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The Laplacian Spread of a Tree
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The Laplacian spread of a graph is defined to be the difference between the largest eigenvalue and the second smallest

eigenvalue of the Laplacian matrix of the graph. In this paper, we show that the star is the unique tree with maximal

Laplacian spread among all trees of given order, and the path is the unique one with minimal Laplacian spread among

all trees of given order.

Keywords: Tree, Laplacian matrix, Spread

1 Introduction

Let G be a simple graph of order n with the vertex set V = V (G) = {v1, v2, . . . , vn} and the edge set

E = E(G). The adjacency matrix of the graph G is defined to be a matrix A = A(G) = [aij ] of order

n, where aij = 1 if vi is adjacent to vj , and aij = 0 otherwise. Since A is symmetric and real, the

eigenvalues of A can be arranged as follows:

λn(G) ≤ λn−1(G) ≤ · · · ≤ λ1(G).

The spread of the graph G is defined as

SA(G) = λ1(G) − λn(G).

Generally, the spread of a square complex matrix M is defined to be s(M) = maxi,j |λi − λj |, where

the maximum is taken over all pairs of eigenvalues of M . There is a considerable literature on the spread

of an arbitrary matrix, see, e.g. Johnson et al. (1985); Mirsky (1956); Nylen and Tam (1994); Thompson

(1992); Zhan (2005).
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Recently, the spread of a graph has received much attention. In Petrović (1983), Petrović determines

all minimal graphs whose spreads do not exceed 4. In Gregory et al. (2001), Gregory, Hershkowitz, and

Kirkland present some lower and upper bounds for the spread of a graph. They show that the path is the

unique graph with minimal spread among all connected graphs of given order. However the graph(s) with

maximal spread is still unknown, and some conjectures are presented in their paper. In Li et al. (2007),

Li, Zhang and Zhou determine the unique graph with maximal spread among all unicyclic graphs with

given order not less than 18, which is obtained from a star by adding an edge between some two pendant

vertices. In Nikiforov (2006), Nikiforov considers a more general problem: what is the property of the

linear combination of some extreme eigenvalues of a graph? He gives a theorem involving the limit of a

certain combination as the order of a graph goes to infinity, and presents an upper bound for the sum of

the largest eigenvalue and the second largest eigenvalue of all graphs of fixed order.

In this paper, we consider another version of spread of a graph, i.e. the Laplacian spread of a graph,

which is defined as follows. Let G be a graph as above. The Laplacian matrix of a graph G is defined

as L = L(G) = D(G) − A(G), where D(G) = diag{d(v1), d(v2), . . . , d(vn)} is a diagonal matrix, and

d(v) denotes the degree of a vertex v of G. It is known that L is symmetric and positive semidefinite so

that its eigenvalues can be arranged as follows:

0 = µn(G) ≤ µn−1(G) ≤ · · · ≤ µ1(G),

where µn(G) = 0 as each row sum of L is zero. There are a lot of results involving with the relations

between the spectrum of L and numerous graph invariants, such as connectivity, diameter, isoperimetric

number, and expansion properties of a graph; see, e.g., Fiedler (1973); Merris (1998); Mohar (1997). In

particular, µn−1(G) > 0 if and only if G is connected. Fiedler Fiedler (1973) calls the µn−1(G) the

algebraic connectivity of the graph G, which is considered as an algebraic measurement of the connec-

tivity of a graph. The corresponding eigenvector of µn−1(G) is usually called Fiedler vector, which has

a beautiful structural property given by Fiedler (Fiedler, 1975, Theorem 3.14). One can find that µ1(G)
is exactly the spectral radius of L, which also has a lot of results (especially the upper bounds) for this

eigenvalue; see e.g. Das (2003). The Laplacian spread of the graph G is defined to be

SL(G) = µ1(G) − µn−1(G).

Note that in the definition we consider the largest eigenvalue and the second smallest eigenvalue, as the

smallest eigenvalue always equals zero. In addition, throughout this paper we only consider connected

graphs G in which case µn−1(G) > 0.

We now consider the extremal Laplacian spread of trees. Let Pn, Sn denote a path and a star of order n
respectively. It is known that for any tree T of order n,

2
(

1 + cos(
π

n
)
)

= µ1(Pn) ≤ µ1(T ) ≤ µ1(Sn) = n, Chen (2002), (1)

2
(

1 − cos(
π

n
)
)

= µn−1(Pn) ≤ µn−1(T ) ≤ µn−1(Sn) = 1, Fiedler (1973); Merris (1987); Chen (2002).

(2)

For both inequalities, the left equalities hold if and only if T = Pn, and the right equalities hold if and

only if T = Sn. With equalities (1) and (2), we can not directly tell that Sn is the one with maximal
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Fig. 1: A double star T(n, p) with n − 2 ≥ p ≥ (n − 2)/2.

Laplacian spread among all trees of order n, and Pn is the one with minimal Laplacian spread among all

trees of order n.

We focus on the problem of maximizing and minimizing the Laplacian spread of trees, and show that

Sn and Pn are indeed the trees respectively with maximal Laplacian spread and minimal Laplacian spread

among all trees of order n. As the problem for a tree with order less than 5 is obvious, throughout the

paper we assume all trees has order greater than or equal to 5, unless specified somewhere.

2 Tree(s) with maximal Laplacian spread

We first narrow down the possibility of the tree(s) with maximal Laplacian spread.

Lemma 1 Anderson and Morel (1985) Let G be graph. Then

µ1(G) ≤ max{d(u) + d(v) : uv ∈ E(G)}.

If G is connected, then the equality holds if and only if G is bipartite and the degree is constant on each

partition of the vertices of G.

Denote by ∆(G) the maximum degree of all vertices of a graph G.

Lemma 2 Grone and Merris (1994) Let G be graph of order n ≥ 2 containing at least one edge. Then

µ1(G) ≥ ∆(G) + 1.

If G is connected, then the equality holds if and only if ∆(G) = n − 1.

Let T be the one with maximal Laplacian spread among all trees of order n. By Lemma 1, we now

prove T is necessarily a double star of order n, i.e., a tree obtained from an edge by attaching p pendant

edges to one vertex of the edge and n− 2− p pendant edges to the other vertex of the edge with n− 2 ≥
p ≥ (n − 2)/2, denoted by T(n, p); see Fig. 1.

Lemma 3 Let T be the one with maximal Laplacian spread among all trees of order n. Then T is a

double star T(n, p) for some p with n − 2 ≥ p ≥ (n − 2)/2.

Proof: Let T be a tree of order n, and let N(v) denote the neighborhood of a vertex v of T . Then for any

edge uv of T ,

d(u) + d(v) = |N(u) ∪ N(v)| ≤ n,
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with equality if and only if T = T(n, d(u) − 1) (assuming d(u) ≥ d(v)). In addition, the star Sn =
T(n, n − 2) and SL(Sn) = n − 1.

For any tree T which is not a double star, then by above discussion and Lemma 1,

µ1(T ) ≤ max{d(u) + d(v) : uv ∈ E(T )} ≤ n − 1.

Then SL(T ) = µ1(T ) − µn−1(T ) < n − 1 as µn−1(T ) > 0. The result follows. ✷

Proposition 1 The characteristic polynomial of L(T(n, p)) is

det(λI − L(T(n, p))) = λ(λ − 1)n−4[(λ − n)(λ − 1)2 + p(n − 2 − p)λ]. (3)

Proof: Let q := n − 2 − p. By relabelling the vertices if necessary we may write the matrix B :=
λI − L(T(n, p)) as follows:

B =









(λ − 1)Ip 0 ep 0
0 (λ − 1)Iq 0 eq

eT
p 0 λ − (p + 1) 1
0 eT

q 1 λ − (q + 1)









,

where Ip, ep respectively denote an identity matrix of order p and an all-one column vector of dimension

p.

Assume that λ 6= 1. Then by left multiplying a block matrix

[

Ip+q 0
−(λ − 1)−1diag{eT

p , eT
q } I2

]

, the

above matrix is transferred into









(λ − 1)Ip 0 ep 0
0 (λ − 1)Iq 0 eq

0 0 −p(λ − 1)−1 + λ − (p + 1) 1
0 0 1 −q(λ − 1)−1 + λ − (q + 1)









.

Hence

det B = (λ − 1)p+q−2 det

[

−p + (λ − 1)[λ − (p + 1)] (λ − 1)
(λ − 1) −q + (λ − 1)[λ − (q + 1)]

]

= λ(λ − 1)n−4[(λ − n)(λ − 1)2 + p(n − 2 − p)λ]

Since the degree of the characteristic polynomial of L(T(n, p)) is finite and there are infinite λ (λ 6= 1)
such that (3) holds, the result holds for all λ ∈ R. ✷

Denote

f(λ;n, p) := (λ − n)(λ − 1)2 + p(n − 2 − p)λ. (4)

Then the characteristic polynomial of L(Sn) of the star Sn is λ(λ− 1)n−4f(λ;n, n− 2). For any double

star T(n, p) with (n − 2)/2 ≤ p ≤ n − 3 and n ≥ 5, by (2), (0 <)µn−1(T(n, p)) < 1, and by Lemma

2, µ1(T(n, p)) ≥ ∆(T(n, p)) + 1 = p + 2 ≥ 4. Hence the eigenvalues µn−1(T(n, p)), µ1(T(n, p)) are
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both roots of the polynomial f(λ;n, p). In addition, all roots of f(λ;n, p) must be positive as they are

nonzero eigenvalues of L(T(n, p)).
In the following, we shall prove that for (n − 2)/2 ≤ p ≤ n − 3 and n ≥ 5, SL(T(n, p)) <

SL(T(n, n − 2)) = n − 1. By this inequality and Lemma 3, we then get the result that the star is the

unique tree with maximal Laplacian spread among all trees with given order. There are exactly two double

stars T(5, 2),T(5, 3) of order 5, and by Lemma 4 above inequality holds for n = 5. There are exactly

three double stars of order 6, i.e. T(6, 2),T(6, 3),T(6, 4). By Lemma 4, SL(T(6, 3)) < SL(T(6, 4)).
The inequality SL(T(6, 2)) < SL(T(6, 4)) can be obtained directly by a little computation. By (4),

f(λ; 6, 2) = (λ−6)(λ−1)2 +4λ, which has roots (5+
√

17)/2, 3, (5−
√

17)/2. So the Laplacian spread

of T(6, 2) is
√

17 < 6 − 1 = 5.

Lemma 4 For n ≥ 5,

SL(T(n, n − 3)) < SL(T(n, n − 2)) = SL(Sn) = n − 1.

Proof: By Proposition 1 and the discussion prior to this lemma, the eigenvalues µn−1(T(n, n−3)), µ1(T(n, n−
3)) are both roots of the polynomial

f(λ;n, n − 3) = (λ − n)(λ − 1)2 + (n − 3)λ = λ3 − (n + 2)λ2 + (3n − 2)λ − n.

Note that

f(1/3;n, n − 3) = −23 + 3n

27
< 0, f(n − 2/3;n, n − 3) =

4 − 39n + 9n2

27
> 0 if n ≥ 5.

If there exists a λ0 > n − 2/3 such that f(λ0;n, n − 3) ≤ 0 then f(λ;n, n − 3) has two roots both

greater than n−2/3, and hence the sum of its root is greater than 2n−4/3. However, the sum of all roots

(necessarily be positive) of f(λ;n, n − 3) is n + 2 < 2n − 4/3, which is a contradiction, for n ≥ 4. So

λ1(T(n, n − 3) < n − 2/3. Similarly, we get µn−1(T(n, n − 3) > 1/3. Hence

SL(T(n, n − 3)) < (n − 2/3) − 1/3 = n − 1.

The result follows. ✷

Next we consider the Laplacian spread of T(n, p) with (n − 2)/2 ≤ p ≤ n − 4.

Lemma 5 For (n − 2)/2 ≤ p ≤ n − 4 and n ≥ 6,

SL(T(n, p)) < SL(T(n, n − 2)) = SL(Sn) = n − 1.

Proof: For brevity, we simply write µ1(T(n, p)), µn−1(T(n, p)) as µ1, µn−1 respectively. Observe that

SL(T(n, n − 2)) − SL(T(n, p)) = (n − 1) − (µ1 − µn−1) = (n − µ1) − (1 − µn−1).

By (4), if λ > 0, the image of f(λ;n, p) is obtained from f(λ;n, n − 2) by adding a positive function

p(n − 2 − p)λ; see Fig. 2.
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Fig. 2: The images of f(λ; n, p) with (n − 2)/2 ≤ p ≤ n − 3 and f(λ; n, n − 2).

By Mean-Value Theorem,

n − µ1 =
f(n;n, p) − f(µ1;n, p)

f ′(ξ1;n, p)
=

np(n − 2 − p)

f ′(ξ1;n, p)
,

1 − µn−1 =
f(1;n, p) − f(µn−1;n, p)

f ′(ξ2;n, p)
=

p(n − 2 − p)

f ′(ξ2;n, p)
,

for some ξ1 ∈ (µ1, n) and ξ2 ∈ (µn−1, 1), where f ′(λ;n, p) denotes the derivative of f(λ;n, p) with

respect to λ. If we can show

np(n − 2 − p)

f ′(ξ1;n, p)
>

p(n − 2 − p)

f ′(ξ2;n, p)
, or nf ′(ξ2;n, p) > f ′(ξ1;n, p),

the result will follow.

Note that

f ′(λ;n, p) = 3λ2 − 2(n + 2)λ + 2n + 1 + p(n − 2 − p).

So f ′(λ;n, p) is strictly decreasing on the open interval (0, (n + 2)/3) and is strictly increasing on ((n +
2)/3),+∞). Note that 0 < ξ2 < 1 < (n + 2)/3, and by Lemma 2, n > ξ1 > µ1 ≥ p + 2 ≥
(n − 2)/2 + 2 > (n + 2)/3. Therefore,

nf ′(ξ2;n, p) > nf ′(1;n, p) = np(n − 2 − p),

f ′(ξ1;n, p) < f ′(n;n, p) = (n − 1)2 + p(n − 2 − p).

Then

nf ′(ξ2;n, p) − f ′(ξ1;n, p) > (n − 1)[p(n − 2 − p) − (n − 1)].

As (n − 2)/2 ≤ p ≤ n − 4, p(n − 2 − p) − (n − 1) ≥ 2(n − 4) − (n − 1) = n − 7. So, if n ≥ 7, the

result follows. If n = 6, then p = 2 and this case is verified prior to Lemma 4. ✷

By Lemmas 3, 4 and 5, we get the main result.
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Theorem 1 For n ≥ 5, the star is the unique tree with maximal Laplacian spread among all trees of

order n.

3 Tree(s) with minimal Laplacian spread

We first establish a relation between the Laplacian spread of a tree and the (adjacency) spread of the line

graph of the tree, and then use the relation to obtain another main result of this paper.

Let T be a tree of order n with vertices v1, . . . , vn and edges e1, . . . , en−1. The (vertex-edge, unori-

ented) incidence matrix of T is the n× (n− 1) matrix M(T ) = [mij ] given by: mij equals 1 if vertex vi

is incident to edge ej and equals 0 otherwise. The unoriented Laplacian matrix K(T ) of T is defined to

be the n × n matrix K(T ) = M(T )M(T )T = D(T ) + A(T ).
The line graph of the tree T , denoted by T l, is the graph whose vertices are exactly the edges of T with

two vertices being adjacent if and only if the the corresponding edges in T are incident. One can find that

M(T )T M(T ) = 2In−1 + A(T l) (or see (Brualdi and Ryser, 1991, p. 35)). Note that T l is connected,

and P l
n = Pn−1 for n ≥ 3.

Lemma 6 Grone et al. (1990) Let G be a bipartite graph. Then K(G) = D(G) + A(G) and L(G) =
D(G)−A(G) are unitarily similar, i.e., there exists an orthogonal matrix U such that K(G) = U−1L(G)U .

Lemma 7 For any tree T of order n ≥ 3, the Laplacian spread of T is exactly the (adjacency) spread of

T l, i.e.,

SL(T ) = SA(T l).

Proof: As T is bipartite, by Lemma 6, the matrix K(T ) = M(T )M(T )T = D(T ) + A(T ) is unitarily

similar to L(T ) = D(T ) − A(T ), and hence they have the same spectra. Note that M(T )M(T )T and

M(T )T M(T ) have the same set of nonzero eigenvalues, and M(T )T M(T ) = 2In−1 + A(T l). Hence,

the eigenvalues of A(T l) are µ1(T ) − 2, µ2(T ) − 2, . . . , µn−1(T ) − 2, and the Laplacian spread of T is

exactly the (adjacency) spread of T l. ✷

Lemma 8 Gregory et al. (2001) If G is a connected graph of order n, then SA(G) ≥ SA(Pn), with

equality if and only if G = Pn.

Theorem 2 For n ≥ 5, the path is the unique tree with minimal Laplacian spread among all trees of

order n.

Proof: Let T be any tree of order n ≥ 5, which is not a path. Then T l is a connected graph of order n− 1
which is not a path. Then by Lemmas 7 and 8,

SL(T ) = SA(T l) > SA(Pn−1) = SA(P l
n) = SL(Pn).

The result follows. ✷
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