \{ (p) \} \) in \(S \).
- Let \(\text{rank}(i) \) be the number of 1 in \(B \) before and including position \(i \) and \(\text{rank}_p(i,b) \) be the number of parenthesis \(b \in \{ (p) \} \) in \(S \) before (and including) the position \(i \).
- Let \(\text{match}(i) \) be the position in \(S \) of the matching parenthesis of \(S[i] \).

The first efficient implementation of balanced string of \(k \) multiple types of parentheses and bitmaps for several queries have been proposed in \([CGH98, CLL01, MR01]\) whenever \(k = O(1) \). For a string of length \(\ell \) and \(2k \) symbols, it follows that adding an auxiliary table of \(o(\ell \log k) \) bits, operations \(\text{select} \) and \(\text{rank} \) can be done in \(O(\log \log k) \) time \([GMR06]\), or alternatively in \(O(\log k / \log \log \ell) \) time \([PMNN07]\), which is constant for \(k = O(\text{polylog}(\ell)) \).

(ii) We will consider later multi-edge graphs, so \(m \) may be not bounded above \(y \) a function of \(n, m > 2^n \) is possible.
Theorem 2 Every \(k \)-page embedding with \(m \) edges (possibly with multiple edges and loops) and \(i \) isolated nodes can be represented with \(2(m + i) \log_2 k + 4(m + i) \) bits. Moreover, it is possible (1) to check adjacency with at most \(O(\log k) \) runs of operations select, rank or match, (2) to compute the degree of a node with a constant number runs of operations select, rank and (3) to list the \(\delta \) neighbors of a node in \(O(\delta) \) runs of select, rank or match.

Proof: We consider a given \(k \)-page embedding with \(m \) edges.

Coding To describe the embedding we use two strings:

- a balanced string \(S \) of multiple types of parentheses. Each edge is encoded by a pair of parentheses of a given type; and
- a bitmap \(B \) by which the nodes can be located in \(S \).

The use of a string of multiple parentheses is inspired from [CGH+98]. We first assume that the graph does not contain any degree-0 node (i.e., isolated node without loops), then we give an extension of the coding whenever the embedding contains some. The string \(S \) is defined as follows (see Fig. 3 for an example): successively for each node \(u = 1, \ldots, n \), we assign a block \(S_u \) composed of three sequences of closed and open parentheses denoted by \(S^c_u \) and \(S^o_u \) merged in the order \(S^c_u, S^o_u, S^l_u \).

1. To built \(S^c_u \): for each page \(p \in \{1, \ldots, k\} \), we encode contiguously one symbol \((p \) per edge that belongs to page \(p \) and that connects a node \(v < u \); and we denote by \(\Gamma^c_p(u) \) the smallest \(v \). Within \(S^c_u \), the order of the blocks of closed parentheses is the increasing order of \(\Gamma^c_p(u) \)’s.

2. To built \(S^o_u \): for each page \(p \in \{1, \ldots, k\} \), we encode contiguously one symbol \((p \) per edge that belongs to the page \(p \) and that connects a node \(v \geq u \); and we denote by \(\Gamma^o_p(u) \) the largest \(v \). Within \(S^o_u \), the order of the blocks of open parentheses is the increasing order of \(\Gamma^o_p(u) \)’s.

3. Finally, \(S^l_u \) encodes a possible loop by adding a symbol \()_p \) for each loop of \(u \) on the page \(p \).

The resulting string \(S \) has length \(2m \) and is composed of \(2k \) distinct symbols. Since the drawing of the edges on each page \(p \) is outerplanar, the string composed of the symbols \((p \) and \()_p \) consists of a balanced string of parentheses.
The nodes can be located in S by an extra bitmap B of $2m$ bits. We associate with each parenthesis a bit in the same order than of S. The bit 1 represents the first parenthesis of a node, i.e., the beginning of block S_u in S, and the bit 0 represents the others. So, in total we use $2m \log_2 (2k) + 2m = 2m \log_2 k + 4m$ bits.

To recover the embedding from the string S and the bitmap B, we determine for each node u the substring S_u of S associated with u and computed as follows: find positions p_0 and p_1 of the u-th and the $(u + 1)$-th bit 1 in B, and extract the substring of S between positions p_0 and $p_1 - 1$ (included).

Two nodes $u \leq v$ are connected by an edge embedded on page p if and only if S_u contains symbol $(p, S_v$ contains symbol $) \beta$, and the two typed parentheses match in S.

However, we remark that nodes without any incident edges (i.e., isolated nodes without loops) are not encoded by this scheme. To overcome this problem we add an extra loop embedded on page 1 at all isolated nodes (including those with loops in the original embedding), and we code this new embedding as presented previously so that every node has non-null degree. The number of edges increases to $m + i$, where i is the total number of isolated nodes, and so the resulting coding uses $2(m + i) \log_2 k + 4(m + i)$ bits. To recover the original embedding, we extract S_u as before and first check whether u is isolated or not. It is isolated if and only if it contains only pairs of matching parentheses. If it is the case, we remove from S_u one copy of matching symbols $(1$ and $)$, and perform adjacency as previously.

Queries The simplest query is the computation of the degree of a node u: it corresponds to the difference of the $(u + 1)$-th position of 1 and the u-th position of 1 in bitmap B, that is $\text{select}(u + 1) - \text{select}(u)$.

In the following, we prove that the adjacency can be done quickly.

We shall first prove that for a given page, the adjacency test between two nodes $u \leq v$ on a given page takes at most a constant number of runs of operations rank, select and match. Then, we shall see that adjacency in the graph can be done by checking adjacency on at most $O(\log k)$ pages.

Let us first observe that, if $u \leq v$ are adjacent in page p then, $|S_u|$ and $|S_v|$ are both non-null, and thus $\Gamma_p^l(u)$ and $\Gamma_p^l(v)$ exist. In that case, and due to the outerplanarity of page p, either $\Gamma_p^l(u) = v$ or $\Gamma_p^l(v) = u$.

To know whether the nodes $u \leq v$ are adjacent or not in page p, we therefore apply the following steps:

1. Find the first open parenthesis of type p belonging to S_u.
 Return NO if such parenthesis does not exist.

2. Search its matching parenthesis and its corresponding node $\Gamma_p^l(u)$.

3. If $\Gamma_p^l(u) = v$, then return YES.

4. Find the last closed parenthesis of type p belonging to S_v.
 Return NO if such parenthesis does not exist.

5. Search its matching parenthesis and its corresponding node $\Gamma_p^l(v)$.

6. If $\Gamma_p^l(v) = u$, then return YES.

\(\text{(iii)}\) A closed parenthesis ' matches an open parenthesis '(' in position i if it is the first closed parentheses in position $j > i$ for which the difference of the number of open and the number of closed parenthesis between them is null.
Step 1 can be done using select in B to find blocks S_u in S and its starting position $s_u = \text{select}(u)$. Let l_u be the position in S of the first open parenthesis of type p in S_u. To get l_u, we will count the number of (p’s before s_u and select the next occurrence of (p. It follows that $l_u = \text{select}_p(\text{rank}_p(s_u - 1, (p) + 1, (p))$.

Comparing the position select($u + 1$), which is equal to $s_u + |S_u|$, and the position l_u, we can detect if $|S_u| > 0$ or not, and possibly answer N_0 to the adjacency test.

The matching node of the parenthesis in position l_u in S is precisely $\Gamma_p(u)$, which can be computed by: $\Gamma_p(u) = \text{rank}(\text{match}_p(l_u, (p)))$, the rank operation being computed in B. This completes Step 2. Step 3 is trivial.

Steps 4-6 are quite similar: we should distinguish two subcases: (1) either v has a loop in page p or (2) v has no loop in page p. This can be done by determining the position r_v in S of the matching parenthesis of the last closed parenthesis of type p: $r_v = \text{match}_p(\text{rank}(s_{v+1} - 1, (p)))$. If $r_v \geq s_v$, then v has a loop. If $u \neq v$, we need to do an extra work to find the last closed parentheses of S'_b of type p: $r = \text{select}_p(\text{rank}_p(r_v, (p)))$. Then $\Gamma_p(v) = \text{rank}(\text{match}_p(r, (p)))$. If $\Gamma_p(v) \neq u$ then there is no edge (u, v) in page p.

Obviously, some computation may failed, if $|S'_b| = 0$ for instance, which can be easily detected. For $u = v$, we must return N_0 for the adjacency test.

Therefore, the adjacency test in a given page takes a constant number of runs of operations select, rank, and match.

To check the existence of an edge between $u \leq v$ in the graph, there is no need to check the adjacency successively in the k pages but in $[\log k]$ pages only.

Remind that block $S'_b = O_{p_1}O_{p_2} \ldots O_{p_{k_u}}$, where each $O_{p_i} = (p_i, p_i, \ldots p_i$ is a block of open parenthesis on page p_i. By construction of S'_b, the sub-blocks O_{p_i}’s have been ordered such that $\Gamma_{p_i}(u) \leq \Gamma_{p_{i+1}}(u) \leq \ldots \leq \Gamma_{p_{k_u}}(u)$. Clearly, if there is some page p such that $\Gamma_p(u) = v$, then $v \in [\Gamma_{p_i}(u), \Gamma_{p_{k_u}}(u)]$. A binary search of v in the ordered sequence of $\Gamma_{p_i}(u)$’s will find such a p (if any) in repeating at most $[\log k_u]$ time steps 1-3.

Similarly, $S'_{b} = C_{q_1}C_{q_2} \ldots C_{q_{k_v}}$, where $C_{p_i} = (p_i, p_i, \ldots p_i$, and if there is some page q such that $\Gamma_{q_i}(v) = u$, then $u \in [\Gamma_{q_1}(v), \Gamma_{q_{k_v}}(v)]$. Such q can be determined (if any) in repeating at most $[\log k_v]$ time steps 4-6.

Overall, the adjacency test can be performed in at most $2[\log k]$ adjacency test on a given page.

From the above description, listing the neighbors of u is done by reading the block S_u (from position select(u)), computing the set of matching parenthesis and determining the corresponding nodes (using rank in B).

That completes the proof. □

Let k' be the number of non empty pages. Although our coding works with empty pages, in the spirit of Theorem 2 $k' = k$ pages are assumed to be non empty. If the majority of the pages are empty, a bitmap of size k can code this information and an index table of size $o(k)$ can be used to tell in constant time whether a given page is empty. In this case, our coding can be adapted to $2(m + i)\log_2 k' + 4(m + i) + k$ bits.

In Theorem 2, we can use the best description of rank, select and match in the literature. As described in the beginning of this section, recent papers [GMR06, FMMN07] provide description of rank and select in $O(\min\{\log k/\log \log m, \log \log k\})$ time adding extra index tables of $o(m \log k)$ bits.
Proof: Roughly speaking, we shall add to our data structure \(k \) extra strings of balanced parenthesis (of single type) \(T_1, T_2, \ldots, T_k \) such that \(T_p \) corresponds to the subword of \(S \) of type \(p \). Operation \(j = \text{match}_p(i) \) (for \((p, i) \) in \(S \)) can be done using the following sequence:

- find the rank of the current parenthesis (of type \(p \)) in \(S \) and select the corresponding parenthesis in \(T_p \): \(s = \text{select}_{T_p}(\text{rank}_{T_p}(i, (p, i))) \);
- compute the rank of the matching parenthesis in \(T_p \): \(r = \text{rank}_{T_p}(\text{match}_{T_p}(s), 1) \);
- select the corresponding position in \(S \): \(j = \text{select}_{T_p}(r, 1) \).

Keep in mind that each \(T_p \) is of single type. If each \(T_p \) is considered separately, adding index tables of \(O(m_p \log m_p / \log \log m_p) \) is enough to run operations \(\text{rank}_{T_p}, \text{select}_{T_p} \) and \(\text{match}_{T_p} \) in constant time.

In order to get the desired data structure, we need to access to the \(i \)-th table or index table. To limit the space consumption, we assign index tables to \(T_p \) if and only if \(m_p > 1/2 \log_2 m \). In the other case, the answer will be precomputed in another table.

To sum up, to represent \(T_p \)’s and the index tables, we built a bitmap \(T \) composed of: (1) the concatenation of \(T_1, \ldots, T_k \); (2) three tables that allows the three operations on \(T_p \) in \(O(1) \) time whenever \(m_p \leq \frac{\log m}{2} \) (by precomputing the answers stored within \(O(\log \log m) \) bits for any input - a small block and an integer less than \((\log_2 m)/2 \)); (3) we assign to each \(T_p \) auxiliary index tables of size \(o(m_p) \) bits as soon as \(m_p > \frac{\log m}{2} \); (4) we add to \(T \) a field separator bitmap of length \(2m + o(m) \) and an index table of size \(o(|T|) \) identifying the position of the \(i \)-th table (among at most \(2k \) tables for part 1 and 3 of \(T \)) using operation select.

We now calculate the space usage. The four parts of our data structure take respectively \(2m \) bits, \(O(2^{\log_2 m/2} \log m \log \log m) = o(m) \) bits, \(\sum_{m_p \geq (\log_2 m)/2} O(m_p \log m_p / \log \log m_p) \) bits,

\[
O\left(\frac{\log m}{\log \log \log m} \sum_{m_p} m_p \right) = o(m) \text{ and } 2m + o(m). \]

\(m \) includes here extra edges for coding isolated notes.
From Theorem 2 and Lemma 2 we get:

Theorem 3 Every \(k \)-page embedding with \(m \) edges, with multiple edges and loops, and \(i \) isolated nodes can be represented with \(2(m + i) \log_2 k + 4(m + i) + o((m + i) \log k) \) bits. Moreover, it is possible to test the adjacency in \(O(\tau \cdot \log k) \) time, where \(\tau = \min \{ \log k / \log \log m, \log \log k \} \). The computation of the degree can be done in \(O(1) \) time and listing the \(\delta \) neighbors of a node takes \(O(\tau \delta) \).

4 Conclusion

In this paper, we focus on representing a \(k \)-page embedding. We observe that our coding can be shortened if the task is to represent a simple graphs (no loops and no multi-edges), rather than an embedding. In particular, the additive term \(4(m + i) \) can be reduced to \(2m + 2n \) where \(n \) is number of nodes removing bitmap \(B \) and coding each node on the first page by a pair of open and closed parenthesis.

In this article, we do not focus on the possibility of compressing strings that takes into account the empirical entropy of the strings. The work of Ferragina et al. [FMMN07] can be used to compress our data structure.

It would be interesting to get the adjacency test and the list of neighbors in constant time for arbitrary \(k \). To do this, basic operations \(\text{rank} \) and \(\text{select} \) should take constant time. However, to our knowledge, this problem is open.

Acknowledgments: The authors would like to thank the anonymous referees who made many interesting remarks.

References

Cyril Gavoille and Nicolas Hanusse

