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We generalize the notion of the toggle group, as defined in [P. Cameron–D. Fon-der-Flaass ’95] and further explored

in [J. Striker–N. Williams ’12], from the set of order ideals of a poset to any family of subsets of a finite set. We

prove structure theorems for certain finite generalized toggle groups, similar to the theorem of Cameron and Fon-

der-Flaass in the case of order ideals. We apply these theorems and find other results on generalized toggle groups

in the following settings: chains, antichains, and interval-closed sets of a poset; independent sets, vertex covers,

acyclic subgraphs, and spanning subgraphs of a graph; matroids and convex geometries. We generalize rowmotion,

an action studied on order ideals in [P. Cameron–D. Fon-der-Flaass ’95] and [J. Striker–N. Williams ’12], to a map

we call cover-closure on closed sets of a closure operator. We show that cover-closure is bijective if and only if the

set of closed sets is isomorphic to the set of order ideals of a poset, which implies rowmotion is the only bijective

cover-closure map.
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1 Introduction

In [CF95], P. Cameron and D. Fon-der-Flaass defined a permutation group on order ideals (or mono-

tone Boolean functions) of a poset and proved that its group structure is the symmetric or alternating

group whenever the Hasse diagram of the poset is connected. In [SW12], N. Williams and the author

named this permutation group the toggle group and used the toggle group to prove results on the orbit

structure of certain actions, finding bijective proofs for instances of the cyclic sieving phenomenon of

V. Reiner, D. Stanton, and D. White [RSW04]. In [CF95], Cameron and Fon-der-Flaass also studied a

certain convex-closure action on order ideals and proved it could be expressed as the toggle group action

in which one composes all the toggles of the poset from top to bottom. In [SW12], N. Williams and the

author named this action rowmotion and proved a theorem on the equivariance of rowmotion and a toggle

group action they called promotion, loosely defined as toggling the elements of the poset from left to right.

(See [SW12] for further history on rowmotion.) Then in [DPS17], K. Dilks, O. Pechenik, and the author

generalized this result from two to n dimensions. In [PR15], J. Propp and T. Roby began investigating
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a phenomenon they called homomesy. They built on the framework of [SW12] to prove instances of ho-

momesy on the order ideals of the product of two chains poset under both rowmotion and promotion.

Subsequently, D. Einstein and J. Propp [EP14] and D. Grinberg and T. Roby [GR16, GR15] extended the

toggle group to the piecewise-linear and birational realms.

In this paper, we begin to generalize the above story beyond the setting of order ideals by noting that

the particular structure of order ideals in a poset is unnecessary in the definition of the toggle group; the

essential structure is that an order ideal is a subset of poset elements. Thus, given a finite ground set E, we

define the (generalized) toggle group T (L) on any family of subsets L ⊆ 2E; see Definitions 2.1 and 2.3.

The papers cited above are part of the emerging area of dynamical algebraic combinatorics, defined

as the study of dynamical systems arising from algebraic combinatorics, which was formalized at the

American Institute of Mathematics (AIM) workshop on the topic [DAC]. Note that the generalized tog-

gling framework introduced in this paper has already proved useful in papers stemming from the AIM

workshop [EFG+16, JR18].

Some goals of studying the toggle group, in the order ideal setting and beyond, are the following.

1. Understand how to write cyclic group actions, such as rowmotion on order ideals, as toggle group

elements.

2. Understand dynamical properties, such as orbit structure, cyclic sieving, and homomesy, of various

toggle group elements.

3. Understand the abstract group structure of the toggle group, as Cameron and Fon-der-Flaass did for

the order ideal toggle group.

This paper makes contributions in all three areas, with a focus on the last.

The main theorems of Section 2, highlighted below, contribute to Goal (3) by giving conditions which

guarantee the abstract group structure of a generalized toggle group is a direct product or contains the alter-

nating group. (See Definitions 2.16 and 2.21 for definitions of ⊕, ⊗, and inductively toggle-alternating.)

Recall E is a finite set and L ⊆ 2E .

Theorem 2.18 If L = L1 ⊕ L2 or L = L1 ⊗ L2, then T (L) = T (L1)× T (L2).

Definition 2.19 We say L is toggle-alternating if T (L) contains the alternating group AL.

Theorem 2.22 If L is inductively toggle-alternating, then it is toggle-alternating.

The proofs follow the proof of Cameron and Fon-der-Flaass [CF95] for order ideal toggle groups. The

essence of these theorems is that they isolate the qualities of the set of order ideals which produce this

toggle group description, so that we may apply the same structure description to other situations.

One may wonder whether it is useful to know that a toggle group is the symmetric or alternating group

and how one might determine which of the two possibilities it is. In the case of the order ideal toggle

group, Cameron and Fon-der-Flaass found no simple criterion for determining whether a toggle group

is symmetric or alternating [CF95]. But they did observe that in many cases, such as when there is a

unique maximal or minimal element in the poset, one may find a toggle which is a transposition. Such

a toggle group must be the symmetric group, since it contains an odd permutation, and thus cannot be

the alternating group. The abstract structure of the toggle group may also be important when looking for

bijections between subsets of L, since if T (L) is SL, this guarantees the desired permutation of elements

can be realized as a product of toggles, while if T (L) is AL, the permutation may be realized only if it
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is even. See Remark 3.22 for further discussion. Finally, such toggle groups give presentations for the

symmetric and alternating groups that may be of independent interest.

We apply Theorems 2.18 and 2.22 to various combinatorially interesting sets of subsets to obtain the

following corollary, which is actually a compilation of corollaries proved in Section 3.

Corollary 2.23 Toggle groups of the following sets have a group structure given by Theorems 2.18

and 2.22:

• Order ideals of a finite poset (proven in [CF95, Theorem 4]),

• Chains of a finite poset (see Section 3.2),

• Antichains of a finite poset (see Section 3.3),

• Interval-closed sets of a certain family of finite posets (see Section 3.4),

• Independent sets of a finite graph (see Section 3.6), and

• Vertex covers of a finite graph (see Section 3.7).

Notable other results/connections of Section 3 include:

• Theorems 3.10 and 3.14, which prove the equivariance of some toggle orders in the chain and

antichain toggle groups, respectively (this falls under Goal (2) above and is analogous to the main

result of [SW12] on the equivariance of promotion and rowmotion);

• Toggle commutation lemmas in all of the toggle groups listed in Corollary 2.23, as well as the

acyclic subgraph toggle group, the spanning subgraph toggle group, and the matroid independent

set toggle group;

• Characterizations of matroids and convex geometries in terms of toggles (Remarks 3.35 and 3.38).

• Remarks on connections between specific generalized toggle groups and research in statistical

physics and commutative algebra (Remarks 3.25 and 3.28);

In Section 4, we generalize rowmotion on order ideals to a map we call cover-closure.

Definition 4.4 Let E be a set with closure operator τ whose set of closed sets is L ⊆ 2E . For X ∈ 2E ,

define cov(X) = {e ∈ E \ X | X ∪ {e} ∈ L}. Call cov(X) the set of covers of X . Then we define

cover-closure ξ : L → L as ξ(X) = τ(cov(X)).
When restricted to order ideals of a poset, we show in Lemma 4.7 cover-closure is the usual rowmotion

operation, defined in [CF95] and elsewhere as the order ideal generated by the minimal elements of the

poset which are not already in the order ideal.

Our second main theorem, stated below, gives a ‘negative’ result in the direction of Goal (1). It char-

acterizes bijective cover-closure maps, yielding Corollary 4.9 that rowmotion is the only bijective cover-

closure map.

Theorem 4.8 Given a finite ground set E and a closure operator τ with set of closed sets L ⊆ 2E , cover-

closure ξ : L → L is bijective if and only if L is isomorphic to the set of order ideals J(P ) for some

poset P .
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The paper is structured as follows. Section 2 defines generalized toggle groups and proves Theorems

2.18 and 2.22, which together give a structure description of the toggle group for certain families. Sec-

tion 3 gives many examples of generalized toggle groups, proves Corollary 2.23, and gives many further

results and connections. Finally, Section 4 defines cover-closure, relates it to rowmotion, and proves

Theorem 4.8.

2 Construction and structure of generalized toggle groups

For everything that follows, let E be a finite(i) set and L be any subset of the power set 2E .

Definition 2.1 For each element e ∈ E define its toggle te : L → L as follows.

te(X) =





X ∪ {e} if e /∈ X and X ∪ {e} ∈ L

X \ {e} if e ∈ X and X \ {e} ∈ L

X otherwise.

We call {te | e ∈ E} the set of toggles of E.

Remark 2.2 Note that t2e = 1 for all e ∈ E.

We define the (generalized) toggle group as the group generated by these toggles.

Definition 2.3 Let T (L) be the subgroup of the symmetric group SL, generated by {te | e ∈ E}. Call

T (L) the (generalized) toggle group on L.

Example 2.4 Let E = {1, 2, 3, 4} and L = {∅, {1}, {1, 2}, {1, 3}, {1, 2, 3}, {1, 2, 3, 4}}.

Then, for example,

t4({1, 2, 3}) = {1, 2, 3, 4}, t2({1, 2}) = {1}, t2({1, 2, 3, 4}) = {1, 2, 3, 4}.

We can write t1, t2, t3, t4 as permutations in cycle notation (with 1-cycles omitted) as follows.

t1 = (∅, {1})

t2 = ({1}, {1, 2})({1, 3}, {1, 2, 3})

t3 = ({1}, {1, 3})({1, 2}, {1, 2, 3})

t4 = ({1, 2, 3}, {1, 2, 3, 4})

We give the following definitions to provide language to describe when two families of subsets are

“isomorphic.”

Definition 2.5 Given L ⊆ 2E , let an essentialization of (L, E) be (L′, E′) where E′ and L′ are as

follows. Every e ∈ E′ must be an element e ∈ E such that there exist X,Y ∈ L with e ∈ X and

e 6∈ Y . That is, no element of E′ may be contained in all or none of the subsets in L. Also, suppose

Z ⊆ E, |Z| > 1 such that if e ∈ Z and e ∈ W ∈ L, then Z ⊆ W . For any maximal such Z , we exclude

all elements of Z except one from E′. Let L′ = {X ∩ E′ | X ∈ L}.

(i) We could take E to be infinite in our definitions, but since all our results concern finite ground sets, we restrict our attention to

this case.
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Example 2.6 Let E = {1, 2, 3, 4, 5, 6} and L = {{1}, {1, 2, 5, 6}, {1, 3, 5, 6}}. Then in the essentializa-

tion, we remove 1 and 4, since 1 is in every subset and 4 is in none of the subsets. Also, since 5 and 6
always appear together, we reduce {5, 6} to the single element 5 and remove 6. Therefore, E′ = {2, 3, 5}
and L′ = {∅, {2, 5}, {3, 5}}.

Definition 2.7 Say L1 ⊆ 2E1 and L2 ⊆ 2E2 are isomorphic if there exists a bijection ϕ : E′
1 → E′

2 such

that ϕ(L′
1) = L′

2.

Remark 2.8 Note the structure of the toggle group depends only on the isomorphism type of the family

of subsets. In particular, T (L) = T (L′) for any essentialization (L′, E′).

We now define the toggle poset, which we will use in Theorem 4.8; see Figures 1 and 2 for examples.

Definition 2.9 The toggle poset PL of L is defined as the partial order on L where the covering relations

are given by X ⋖ Y if and only if X ⊆ Y and |Y \ X | = 1, that is, if there exists e ∈ E such that

te(X) = Y .

{1, 2, 3, 4}

{1, 2}

{}

{1}

{1, 3}

{1, 2, 3}

Figure 1: The toggle posets PL, where L is as in Example 2.4.

In the following proposition, we give some properties of the toggle poset. We will need the following

definition.

Definition 2.10 A poset P is graded if there exists a rank function ρ : P → Z such that if y covers x in

P , ρ(x) = ρ(y) + 1. A poset is strongly graded if all maximal chains have the same length.

Proposition 2.11 PL has the following properties:
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1. PL is graded but not necessarily strongly graded.

2. If the edges of the Hasse diagram of PL are labeled by the appropriate toggle, any toggle may

appear at most once in any chain.

Proof: To show part (1), note there is a rank function ρ : PL → Z given by ρ(X) = |X | and covering

relations only appear between elements on adjacent ranks. Thus PL is graded. To show PL might not be

strongly graded, consider as an example E = {1, 2, 3} and L = {∅, {1}, {2}, {1, 3}}. Both {∅, {2}} and

{∅, {1}, {1, 3}} are maximal chains, but they do not have the same length.

For part (2), note that each cover adds a single element to the subset and removes no elements. No

element may be added twice, so each Hasse diagram edge in any chain must represent a different toggle.

✷

Remark 2.12 PL is not always the same as partially ordering L by containment, in fact, PL might not be

a lattice, and the Hasse diagram of PL need not even be connected. Consider as an example E = {1, 2, 3}
and L = {{1}, {2}, {1, 2, 3}}. In PL, {1} and {1, 2, 3} are incomparable, since there is no single toggle

that maps {1} to {1, 2, 3}. Also, the Hasse diagram of PL in this example is disconnected (three isolated

points). Therefore, PL is not a lattice.

Example 2.13 In the case where L equals the set of order ideals of a finite poset P , the toggle poset

PL is the distributive lattice of order ideals J(P ). Thus, in contrast to the general case discussed above,

PL = J(P ) has connected Hasse diagram, is strongly graded, and is equivalent to the partial order by

containment.

In the order ideal case L = J(P ), P. Cameron and D. Fon-der-Flaass proved the following structure

theorem for T (L).

Theorem 2.14 ([CF95, Theorem 4]) Let P be a finite poset and J(P ) the set of order ideals of P . If P
is not the disjoint union of posets, T (J(P )) is either the symmetric group SJ(P ) or the alternating group

AJ(P ). If P is the disjoint union of two posets P = P1 + P2, then T (J(P )) = T (J(P1))× T (J(P2)).

Initial computations (including all toggle groups with |E| ≤ 3 and many other larger examples) indi-

cated that all generalized toggle groups might be a direct product of symmetric and/or alternating groups

as in the case of order ideals; however, this is not true, as shown by the following example.

Example 2.15 Let E = {1, 2, 3, 4} andL = {∅, {1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {2, 3, 4}, {3, 4}, {4}}.

We have computed using SageMath [Sage] that the toggle group T (L) as a subgroup of SL
∼= S8

(via the isomorphism in which the ith element of L is mapped to i) is generated by the following four

permutations:

〈 (1 2)(5 6), (2 3)(6 7), (3 4)(7 8), (1 8)(4 5) 〉 .

We used GAP [GAP] via SageMath [Sage] to compute that T (L) = ((((C2 ×D4)⋊ C2)⋊ C3)⋊ C2)
where Cn is the cyclic group of order n and D4 is the dihedral group of order 8. See Figure 2 for the

toggle poset of this example and Appendix A for the SageMath code to run these computations.

Even though the above example shows that generalized toggle group structure is not well-behaved in

general, we show in this paper that similar structure theorems to Theorem 2.14 do exist in many other

combinatorially significant generalized toggle groups. Our first main results, Theorems 2.18 and 2.22,
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{1, 2, 3, 4}

{1, 2}

{}

{2, 3, 4}

{3, 4}

{4} {1}

{1, 2, 3}

Figure 2: The toggle poset PL, where L is as in Example 2.15.

give sufficient conditions for T (L) to have a structure theorem similar to Theorem 2.14. We then summa-

rize in Corollary 2.23 (and prove in Section 3) that the following cases satisfy these conditions: chains,

antichains, and interval-closed sets of a poset; independent sets and vertex covers of a graph.

We begin with Theorem 2.18 discussing cases in which the toggle group reduces to a direct product.

We will need the following definition.

Definition 2.16 L is a toggle-disjoint direct sum of L1 and L2, written L = L1⊕L2, if L = L1∪L2 and

their essentializations (L′
1, E

′
1) and (L′

2, E
′
2) satisfy E′

1∩E
′
2 = ∅. L is a toggle-disjoint Cartesian product

of L1 and L2, written L = L1 ⊗ L2, if L = {X1 ∪X2 | X1 ∈ L1, X2 ∈ L2} and their essentializations

(L′
1, E

′
1) and (L′

2, E
′
2) satisfy E′

1 ∩ E′
2 = ∅.

Remark 2.17 L = L1 ⊕ L2 implies PL = PL1 + PL2 , where + denotes the disjoint union of posets.

L = L1 ⊗ L2 implies PL = PL1 × PL2 where × denotes the Cartesian product of posets.

Theorem 2.18 If L = L1 ⊕ L2 or L = L1 ⊗ L2, then T (L) = T (L1)× T (L2).

Proof: Suppose L is the toggle-disjoint direct sum L = L1 ⊕ L2. So then the essentialized ground sets

E′
1, E

′
2 ⊂ E satisfy E′

1 ∩E′
2 = ∅. Then te1te2 = te2te1 for all e1 ∈ E′

1 and e2 ∈ E′
2, since toggles in E′

1

act trivially on all elements of L′
2 and vice versa. Thus T (L) = T (L′

1)× T (L′
2) = T (L1)× T (L2).

Suppose L is the toggle-disjoint Cartesian product L = L1 ⊗ L2. Again, the essentialized ground sets

E′
1, E

′
2 ⊂ E satisfy E′

1 ∩ E′
2 = ∅. We may represent the elements of L as ordered pairs (X ′

1, X
′
2) where

X ′
1 ∈ L′

1, X
′
1 ⊆ E′

1 and X ′
2 ∈ L′

2, X
′
2 ⊆ E′

2. The toggle groups T (L′
1) and T (L′

2) act on their respective

components, so we have T (L) = T (L′
1)× T (L′

2) = T (L1)× T (L2). ✷
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We next prove Theorem 2.22, which gives conditions under which a generalized toggle group contains

the alternating group. We give this a name in the definition below.

Definition 2.19 We say L is toggle-alternating if T (L) contains the alternating group AL.

We will use the following additional definitions.

Definition 2.20 Given e ∈ E and L ⊆ 2E , define Le := {X ∈ L | e ∈ X} to consist of all the subsets

in L that contain e and Le := {X ∈ L | e /∈ X} to be all the subsets in L that do not contain e. For any

subset S ⊆ L, let te(S) = {te(X) | X ∈ S}.

Definition 2.21 We define the collection of inductively toggle-alternating sets of subsets to be the smallest

collection of L ⊆ 2E , with essentializations (L′, E′), such that:

1. if |E′| ≤ 4, then T (L) is toggle-alternating;

2. if |E′| ≥ 5, then there exists e ∈ E′ such that at least one of the following holds:

(a) Le is inductively toggle-alternating, Le ∪ te(Le) = L, and Le ∩ te(Le) 6= ∅, or

(b) Le is inductively toggle-alternating, Le ∪ te(Le) = L, and Le ∩ te(Le) 6= ∅.

Theorem 2.22 If L is inductively toggle-alternating, then it is toggle-alternating.

Proof: Let F be the collection of inductively toggle-alternating sets of subsets of E. Suppose L ∈ F
and recall (L′, E′) denotes the essentialization of (L, E). The proof follows the proof of Cameron and

Fon-der-Flaass [CF95] for the order ideal toggle group and is by induction on the size of E′.

Note for |E′| ≤ 4, we have required in the definition of inductively toggle-alternating that T (L′) be

toggle-alternating. This is because in the proof below we need AL to be simple, and recall the alternating

group An is simple for n ≥ 5 but not for n = 4. Thus |E′| ≤ 4 form the base cases for our induction.

Now suppose |E′| ≥ 5. Also, suppose for all L0 ∈ F with |E′
0| < |E′| we have L0 is toggle-

alternating. Let e ∈ E′ be the element required by condition (2) of Definition 2.21, since L is inductively

toggle-alternating. So we know L is the disjoint union of Le and Le, and neither Le nor Le are empty.

Suppose L satisfies condition (2a) of Definition 2.21, so that Le is inductively toggle-alternating and

|Le| ≥ |Le| (if not, then L satisfies condition (2b), so |Le| ≤ |Le|, and the argument follows symmetri-

cally with Le instead). Now since all the elements of Le contain e, te will act as the identity in T (Le).
That is, the essentialization L′

e has ground set at most E′ \ {e}.

By induction, T (Le) contains the alternating group ALe
. Assume |Le| ≥ 5 so that ALe

is simple.

Since ALe
is simple and |Le| > |Le|, the subgroup K of T (L) fixing Le pointwise induces at least ALe

on Le. In the case |Le| ≤ 4, the essentialized ground set of Le, which we denote E′
e, satisfies |E′

e| ≤ 4
and condition (1) in Definition 2.21 gives that the subgroup K of T (L) fixing Le pointwise induces at

least ALe
on Le. Then in either case, Le ∪ te(Le) = L and Le ∩ te(Le) 6= ∅, so K and the conjugate

subgroup Kte (:= {tekte | k ∈ K}) generate an alternating or symmetric group on L. ✷

In the following corollary, we apply Theorems 2.18 and 2.22 to obtain a toggle group structure de-

scription for various combinatorially interesting sets of subsets. We prove this corollary in each case in

Section 3 by the following method. We first discuss cases in which L is a toggle-disjoint direct sum or

Cartesian product and use Theorem 2.18 to conclude T (L) is a direct product. Secondly, we show the re-

maining family of subsets is inductively toggle-alternating by exhibiting an e ∈ E satisfying condition (2)
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in Definition 2.21 and proving the base cases |E| ≤ 4 (condition (1) in Definition 2.21). See Appendix A

for the SageMath code used to check these base cases.

Corollary 2.23 Toggle groups of the following sets have a group structure given by Theorems 2.18

and 2.22:

• Order ideals of a poset (proven in [CF95], see Section 3.1),

• Chains of a poset (see Section 3.2),

• Antichains of a poset (see Section 3.3),

• Interval-closed sets of a certain family of posets (see Section 3.4),

• Independent sets of a graph (see Section 3.6), and

• Vertex covers of a graph (see Section 3.7).

In Section 3, we discuss these toggle groups in greater detail and prove some additional results. We

also consider several other examples in addition to the above list, namely, unions of subset families (Sec-

tion 3.5), acyclic subgraphs of a graph (Section 3.8), connected subgraphs of a graph (Section 3.9), ma-

troids (Section 3.10), and convex geometries (Section 3.11).

3 Examples of combinatorially significant generalized toggle groups

In this section, we look at many examples of toggle groups on combinatorial objects which are given as

subsets of some finite ground set. For many of the examples, we prove a lemma concerning when toggles

commute and give a structure theorem. The toggle group on order ideals J(P ) of a poset P , as studied

in [CF95, SW12], serves as the motivating example; we list some relevant properties and theorems in

Section 3.1 for the sake of comparison. This is neither an exhaustive list nor a complete treatment of any

of these examples. Rather, we aim to identify these generalized toggle groups as avenues for further study

and initiate the investigation in each case.

Sections 3.1–3.4 study various poset-theoretic toggle groups. (See [St12, Chapter 3] for background

on posets.) Sections 3.6–3.9 examine toggle groups on graphs. Section 3.10 considers matroids and

Section 3.11 discusses convex geometries.

3.1 Order ideals

Given a poset P , an order ideal I is a subset I ⊆ P such that if y ∈ I and x ≤ y then x ∈ I . Denote as

J(P ) the set of order ideals of P . Since order ideals are subsets of the elements of P , we take P as our

ground set and L = J(P ) ⊆ 2P .

In this subsection, we state the toggle commutation lemma and toggle group structure theorem of

Cameron and Fon-der-Flaass [CF95] for the order ideal toggle group T (J(P )). We give proofs as moti-

vating examples for subsequent subsections. We also mention some related results on rowmotion.

Lemma 3.1 ([CF95, p. 546]) In the order ideal toggle group T (J(P )), (tptq)
2 = 1 if and only if there

is no covering relation between p and q.
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Proof: Suppose q covers p. Let I be the minimal order ideal containing every poset element that q covers.

Then tptq(I) = I ∪ {q} whereas tqtp(I) = I \ {p}. So tp and tq do not commute.

If p < q but there exists r such that p < r < q, then for any I ∈ J(P ), if r ∈ I , tp(I) = I , and if

r /∈ I , then tq(I) = I . So tp and tq commute.

If p and q are incomparable, then the presence or absence of p in I does not affect whether q may be in

I . So tp and tq commute. ✷

We stated as Theorem 2.14 a result of Cameron and Fon-der-Flaass [CF95] on the order ideal toggle

group structure. We give a proof below using Theorems 2.18 and 2.22, whose proofs were inspired by

their original proof.

Proof of Theorem 2.14: If P is the disjoint union of two posets P = P1 +P2, then by Lemma 3.1, J(P )
is a toggle-disjoint Cartesian product J(P1) ⊗ J(P2). So by Theorem 2.18, T (J(P )) = T (J(P1)) ×
T (J(P2)).

We show that the family {J(P ) | P is a connected poset} is inductively toggle-alternating. For each

connected poset P , there will be either a maximal or minimal element e ∈ P such that P \ e is still con-

nected, so this will suffice as the specified element in the definition of inductively toggle-alternating. (A

maximal element will satisfy (2b) in Definition 2.21, while a minimal element will satisfy (2a).) Finally,

we have checked, using SageMath [Sage], that for all connected posets with |P | ≤ 4, T (J(P )) = SJ(P )

or AJ(P ), thus condition (1) of Definition 2.21 is satisfied. (See Appendix A for this code.) So this is an

inductively toggle-alternating family, and the result follows by Theorem 2.22. ✷

In [CF95], P. Cameron and D. Fon-der-Flaass showed that the following action is expressible in terms

of the toggle group.

Definition 3.2 Given a finite poset P , let the rowmotion of an order ideal I ∈ J(P ) be defined as the

order ideal generated by the minimal elements of P \ I .

Theorem 3.3 ([CF95, Lemma 1]) Given any finite poset P , rowmotion acting on J(P ) is equal to the

toggle group element given by toggling the elements of P in the reverse order of any linear extension (that

is, from top to bottom).

Then in [SW12], N. Williams and the author used the group structure of T (J(P )) to prove the follow-

ing.

Theorem 3.4 ([SW12, Theorem 5.2]) Let P be a finite ranked poset. Then there is an equivariant bijec-

tion between J(P ) under promotion (toggling from ‘left to right’) and J(P ) under rowmotion (toggling

from top to bottom).

This theorem resulted in many interesting corollaries when applied to specific posets; see Sections 6

through 8 of [SW12].

In [DPS17], K. Dilks, O. Pechenik, and the author introduced and developed the machinery of affine

hyperplane toggles and n-dimensional lattice projections. Though it would take too long to define these

here (see [DPS17, Sections 3.4 and 3.5] for details), we highlight the following theorem that gives a large

family of toggle group actions {Proπ,v} whose orbit structures are equivalent to that of rowmotion. This

is an extension from 2 to n dimensions of Theorem 3.4.

Theorem 3.5 ([DPS17, Theorem 3.25]) Let P be a finite poset with an n-dimensional lattice projection

π. Let v and w be vectors in Rn with entries in {±1}. Then there is an equivariant bijection between
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J(P ) under Proπ,v and J(P ) under Proπ,w. (Note Proπ,(1,1,...,1) is rowmotion and Proπ,(1,−1) is the

promotion of Theorem 3.4 above.)

3.2 Chains

Another set with combinatorially interesting toggle group is the set of chains C(P ) of a poset P . A chain

in a poset is a set of mutually comparable elements. In this case and several cases to follow, but unlike in

the case of order ideals, any element of a chain may always be toggled ‘out’ of the chain. That is, for any

chain C, if p ∈ C, then tp(C) = C \ {p}; since C is a set of mutually comparable elements, C \ {p} is

as well.

Recall from Lemma 3.1 that in the order ideal toggle group, two toggles commute if and only if there

is not a covering relation between them. In contrast, we have the following toggle commutation relation

for the chain toggle group.

Lemma 3.6 Let P be a poset. In the chain toggle group T (C(P )), (tptq)
2 = 1 if and only if p and q are

comparable in P .

Proof: If p and q are incomparable in P , then tptq(∅) = {q} whereas tqtp(∅) = {p}. So tp and tq do not

commute. If p < q, then the presence or absence of p in a chain C does not affect whether q is in C, so tp
and tq commute. ✷

We have the following structure theorem, as a corollary of Theorems 2.18 and 2.22. We will need the

following standard poset-theoretic definition.

Definition 3.7 Let P1 and P2 be posets with partial orders ≤P1 and ≤P2 , respectively. The ordinal sum

of P1 and P2, denoted P1 ⊕P2, is the poset defined on the union of the underlying ground sets P1 and P2

with partial order e ≤ f if and only if one of the following holds:

• e, f ∈ P1 and e ≤P1 f ,

• e, f ∈ P2 and e ≤P2 f , or

• e ∈ P1 and f ∈ P2.

Corollary 3.8 Let P be a finite poset and C(P ) the set of chains of P . If P is the ordinal sum of two

posets P = P1 ⊕P2, then T (C(P )) = T (C(P1))×T (C(P2)). If P is not the ordinal sum of posets, C(P )
is toggle-alternating.

Proof: SupposeP is the ordinal sumP1⊕P2; this means that in P , each element fromP1 is less than every

element from P2. Thus, a chain C in C(P ) consists of the union of any chain C1 ∈ C(P1) and any chain

C2 ∈ C(P2), where the choice of these chains is independent. By Lemma 3.6, tp1tp2 = tp2tp1 for any

p1 ∈ P1, p2 ∈ P2 since p1 < p2 by the definition of ordinal sum. Thus C(P ) will be the toggle-disjoint

Cartesian product C(P1)⊗ C(P2). Therefore, by Theorem 2.18, T (C(P )) = T (C(P1))× T (C(P2)).
If P is not the ordinal sum of two posets, the result follows from Theorem 2.22 and the fact, proved be-

low, that the set {C(P ) | P not an ordinal sum of two posets} is an inductively toggle-alternating family.

Now suppose P is not an ordinal sum, then either P is an antichain, or there exists a minimal element

that is incomparable to some non-minimal element. If P is an antichain, then any element may be chosen

as the required e in condition (2b) of Definition 2.21. If P is not an antichain, let x be a minimal element
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that is incomparable to some non-minimal element y. Pick any other minimal element e (another minimal

element must exist, otherwise P would be the ordinal sum of x and the rest of the poset); we show this

will be the required e in condition (2b) of Definition 2.21. Note that Le for L = C(P ) does not contain

the subset {x, y}, since {x, y} is not a chain in P . Since P is not an ordinal sum and we are removing

a minimal element e, the only spot where P \ e may now be an ordinal sum must involve the minimal

elements, including x. But P \ e is not the ordinal sum of a subset involving x and the rest of the poset,

since {x, y} /∈ C(P \ e).
Finally, we have checked, using SageMath [Sage] (see Appendix A), that for all posets with |P | ≤ 4

such that P is not an ordinal sum, T (C(P )) = SC(P ) or AC(P ), thus condition (1) of Definition 2.21 is

satisfied. So this is an inductively toggle-alternating family, and the result follows by Theorem 2.22. ✷

As in the case of order ideals (see Theorems 3.4 and 3.5 in Section 3.1), we have a theorem which

says a large class of toggle orders are equivariant. We will need the following lemma from [Hu00], which

appears as Lemma 5.1 in [SW12].

Lemma 3.9 ([Hu00, p. 74]) Let G be a group whose generators g1, . . . , gn satisfy g2i = 1 and (gigj)
2 =

1 if |i− j| > 1. Then for any ω, ν ∈ Sn,
∏

i gω(i) and
∏

i gν(i) are conjugate.

For C any chain of P , let tC denote the composition of all the toggles tp for p ∈ C (order does

not matter, since by Lemma 3.6, the toggles within a chain commute). Also, for a collection of chains

C = {C1, C2, . . . , Ck} and a permutation π ∈ Sk, let tC(π) := tCπ(1)
tCπ(2)

· · · tCπ(k)
.

Theorem 3.10 Fix a collection of chains C = {C1, C2, . . . , Ck} in a finite poset P . Suppose these chains

have the property that each element of Ci is comparable with every element of Cj provided |i − j| > 1.

Then for any π, ω ∈ Sk, there is an equivariant bijection between C(P ) under tC(π) and under tC(ω).

Proof: For any chain C ∈ P , t2C = 1, since all the toggles within a chain commute by Lemma 3.6.

Then since each element of Ci is comparable with every element of Cj provided |i− j| > 1, this implies

(tCi
tCj

)2 = 1 for |i − j| > 1. Therefore, the result follows from Lemma 3.9 by considering G to be the

subgroup of T (C(P )) generated by the toggles {tCi
| 1 ≤ i ≤ k}. ✷

Example 3.11 Consider the poset in Figure 3. Define a collection of chains as follows: C = {C1, C2, . . . , C6}
where Ci = {i}. Note that each i is comparable with every element in P except i ± 1, so C satisfies the

conditions of Theorem 3.10. Thus, by Theorem 3.10, the toggle group elements obtained by toggling all

the elements of this poset in any fixed order are conjugate.

3.3 Antichains

An antichain in a poset P is a set of mutually incomparable elements; denote the set of antichains of P
as A(P ). Though antichains are in simple bijection with order ideals (the maximal elements of an order

ideal are an antichain), antichain toggles differ from order ideal toggles. With antichains, as with chains,

the elements may always be toggled ‘out’, whereas this is not the case in the order ideal toggle group.

Lemma 3.12 Let P be a poset. In the antichain toggle group T (A(P )), (tptq)
2 = 1 if and only if p and

q are incomparable in P .
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Figure 3: The poset of Example 3.11.

Proof: Note ∅ and single element subsets are all in A(P ). If p < q in P , then tptq(∅) = {q} whereas

tqtp(∅) = {p}. So tp and tq do not commute. If p and q are incomparable, then the presence or absence

of p in an antichain A does not affect whether q is in A. So tp and tq commute. ✷

This differs from the case of order ideals in which tp and tq are noncommuting only when p and q share

a covering relation. But as in the case of order ideals, we have the following structure description as a

corollary of Theorems 2.18 and 2.22.

Corollary 3.13 Let P be a finite poset and A(P ) the set of antichains of P . If P is the disjoint union of

two posets P = P1 + P2, then T (A(P )) = T (A(P1)) × T (A(P2)). If P is not the disjoint union of two

posets, A(P ) is toggle-alternating.

Proof: If P = P1 + P2, an antichain A in A(P ) consists of the union of any antichain A1 in A(P1)
and any antichain A2 in A(P2), where the choice of A1 and A2 is independent. Now since p1 and p2
are incomparable for every p1 ∈ P1, p2 ∈ P2, we have by Lemma 3.12 tp1tp2 = tp2tp1 . Thus, A(P )
will be the toggle-disjoint Cartesian product A(P1)⊗A(P2). Therefore, by Theorem 2.18, T (A(P )) =
T (A(P1)) × T (A(P2)).

If P is not the disjoint union of two posets, the result follows from Theorem 2.22 and the fact, proved

below, that the set {A(P ) | P is a connected poset} is an inductively toggle-alternating family.

For given a connected poset P , you may choose any maximal or minimal element e ∈ P such that the

poset P \ {e} is also connected to be the required e in condition (2b) of Definition 2.21.

Finally, we have checked, using SageMath [Sage] (see Appendix A), that for all connected posets

with |P | ≤ 4, T (A(P )) = SA(P ) or AA(P ), thus condition (1) of Definition 2.21 is satisfied. So this is

an inductively toggle-alternating family, and the result follows by Theorem 2.22. ✷

As in the cases of order ideals and chains, we have a theorem which says a large class of toggle

orders are equivariant. For A any antichain of P , let tA denote the composition of all the toggles tp
for p ∈ A (order does not matter, since by Lemma 3.12, the toggles within an antichain commute).

Also, for a collection of antichains A = {A1, A2, . . . , Ak} and a permutation π ∈ Sk, let tA(π) :=
tAπ(1)

tAπ(2)
· · · tAπ(k)

.

Theorem 3.14 Fix a collection of antichains A = {A1, A2, . . . , Ak} in a finite poset P . Suppose these

antichains have the property that each element of Ai is incomparable with every element of Aj provided



14 Jessica Striker

|i − j| > 1. Then for any π, ω ∈ Sk, there is an equivariant bijection between A(P ) under tA(π) and

under tA(ω).

Proof: For any antichain A ∈ P , t2A = 1, since all the toggles within an antichain commute by

Lemma 3.12. Then since each element of Ai is incomparable with every element of Aj provided |i− j| >
1, this implies (tAi

tAj
)2 = 1 for |i−j| > 1. Therefore, the result follows from Lemma 3.9 by considering

G to be the subgroup of T (A(P )) generated by the toggles {tAi
| 1 ≤ i ≤ k}. ✷

Example 3.15 Let P be the poset in Figure 4. Define a collection of antichains as follows: A =
{A1, . . . , A6} where Ai = {i}. Note that each i is incomparable with every element in P except i± 1, so

A satisfies the conditions of Theorem 3.14. Thus, by Theorem 3.14, the toggle group elements obtained

by toggling all the elements of this poset in any fixed order are conjugate.

6

5

4

3

2

1

Figure 4: The poset of Example 3.15.

Remark 3.16 Examples 3.11 and 3.15 are the same generalized toggle group in different settings, since

the set of chains in Example 3.11 (as a family of subsets of {1, 2, . . . , 6}) equals the set of antichains

in 3.15.

3.4 Interval-closed sets

An interval-closed set in a poset P is a subset I ⊆ P such that if x, y ∈ I and x ≤ y, then for any z ∈ P
satisfying x ≤ z ≤ y we also have z ∈ I . Denote the set of interval-closed sets of a poset as IC(P ).

Though the toggle group of interval-closed sets behaves similarly to the order ideal toggle group, we

will see in Section 4 that cover-closure on IC(P ) behaves quite differently than in the case of order ideals.

In particular, we will not generally be able to express cover-closure as a product of toggles as in the case

of rowmotion on order ideals.

We have the following toggle commutativity relation.

Lemma 3.17 In the interval-closed set toggle group T (IC(P )), (tptq)
2 = 1 if and only if p and q are

incomparable in P or (in the case p < q) if q covers p where q is maximal and p is minimal.

Proof: Note ∅ ∈ IC(P ). If p < q in P and q does not cover p, then tptq(∅) = {q} whereas tqtp(∅) = {p}.

So tp and tq do not commute.

If q covers p and there exists an element r covered by p, then tptq({r}) = {r} whereas tqtp({r}) =
{p, q, r}. If q covers p and there exists an element s covering q, tptq({s}) = {p, q, s}whereas tqtp({s}) =
{s}. If no such r or s exists, that is, if p is minimal and q is maximal, then tp and tq commute. This is



Rowmotion and generalized toggle groups 15

because the union of any interval-closed set with any subset of {p, q} is still an interval-closed set, so tp
and tq always act nontrivially on any interval-closed set.

If p and q are incomparable, then by definition the presence or absence of p in an interval-closed set I
does not affect whether q is in I . So tp and tq commute. ✷

We have the following structure description in Corollary 3.20 as a corollary of Theorems 2.18 and 2.22

and Lemma 3.17. First, we will need the following non-standard definitions.

Definition 3.18 Let P be a poset. If an element m ∈ P is a maximal element that only covers minimal

elements or a minimal element that is only covered by maximal elements, call m extremal-atomic.

Definition 3.19 Given a poset P and an ordered subset of elements p1, p2, . . . , pn in P , define Pi recur-

sively as the induced subposet Pi := Pi−1 \pi with P0 := P . If Pn is a chain with at least three elements,

pi+1 is maximal or minimal in Pi for each 0 ≤ i ≤ n− 1, and each Pi has connected Hasse diagram and

no extremal-atomic element, call P strongly-extremal-atomic-free.

Corollary 3.20 Let P be a finite poset and IC(P ) the set of interval-closed sets of P . If P is the disjoint

union of two posets P = P1 + P2, then T (IC(P )) = T (IC(P1)) × T (IC(P2)). Suppose P is not the

disjoint union of two posets. If P contains an extremal-atomic element m, then T (IC(P )) = T (IC(P \
{m})) × T (IC({m})) = T (IC(P \ {m})) × S2. (So, in particular, if P has only two ranks, then

T (P ) = (S2)
|P |.) If P is strongly-extremal-atomic-free, then IC(P ) is toggle-alternating.

Proof: If P = P1 + P2, an interval-closed set I in IC(P ) consists of the union of any interval-closed

set I1 in IC(P1) and any interval-closed set I2 in IC(P2), where the choice of I1 and I2 is independent.

Now since p1 and p2 are incomparable for every p1 ∈ P1, p2 ∈ P2, we have by Lemma 3.17, tp1tp2 =
tp2tp1 . Thus, IC(P ) is a toggle-disjoint Cartesian product of P1 and P2. Therefore by Theorem 2.18,

T (IC(P )) = T (IC(P1))× T (IC(P2)).
If P contains an extremal-atomic element m, then by Lemma 3.17, m commutes with all other elements

of P . So T (IC(P )) = T (IC(P \ {m}))× T (IC({m})) = T (IC(P \ {m}))×S2.

Suppose P is strongly-extremal-atomic-free. In this case, the result follows from Theorem 2.22 if

we can show that the set of interval-closed sets of strongly-extremal-atomic-free posets is an inductively

toggle-alternating family. Given a strongly-extremal-atomic-free poset with its specialized sequence of

elements {p1, p2, . . . , pn}, p1 will be the required e in condition (2b) of Definition 2.21. We have

checked, using SageMath [Sage] (see Appendix A), that for all strongly-extremal-atomic-free posets

with |P | ≤ 4, T (IC(P )) = SIC(P ) or AIC(P ), thus condition (1) in Definition 2.21 is satisfied. So this

is an inductively toggle-alternating family, and the result follows by Theorem 2.22. ✷

Remark 3.21 We speculate that in Corollary 3.20, the condition ‘strongly-extremal-atomic-free’ may

be relaxed to ‘contains no extremal-atomic element’; we have checked using SageMath [Sage] (see

Appendix A) that this holds for |P | ≤ 4. A proof in the case of this relaxed condition would then complete

the toggle group structure theorem for interval-closed sets on any poset. For example, the poset P defined

by the covers: a ⋖ b ⋖ c, a ⋖ d ⋖ e contains no extremal-atomic element, but is not strongly-extremal-

atomic-free. And yet, we have computed that |IC(P )| = 25 and T (IC(P )) = S25, which agrees with

our speculation. Proving the interval-closed set toggle group structure description for all posets satisfying

this relaxed condition would take some work beyond the statement of Theorem 2.22; note that no element

of our example poset P satisfies condition (2) in Definition 2.21 (and there is an infinite family of such
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posets). Thus, this is an example of a family of subsets that is toggle-alternating, since it contains the

alternating group, but not inductively toggle-alternating.

3.5 Unions of subset families

Let L = L1 ∪ L2 be the union of two (not necessarily disjoint) combinatorially meaningful sets and

consider the toggle group on this union. For example, fix two posets P and P ′ on the same underlying set.

We may consider the toggle group T (L) for L = J(P )∪ J(P ′), the union of the two sets of order ideals.

For p ∈ P and I ∈ L, the toggle tp is the symmetric difference of p and I , provided this is an order ideal

in either P or P ′. As another example, it may be interesting to study the toggle group T (L) where L is

the union of order ideals and filters, or the union of order ideals and antichains, or the union of antichains

under two different partial orders, etc.

Remark 3.22 Suppose |L1| = |L2|. An explicit bijection between L1 and L2 could be given by finding

an appropriate toggle group element in T (L1 ∪ L2) or T (L) for L ⊃ L1 ∪ L2. Such an element will

always exist if the toggle group is the full symmetric group, as is often true. This may be a method for

finding missing bijections. An example is the open problem of finding an explicit bijection between n×n
alternating sign matrices and totally symmetric self-complementary plane partitions in a 2n × 2n × 2n

box, both of which are known to be counted by
∏n−1

j=0
(3n+1)!
(n+j)! . In [St11], we exhibited these sets as order

ideals in two different partial orders on the same ground set. Thus, if one could describe, for every n, a

toggle group element on the union of these sets of order ideals that takes one set to the other, this would

give a bijection.

3.6 Independent sets of a graph

We now move from the realm of posets to that of graphs. An independent set in a graph is a subset of

the vertices such that no two have an edge between them. Let IS(G) equal the set of independent sets

of a graph G = (V (G), E(G)), where V (G) and E(G) are the vertex and edge sets, respectively. Since

independent sets are subsets of the vertices, we take V (G) as our ground set and L = IS(G) ⊆ 2V (G).

With independent sets, as with chains and antichains, the elements may always be toggled ‘out’ of an

independent set. We have the following toggle relation.

Lemma 3.23 In the independent set toggle group T (IS(G)), (tutv)
2 = 1 if and only if there is no edge

between u and v in G.

Proof: If there is an edge between u and v in G, then tutv(∅) = {v} whereas tvtu(∅) = {u}. So tu and tv
do not commute. If there is no edge between u and v, then the presence or absence of u in an independent

set I does not affect whether v is in I . So tu and tv commute. ✷

We have the following structure description as a corollary of Theorems 2.18 and 2.22.

Corollary 3.24 Let G be a finite graph and IS(G) the set of independent sets of G. If G is connected,

IS(G) is toggle-alternating. If G has components G1, G2, . . . , Gk, then T (IS(G)) = T (IS(G1)) ×
T (IS(G2))× · · · × T (IS(Gk)).

Proof: If G is disconnected with components G1, G2, . . . , Gk, an independent set X in IS(G) consists

of the disjoint union of the independent sets Xi in IS(Gi), 1 ≤ i ≤ k, where the choice of the Xi is

independent. Now since there is no edge between any of g1, g2, . . . , gk for gi ∈ Gi, 1 ≤ i ≤ k, we
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have by Lemma 3.23, tgi and tgj commute for all 1 ≤ i, j ≤ k, so that IS(G) is the toggle-disjoint

Cartesian product IS(G1) ⊗ IS(G2) ⊗ · · · ⊗ IS(Gk). Therefore, by Theorem 2.18, T (IS(G)) =
T (IS(G1))× T (IS(G2))× · · · × T (IS(Gk)).

If G is a connected graph, the result follows from Theorem 2.22 and the fact, proved below, that the set

{IS(G) | G is a connected graph} is an inductively toggle-alternating family.

For given a connected graph G, one may choose any vertex that when deleted does not disconnect the

graph to be the required e in condition (2b) of Definition 2.21.

Finally, we have checked, using SageMath [Sage] (see Appendix A), that for all connected graphs

with |G| ≤ 4, T (IS(P )) = SIS(P ) or AIS(P ), thus condition (1) of Definition 2.21 is satisfied. So this

is an inductively toggle-alternating family, and the result follows by Theorem 2.22. ✷

Remark 3.25 Toggling independent sets is related to Monte-Carlo simulations and Glauber dynamics of

the hard-core model of statistical physics [LPW09, Chapter 3]. Also, recently, D. Einstein, M. Farber,

E. Gunawan, M. Joseph, M. Macauley, J. Propp, and S. Rubinstein-Salzedo have used this perspective

of generalized toggling to prove some results on toggling noncrossing matchings and, more generally,

independent sets of certain graphs [EFG+16]. Finally, M. Joseph and T. Roby have recently found orders

of some toggle group elements and other related results in the toggle group of independent sets of a path

graph [JR18].

3.7 Vertex covers of a graph

A vertex cover of a graph G is a subset of the vertices V (G) such that every edge in E(G) is incident to

at least one vertex in the vertex cover. Denote the set of vertex covers of G as VC(G). Since vertex covers

are subsets of the vertices, we take V (G) as our ground set and L = VC(G) ⊆ 2V (G). In the vertex cover

toggle group T (VC(G)), you may always toggle a vertex ‘in’ to a vertex cover, but you may not always

toggle a vertex ‘out’.

We have the following toggle commutation lemma.

Lemma 3.26 Let u and v be vertices of G. In the vertex cover toggle group T (VC(G)), (tutv)
2 = 1 if

and only if there is no edge between u and v.

Proof: Suppose there is an edge between u and v. Then consider the vertex cover X consisting of all the

vertices in V (G). We have that tutv(X) = X \ {v} while tvtu(X) = X \ {u}. So tu and tv do not

commute.

If u and v do not have an edge between them, then the presence or absence of u in a vertex cover has

no affect on whether v must be in the vertex cover. So tu and tv commute. ✷

We have the following structure description. The proof is similar to the proof of Corollary 3.24, since

the commutativity lemma is the same; the main difference is that condition (2a) of Definition 2.21 is

used rather than condition (2b). We have checked the base cases |G| ≤ 4 using SageMath [Sage] (see

Appendix A).

Corollary 3.27 Let G be a finite graph and VC(G) the set of vertex covers of G. If G is connected,

T (VC(G)) is either the symmetric group or the alternating group on VC(G). If G has components

G1, G2, . . . , Gk, then T (VC(G)) = T (VC(G1))× T (VC(G2))× · · · × T (VC(Gk)).
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Remark 3.28 Vertex covers have been used in commutative algebra work of B. Kubik, C. Paulsen, and

S. Sather-Wagstaff to index the decomposition of edge ideals [PSW13] and path ideals [KSW15]. In this

work, minimal vertex covers are of special importance. We can characterize a minimal vertex cover X
as a vertex cover which is invariant under any of the toggles tv for v ∈ X . It would be interesting to see

what algebraic implications the action of the toggle group on vertex covers may have.

3.8 Acyclic subgraphs of a graph

We consider an acyclic subgraph of a graph G to be a collection of edges in E(G) in which there is no

cycle. Denote the set of acyclic subgraphs of G as AS(G). Since acyclic subgraphs are subsets of the

edges rather than the vertices, we take E(G) as our ground set and L = AS(G) ⊆ 2E(G).

The maximal acyclic subgraphs are the spanning forests. In the acyclic subgraph toggle groupT (AS(G)),
you may always toggle an edge ‘out’, but you may not always toggle an edge ‘in’, since adding an edge

may introduce a cycle.

We have the following commutation lemma.

Lemma 3.29 Let e and f be edges of G. In the acyclic subgraph toggle group T (AS(G)), (tetf )
2 = 1

if and only if no cycle of G contains both e and f .

Proof: Suppose a cycle C of G contains edges e and f ; consider the acyclic subgraph C \ e. We know

tetf (C \ e) = C \ f since both toggles act nontrivially whereas tf te(C \ e) = C \ {e, f} since here te
must act as the identity (or else the resulting subgraph would be a cycle). So te and tf do not commute.

If no cycle contains both e and f , then the presence or absence of e in a subgraph does not affect

whether f may be in the subgraph while maintaining acyclicity, and vice versa. So in this case te and tf
commute. ✷

We have the following partial structure description as a corollary of Theorem 2.18. Note a cut-vertex

of a graph is a vertex that disconnects the graph when removed from the graph.

Corollary 3.30 Let G be a finite graph and AS(G) the set of acyclic subgraphs of G. Suppose G has an

edge e not contained in any cycle of G. Then T (AS(G)) = T (AS(G\{e}))×T (AS({e})) = T (AS(G\
{e}))×S2. Let G1, G2, . . . , Gk be subgraphs of G with pairwise disjoint edge sets E1, E2, . . . , Ek such

that E = ∪k
i=1Ei and such that any pair of subgraphs Gi and Gj have at most one vertex in common,

and this vertex is a cut-vertex of G. Then T (AS(G)) = T (AS(G1))×T (AS(G2))×· · ·×T (AS(Gk)).

Proof: Suppose G1, G2, . . . , Gk are subgraphs of G with edge sets E1, E2, . . . , Ek satisfying the hy-

potheses. An acyclic subgraph X in AS(G) consists of the disjoint union of the acyclic subgraphs

Xi ⊆ Ei in AS(Gi), 1 ≤ i ≤ k, where the choice of the Xi is independent. Now since no edges from dif-

ferent components can be in the same cycle, we have by Lemma 3.29, tei and tej commute for all ei ∈ Ei,

ej ∈ Ej , 1 ≤ i, j ≤ k so that AS(G) is the toggle-disjoint Cartesian product IS(G1)⊗ IS(G2)⊗ · · · ⊗
IS(Gk). Therefore, by Theorem 2.18, T (IS(G)) = T (IS(G1))× T (IS(G2))× · · · × T (IS(Gk)).

Suppose G has an edge e not contained in any cycle of G. Then by Lemma 3.29, te commutes with all

other toggles in T (AS(G)). So T (AS(G)) = T (AS(G\{e}))×T (AS({e})) = T (AS(G\{e}))×S2.

✷

Remark 3.31 Note {AS(G) | G is a connected graph in which each edge is contained in at least one

cycle} is not an inductively toggle-alternating family. Take, for example, the cycle Cn. Label the edges
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with [n] = {1, 2, . . . , n}. AS(Cn) = 2[n] \ {[n]}, since the only cycle is Cn itself. But if we remove any

edge, the graph becomes a path. Since there are no cycles in a path, all toggles commute, so the toggle

group of a path with n edges is (S2)
n. So there is no edge satisfying Condition (2) of Definition 2.21.

3.9 Spanning subgraphs of a graph

A spanning subgraph of a graph G is a subset S ⊆ E(G) of the edges of G such that the subgraph

(V (G), S) consisting of all the vertices of G and the edges in S has the same number of connected

components as the original graph G. We take as our ground set the set of edges E(G), and our subsets

L = S(G) ⊆ 2E(G) to be the edge sets of spanning subgraphs. We define the spanning subgraph toggle

group as the subgroup of the symmetric group on all spanning subgraphs generated by the edge toggles.

The minimal spanning subgraphs are the spanning forests. In the spanning subgraph toggle group

T (S(G)), you may always toggle an edge ‘in’, but you may not always toggle an edge ‘out’, since

removing an edge may increase the number of components. These observations indicate the spanning

subgraph toggle group is in some sense ‘dual’ to the acyclic subgraph toggle group; we will return to this

in the next subsection.

We give below a commutation lemma, in which we use the following standard definition.

Definition 3.32 A cut of a graph is a partition of the vertices into two disjoint subsets. A cut determines

a cut-set (also called a co-circuit), defined as the set of edges that have one endpoint in each subset of the

partition.

Lemma 3.33 Let e and f be edges of G. In the spanning subgraph toggle group T (S(G)), (tetf )
2 = 1

if and only if no cut-set of G contains both e and f .

Proof: Suppose a cut-setC ofG contains edges e and f ; consider the spanning subgraph (E(G)\C)∪{f}.

We know tf te((E(G) \ C) ∪ {f}) = (E(G) \ C) ∪ {e} since both toggles act nontrivially whereas

tetf ((E(G) \ C) ∪ {f}) = (E(G) \ C) ∪ {e, f}) since here tf must act as the identity (or else the

resulting subgraph would no longer be spanning). So te and tf do not commute.

If no cut-set contains both e and f , then the presence or absence of e in a subgraph does not affect

whether f may be in the subgraph while still spanning, and vice versa. So in this case te and tf commute.

✷

3.10 Matroids

A matroid is an abstraction of the notion of linear independence. Matroids can be defined in many ways;

we give two definitions here and characterize part of each definition in terms of toggles.

Definition 3.34 A finite matroid M may be defined as a pair (E, I), where E is a finite set (called the

ground set) and I is a set of subsets of E (called the independent sets) with the following properties:

1. ∅ ∈ I;

2. For each X ⊆ Y ⊆ E, if Y ∈ I then X ∈ I (the hereditary property); and

3. If X,Y ∈ I and |Y | > |X |, then there exists y ∈ Y \X such that X ∪ {y} ∈ I (the independent

set exchange property).
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A maximal independent subset is a basis. A subset of E is dependent if it is not independent (that is,

not in I). A minimal dependent subset of E is a circuit.

Since the set I of independent sets is a set of subsets of E, we may define and study the toggle group

T (I). For any X ∈ I and any x ∈ X , tx(X) = X \ {x}. That is, we may always toggle elements ‘out’

of an independent set in the toggle group of independent sets of a matroid.

Remark 3.35 We can characterize the independent set exchange condition above using the toggle group

T (I). Namely, (3) is equivalent to the following:

3*. If X,Y ∈ I and |Y | > |X |, then there exists y ∈ Y \ X such that ty(X) 6= X (that is, ty acts

nontrivially on X in T (I)).

We note the toggle groups considered in the previous two subsections are examples of toggling inde-

pendent sets in matroids, namely, graphic and co-graphic matroids. We give here a general commutation

lemma for matroid toggle groups that specializes to Lemmas 3.29 and 3.33.

Lemma 3.36 Let M = (E, I) be a matroid and x, y ∈ E. In the matroid independent set toggle group

T (I), (txty)
2 = 1 if and only if no circuit of M contains both x and y.

Proof: Suppose a circuit C of M contains both x and y. Since C is a minimal dependent set, C \{x}, C \
{y}, and C \ {x, y} are all in I. We know txty(C \ {x}) = C \ {y} since both toggles act nontrivially,

whereas tytx(C \ {x}) = ty(C \ {x}) = C \ {x, y} since here tx must act as the identity (or else the

resulting subset would no longer be independent). So tx and ty do not commute.

If no circuit contains both x and y, then the presence or absence of x in a independent set does not

affect whether y may be in the independent set, and vice versa. So in this case tx and ty commute. ✷

3.11 Convex geometries

Just as matroids are an abstraction of the notion of linear independence, convex geometries are an ab-

straction of the notion of convexity. Convex geometries are dual to antimatroids and also equivalent to

meet-distributive lattices; see [EJ85]. As with matroids, we first state the definition and then characterize

part of the definition in terms of toggles. We will also refer to Definition 3.37 in Section 4.

Definition 3.37 Let E be a finite nonempty set. A set L of subsets of E is a convex geometry on E if L
satisfies the following properties.

1. ∅ ∈ L and E ∈ L;

2. If X,Y ∈ L, then X ∩ Y ∈ L; and

3. If X ∈ L \ {E}, then there exists e ∈ E \X such that X ∪ {e} ∈ L.

The elements of L are called the convex sets.

Remark 3.38 We can recast condition (3) above in terms of toggles:

3*. For any X ∈ L \ {E}, there exists a toggle te with e ∈ E \X such that te(X) 6= X .
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Example 3.39 Let E = {1, 2, 3} and L = {∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}. L is a convex

geometry, but note that L is not closed under set union since {1, 3} /∈ L. So, in particular, PL is not a

distributive lattice, so there is no poset P such that L = J(P ).

Convex geometries have a closure operator, defined below. We study more general closure operators in

the next section.

Definition 3.40 For A ⊆ E and L ⊆ 2E a convex geometry, define the closure operator of L, τL : 2E →
L, as

τL(A) =
⋂

{X ∈ L | A ⊆ X} .

Several of the previous examples, including order ideals, are also convex geometries. In particular, we

show below that the set of interval-closed sets of a poset (see Section 3.4) is a convex geometry.

Proposition 3.41 Let P be a finite poset and IC(P ) the set of interval-closed sets of P . IC(P ) is a

convex geometry.

Proof: The empty set and P are both convex sets, so condition (1) of Definition 3.37 is satisfied. The

intersection of any two interval-closed sets is also interval-closed, satisfying condition (2). Condition (3)

is satisfied, since, given I ∈ IC(P ), I 6= P , and x ∈ P , if I ∪ {x} /∈ IC(P ), then there must be y1 ∈ P
such that the interval-closed set induced by I∪{x} contains y1. But then either I∪{y1} ∈ IC(P ) or there

exists y2 ∈ P such that the interval-closed set induced by I ∪ {y1} contains y2. Since the poset is finite

and the partial order is acyclic, after a finite number of steps we will find yi such that I ∪ {yi} ∈ IC(P ).
✷

Remark 3.42 One might speculate that the set of convex geometries L that are not a toggle-disjoint

Cartesian product would be inductively toggle-alternating. Proposition 3.41 shows this is not the case,

since in Remark 3.21 we exhibited a poset P for which IC(P ) is toggle-alternating, but not inductively

toggle-alternating. So we cannot use Theorem 2.22 to obtain a structure theorem for all convex geome-

tries. It may be possible to characterize an inductively toggle-alternating family of convex geometries, as

we did for interval-closed sets in Corollary 3.20; we leave this to future work.

In the next section, we define a convex closure map and relate it to rowmotion.

4 Cover-closure and rowmotion

In this section, we define a map we call cover-closure on any family of subsets L ⊆ 2E with a closure

operator. We show in Lemma 4.7 that if L is the set of order ideals of a poset, cover-closure is exactly

the rowmotion action of [CF95, SW12]. We prove in Theorem 4.8 that if cover-closure is bijective, then

L must be in bijection with the set of order ideals for some poset, thus rowmotion is the only bijective

cover-closure map.

Definition 4.1 Given a ground set E, a closure operator is a function τ : 2E → 2E that satisfies the

following for all X,Y ⊆ E:

1. X ⊆ τ(X) (extensivity);

2. X ⊆ Y implies τ(X) ⊆ τ(Y ) (monotonicity); and
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3. τ(τ(X)) = τ(X) (idempotence).

A closed set with respect to τ is a set X ⊆ E for which τ(X) = X .

Example 4.2 A standard closure operator on a poset P , is given by τ(X), for X ∈ 2P , equals the

intersection of all the order ideals in J(P ) containing X . Then the set of closed sets of τ is precisely

J(P ).

Remark 4.3 Note a convex geometry may be alternatively characterized as a set with a closure operator τ
satisfying the additional property (called the anti-exchange axiom) that if neither e nor f belong to τ(X),
but f belongs to τ(X ∪ {e}), then e does not belong to τ(X ∪ {f}). See [EJ85].

Using the closure operator of Definition 4.1, we define the following map.

Definition 4.4 Let E be a set with closure operator τ whose set of closed sets is L ⊆ 2E . For X ∈ 2E ,

define cov(X) = {e ∈ E \ X | X ∪ {e} ∈ L}. Call cov(X) the set of covers of X . Then we define

cover-closure ξ : L → L as ξ(X) = τ(cov(X)).

Remark 4.5 Note that if X ∈ L, cov(X) is the set of labels of the edges of the covers of X in the toggle

poset PL of Definition 2.9.

Example 4.6 Let E = {1, 2, 3, 4}. Define τ as the closure operator on E with set of closed sets L =
{∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {2, 3, 4}, {1, 2, 3, 4}} and such that

τ({1, 4}) = τ({1, 2, 4}) = τ({1, 3, 4}) = E. Then cover-closure ξ on L is given in Figure 5.
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Figure 5: The cover-closure map ξ on L, where L is as in Example 4.6.

The following lemma shows that cover-closure on the set of order ideals J(P ) is the rowmotion action

of [SW12].

Lemma 4.7 If L = J(P ) for some finite poset P and τ(X) is the intersection of all the order ideals in

J(P ) containing X , then cover-closure ξ : L → L is rowmotion on J(P ).

Proof: Rowmotion on an order ideal I of a poset P is defined as the order ideal generated by the minimal

elements of P \ I . (See Definition 3.2.) Thus if L = J(P ) and τ(X) is the intersection of all order ideals

containing X , we have that cover-closure ξ is exactly rowmotion. ✷

The following theorem characterizes bijective cover-closure maps.
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Theorem 4.8 Given a finite ground set E and a closure operator τ with set of closed sets L ⊆ 2E , cover-

closure ξ = τ ◦ cov : L → L is bijective if and only if L is isomorphic to the set of order ideals J(P ) for

some poset P .

Proof: Let E be a finite ground set with closure operator τ and set of closed sets L ⊆ 2E . By Lemma 4.7,

if L = J(P ), then cover-closure is rowmotion, which is bijective. It is left to show that if cover-closure

on L is bijective, then there exists a poset P such that L is isomorphic to the set of order ideals J(P ).
Suppose ξ : L → L is bijective. We first show L is isomorphic to a convex geometry (see Defini-

tion 3.37). First, τ(E) = E by extensivity, so E ∈ L. Now suppose τ(∅) = A 6= ∅. Then A ⊆ X for

all X ∈ L by monotonicity of τ , therefore no element of A is in the essentialized ground set E′. Thus we

work in the essentialization (L′, E′) with closure operator τ ′ : 2E
′

→ 2E
′

such that L′ is the set of closed

sets of τ ′. Thus, τ ′ satisfies τ ′(∅) = ∅. So ∅ is in L′, L′ satisfies condition (1) of Definition 3.37, and L′

is isomorphic to L, which implies their toggle posets PL and PL′ are isomorphic.

From now on, we consider ξ : L′ → L′ to be τ ′ ◦ cov, which is a bijection since ξ is a bijection on L.

Since L′ is the set of closed sets of τ ′, the toggle poset PL′ must be a lattice, where the meet and join are

given as X ∧ Y = τ ′(X ∩ Y ) = X ∩ Y and X ∨ Y = τ ′(X ∪ Y ). Note that τ ′(X ∩ Y ) = X ∩ Y for

X,Y ∈ L′ holds by the following argument: X ∩ Y ⊆ τ ′(X ∩ Y ) by extensivity, while τ ′(X ∩ Y ) ⊆
τ ′(X) and τ ′(X ∩ Y ) ⊆ τ ′(Y ) by monotonicity. τ ′(X) = X and τ ′(Y ) = Y since X,Y ∈ L′, so

τ ′(X ∩ Y ) ⊆ X ∩ Y ; thus τ ′(X ∩ Y ) = X ∩ Y . Therefore, L′ satisfies condition (2) of Definition 3.37.

Since cover-closure is a bijection, there must be a one-to-one correspondence between X and cov(X)
for all X ∈ L′. In particular, the set cov(X) is unique for each X , otherwise ξ would map two distinct

elements of L′ to the same image. Now for each X ∈ L′ such that X 6= E′, there exists e ∈ E′ \X such

that X ∪ {e} ∈ L′, otherwise cov(X) = ∅ and ξ(X) = ∅ = ξ(E′) which would be a contradiction. So

condition (3) of Definition 3.37 is satisfied, and L′ is a convex geometry.

Now to show L′ is, furthermore, the set of order ideals J(P ) for some poset P , we need only show that

for X,Y ∈ L′, τ ′(X ∪ Y ) = X ∪ Y , that is, L′ is closed under set union. This will imply that PL′ is a

distributive lattice, since the join and meet are given by X ∨ Y = X ∪ Y and X ∧ Y = X ∩ Y . Then by

the fundamental theorem of finite distributive lattices (see e.g. [St12]), L′ will be the set of order ideals

J(P ) for some poset P .

If there is some set Y such that τ ′(Y ) = Z ∪ {e} for some Z ∈ L′, e ∈ E′ \ Z , then e must be

in Y , or else τ ′(Y ) would be at most Z , since Z is a closed set smaller than Z ∪ {e} containing Y .

Thus, given X ∈ L′, if ξ(X) = Z ∪ {e} for some Z ∈ L′, e ∈ E′ \ Z , then e is in cov(X), since

ξ(X) = τ ′(cov(X))). Therefore, cov(X) contains all the elements that we can remove singly from ξ(X)
and remain in L′. Denote the set of such elements as rem(X) := {e ∈ X | X \ {e} ∈ L′}. So we have

rem(ξ(X)) ⊆ cov(X) for all X ∈ L′. We wish to show rem(ξ(X)) = cov(X)

Now
∑

X∈L′

cov(X) equals the number of edges in the Hasse diagram of PL′ . Since ξ is a bijection,

∑

X∈L′

rem(ξ(X)) =
∑

X∈L′

rem(X), which also equals the number of edges in the Hasse diagram of PL′ .

So
∑

X∈L′

rem(ξ(X)) =
∑

X∈L′

cov(X), but rem(ξ(X)) ⊆ cov(X) for all X ∈ L′ and L′ is a finite set, so

it must be that rem(ξ(X)) = cov(X) for all X ∈ L′.

Consider the dual P̂L′ of the lattice PL′ . Let L̂′ := {E′ \X | X ∈ L′}. Then L̂′ is the set of closed

sets for the dual closure operator τ̂ ′. Cover-closure may be defined on L̂′ as ξ̂ : L̂′ → L̂′, ξ̂ = τ̂ ′ ◦ ĉov
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where for E′\X ∈ L̂′, ĉov(E′\X) = rem(X) = cov(ξ−1(X)), so ξ̂ is bijective. By the same arguments

as for L′ above, L̂′ is a convex geometry, and so is closed under set intersection. Therefore, L′ is closed

under set union, and so PL′ is a distributive lattice. Then since PL′ and PL are isomorphic, PL is also a

distributive lattice, and the theorem follows. ✷

Corollary 4.9 Rowmotion is the only bijective cover-closure map on a finite ground set.
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A SageMath code for computing toggle group structure

We give below the SageMath [Sage] code we wrote to check all the base cases of this paper. (This code

should work in either CoCalc [CoCalc] or your local installation of SageMath [Sage].) The input L

(denoted L in this paper) is a list of subsets of the ground set E = [1, 2, 3, 4]. To compute the toggle group

on a larger ground set, change the number 5 in the third line of the first function to an appropriate larger

integer.

For each toggle te, e ∈ E, the first function iterates through L and notes whenever it finds two sub-

sets that differ by a single toggle. The two subsets are at indices i and j in the list L (and the indexing

starts at 0), so the transposition (i + 1, j + 1) is added to the permutation for the toggle te. The function

toggle_group_permutations continues in this way and returns a list of permutations correspond-

ing to the toggles. The second function, toggle_group_structure, calls GAP [GAP] from within

SageMath to construct the group and output its structure description (given in GAP syntax).
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def t o g g l e g r o u p p e r m u t a t i o n s (L ) :

t o g g l e p e r m u t a t i o n s = [ ]

f o r t o g in range ( 1 , 5 ) :

togperm = [ ]

f o r i in range ( l e n ( L ) ) :

f o r j in range ( l e n (L ) ) :

i f L[ j ] . i s s u b s e t (L [ i ] ) :

i f l i s t (L [ i ] . s y m m e t r i c d i f f e r e n c e ( L[ j ] ) ) = = [ t o g ] :

togperm . append ( ( i +1 , j + 1 ) )

t o g g l e p e r m u t a t i o n s . append ( P e r m u t a t i o n ( togperm ) . c y c l e s t r i n g ( ) )

re turn t o g g l e p e r m u t a t i o n s

def t o g g l e g r o u p s t r u c t u r e ( L ) :

g ro u p g en s = t o g g l e g r o u p p e r m u t a t i o n s ( L)

mygroup = P e r m u t a t i o n Gro u p ( g ro u p g en s )

re turn mygroup . s t r u c t u r e d e s c r i p t i o n ( )

As an example, to verify Example 2.15, run the following:

L = [ s e t ({ } ) ,{ 1 } ,{ 1 , 2 } ,{ 1 , 2 , 3 } ,{ 1 , 2 , 3 , 4 } ,{ 2 , 3 , 4 } ,{ 3 , 4 } ,{ 4 } ]

t o g g l e g r o u p p e r m u t a t i o n s ( L)

t o g g l e g r o u p s t r u c t u r e (L )

The output will be:

[ '(1, 2)(5, 6)', '(2, 3)(6, 7)', '(3, 4)(7, 8)', '(1, 8)(4, 5)' ]

' ( ( (C2 × D4) : C2) : C3) : C2 '


