Forbidden subgraphs for constant domination number

Michitaka Furuya^{1*}

¹ Kitasato University, Japan

received 2018-3-13, revised 2018-5-5, accepted 2018-5-15.

In this paper, we characterize the sets \mathcal{H} of connected graphs such that there exists a constant $c = c(\mathcal{H})$ satisfying $\gamma(G) \leq c$ for every connected \mathcal{H} -free graph G, where $\gamma(G)$ is the domination number of G.

Keywords: Domination number, Forbidden induced subgraph, Ramsey number

1 Introduction

All graphs considered in this paper are finite, simple, and undirected. Let G be a graph. Let V(G) and E(G) denote the vertex set and the edge set of G, respectively. For a vertex $x \in V(G)$, let $N_G(x)$ and $N_G[x]$ denote the open neighborhood and the closed neighborhood, respectively; thus $N_G(x) = \{y \in V(G) : xy \in E(G)\}$ and $N_G[x] = N_G(x) \cup \{x\}$. For a set $X \subseteq V(G)$, let $N_G[X] = \bigcup_{x \in X} N_G[x]$. For a vertex $x \in V(G)$ and a non-negative integer i, let $N_G^i(x) = \{y \in V(G) : the distance between x and y in G is i\}$. Note that $N_G^0(x) = \{x\}$ and $N_G^1(x) = N_G(x)$. Let K_n and P_n denote the complete graph and the path of order n, respectively. For terms and symbols not defined in this paper, we refer the reader to [3].

Let G be a graph. For two sets $X, Y \subseteq V(G)$, we say that X dominates Y if $Y \subseteq N_G[X]$. A subset of V(G) which dominates V(G) is called a dominating set of G. The minimum cardinality of a dominating set of G, denoted by $\gamma(G)$, is called the domination number of G. Since the determining problem of the value $\gamma(G)$ is NP-complete (see [7]), many researchers have tried to find good bounds for the domination number (see [9]). One of the most famous results is due to Ore [11] who proved that every connected graph G of order at least two satisfies $\gamma(G) \leq |V(G)|/2$. Here one problem naturally arises: What additional conditions allow better upper bounds on the domination number? In this paper, we focus on forbidden induced subgraph conditions.

For a graph G and a set \mathcal{H} of connected graphs, G is said to be \mathcal{H} -free if G contains no graph in \mathcal{H} as an induced subgraph. In this context, members of \mathcal{H} are called *forbidden subgraphs*. If G is $\{H\}$ -free, then G is simply said to be *H*-free. For two sets \mathcal{H}_1 and \mathcal{H}_2 of connected graphs, we write $\mathcal{H}_1 \leq \mathcal{H}_2$ if for every $H_2 \in \mathcal{H}_2$, there exists $H_1 \in \mathcal{H}_1$ such that H_1 is an induced subgraph of H_2 . The relation

^{*}This work was supported by JSPS KAKENHI Grant number 26800086 and 18K13449.

ISSN subm. to DMTCS © 2018 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

Michitaka Furuya

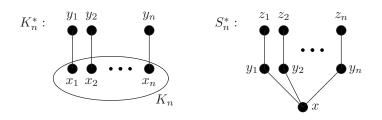


Fig. 1: Graphs K_n^* and S_n^*

" \leq " between two sets of forbidden subgraphs was introduced in [6]. Note that if $\mathcal{H}_1 \leq \mathcal{H}_2$, then every \mathcal{H}_1 -free graph is also \mathcal{H}_2 -free.

Let $K_{1,3}$ and K_3^* denote the two unique graphs having degree sequence (3, 1, 1, 1) and (3, 3, 3, 1, 1, 1), respectively. Cockayne, Ko and Shepherd [1] (see also Theorem 2.9 in [9]) proved that every connected $\{K_{1,3}, K_3^*\}$ -free graph G satisfies $\gamma(G) \leq \lceil |V(G)|/3 \rceil$. Indeed, Duffus, Gould and Jacobson [5] proved that every connected $\{K_{1,3}, K_3^*\}$ -free graph has a Hamiltonian path. Since $\gamma(P_n) = \lceil n/3 \rceil$ for every integer n, the above inequality is a consequence of this result. Furthermore, forbidden induced subgraph conditions for domination-like invariants were widely studied (see, for example, [2, 4, 8, 10]).

In this paper, we will characterize the sets $\mathcal H$ of connected graphs satisfying the condition that

(A1) there exists a constant $c = c(\mathcal{H})$ such that $\gamma(G) \leq c$ for every connected \mathcal{H} -free graph G.

Let $n \ge 1$ be an integer. Let K_n^* denote the graph with $V(K_n^*) = \{x_i : 1 \le i \le n\} \cup \{y_i : 1 \le i \le n\}$ and $E(K_n^*) = \{x_i x_j : 1 \le i < j \le n\} \cup \{x_i y_i : 1 \le i \le n\}$, and let S_n^* denote the graph with $V(S_n^*) = \{x\} \cup \{y_i : 1 \le i \le n\} \cup \{z_i : 1 \le i \le n\}$ and $E(S_n^*) = \{xy_i : 1 \le i \le n\} \cup \{y_i z_i : 1 \le i \le n\}$ (see Figure 1). Our main result is the following.

Theorem 1.1 Let \mathcal{H} be a set of connected graphs. Then \mathcal{H} satisfies (A1) if and only if $\mathcal{H} \leq \{K_k^*, S_\ell^*, P_m\}$ for some positive integers k, ℓ and m.

We conclude this section by considering the case where a set \mathcal{H} can contain disconnected graphs. Then the following proposition holds.

Proposition 1.2 Let \mathcal{H} be a set of graphs. Then \mathcal{H} satisfies (A1) if and only if $\mathcal{H} \leq {\overline{K_k}}$ for some positive integer k.

Proof: Suppose that \mathcal{H} satisfies (A1). Then there exists a constant $c = c(\mathcal{H})$ such that $\gamma(G) \leq c$ for every connected \mathcal{H} -free graph G. Since $\gamma(\overline{K_{c+1}}) = c + 1$, $\overline{K_{c+1}}$ is not \mathcal{H} -free, and so $\mathcal{H} \leq {\overline{K_{c+1}}}$.

On the other hand, if $\mathcal{H} \leq {\overline{K_k}}$, then every \mathcal{H} -free graph G satisfies $\gamma(G) \leq k-1$ because every maximal independent set of G is a dominating set.

2 Proof of Theorem 1.1

For positive integers s and t, let R(s,t) denote the *Ramsey number* with respect to s and t. For positive integers k, ℓ and i, we recursively define $g_{k,\ell}(i)$ as follows:

$$\begin{cases} g_{k,\ell}(1) = 1\\ g_{k,\ell}(i) = R(k, (\ell-1)g_{k,\ell}(i-1)+1) - 1 \quad (i \ge 2). \end{cases}$$

Lemma 2.1 Let k, ℓ and i be positive integers. Let G be a $\{K_k^*, S_\ell^*\}$ -free graph, and let a be a vertex of G. Then for an independent set $X \subseteq N_G^i(a)$, there exists $U \subseteq N_G^{i-1}(a)$ with $|U| \leq g_{k,\ell}(i)$ that dominates X.

Proof: We proceed by induction on *i*. If i = 1, then $U = \{a\}$ is a desired subset of $N_G^{i-1}(a) = \{a\}$. Thus we may assume that $i \ge 2$. Note that $N_G^{i-1}(a)$ dominates *X*. Let *U* be a minimal subset of $N_G^{i-1}(a)$ that dominates *X*. It suffices to show that $|U| \le R(k, (\ell-1)g_{k,\ell}(i-1)+1) - 1 = g_{k,\ell}(i)$.

By way of contradiction, suppose that $|U| \ge R(k, (\ell-1)g_{k,\ell}(i-1)+1)$. For each $u \in U$, since $U - \{u\}$ does not dominate X by the minimality of U, there exists a vertex $x_u \in X$ such that $N_G(x_u) \cap U = \{u\}$. Recall that X is an independent set. If there exists a clique $U_1 \subseteq U$ with $|U_1| = k$, then the subgraph of G induced by $U_1 \cup \{x_u : u \in U_1\}$ is isomorphic to K_k^* , which contradicts the K_k^* -freeness of G. Since $|U| \ge R(k, (\ell-1)g_{k,\ell}(i-1)+1)$, this implies that there exists an independent set $U_2 \subseteq U$ with $|U_2| = (\ell-1)g_{k,\ell}(i-1)+1$. By the induction hypothesis, there exists $U' \subseteq N_G^{i-2}(a)$ with $|U'| = g_{k,\ell}(i-1)$ that dominates U_2 . By the pigeon-hole principle, there exists a vertex $u' \in U'$ such that $|N_G(u') \cap U_2| \ge \ell$. Let $\tilde{U}_2 \subseteq N_G(u') \cap U_2$ be a set with $|\tilde{U}_2| = \ell$. Then the subgraph of G induced by $\{u'\} \cup \tilde{U}_2 \cup \{x_u : u \in \tilde{U}_2\}$ is isomorphic to S_ℓ^* , which is a contradiction. \Box

For positive integers k, ℓ and i with $i \ge 2$, let $f_{k,\ell}(i) = R(k,\ell)g_{k,\ell}(i)$.

Lemma 2.2 Let k, ℓ and i be positive integers with $i \ge 2$. Let G be a $\{K_k^*, S_\ell^*\}$ -free graph, and let a be a vertex of G. Then there exists $\hat{U} \subseteq V(G)$ with $|\hat{U}| \le f_{k,\ell}(i)$ that dominates $N_G^i(a)$.

Proof: Let X be a maximal independent subset of $N_G^i(a)$. By Lemma 2.1, there exists $U \subseteq N_G^{i-1}(a)$ with $|U| \leq g_{k,\ell}(i)$ that dominates X. By the maximality of X, X dominates $N_G^i(a)$, and so X dominates $N_G^i(a) - N_G[U]$. Let X_0 be a minimal subset of X that dominates $N_G^i(a) - N_G[U]$.

Claim 2.1 We have $|X_0| \leq (R(k, \ell) - 1)g_{k,\ell}(i)$.

Proof: Suppose that $|X_0| \ge (R(k,\ell) - 1)g_{k,\ell}(i) + 1$. Since U dominates X_0 and $|U| \le g_{k,\ell}(i)$, there exists a vertex $u' \in U$ such that $|N_G(u') \cap X_0| \ge R(k,\ell)$. For each $x \in X_0$, since $X_0 - \{x\}$ does not dominate $N_G^i(a) - N_G[U]$ by the minimality of X_0 , there exists a vertex $y_x \in N_G^i(a) - N_G[U]$ such that $N_G(y_x) \cap X_0 = \{x\}$. Set $Y = \{y_x : x \in N_G(u') \cap X_0\}$, and for each $y \in Y$, write $N_G(y) \cap X_0 = \{x_y\}$. Note that $\{x_y : y \in Y\} \subseteq N_G(u') \cap X_0$ and $y_{x_y} = y$ for each $y \in Y$. Since $|Y| = |N_G(u') \cap X_0| \ge R(k,\ell)$, there exists a clique $Y_1 \subseteq Y$ with $|Y_1| = k$ or an independent set $Y_2 \subseteq Y$ with $|Y_2| = \ell$. Recall that $Y \subseteq N_G^i(a) - N_G[U]$, and so $N_G(u') \cap Y = \emptyset$. If there exists a clique $Y_1 \subseteq Y$ with $|Y_1| = k$, then the subgraph of G induced by $Y_1 \cup \{x_y : y \in Y_1\}$ is isomorphic to K_k^* ; if there exists

an independent set $Y_2 \subseteq Y$ with $|Y_2| = \ell$, then the subgraph of G induced by $\{u'\} \cup \{x_y : y \in Y_2\} \cup Y_2$ is isomorphic to S_{ℓ}^* . In either case, we obtain a contradiction.

Recall that X_0 dominates $N_G^i(a) - N_G[U]$. Hence $U \cup X_0$ dominates $N_G^i(a)$. Furthermore, by the definition of U and Claim 2.1,

$$|U \cup X_0| = |U| + |X_0| \le g_{k,\ell}(i) + (R(k,\ell) - 1)g_{k,\ell}(i) = f_{k,\ell}(i).$$

Thus $\hat{U} = U \cup X_0$ is a desired set.

Proof of Theorem 1.1: We first prove the "only if" part. Let \mathcal{H} be a set of connected graphs satisfying (A1). Then there exists a constant $c = c(\mathcal{H})$ such that $\gamma(G) \leq c$ for every connected \mathcal{H} -free graph G. Since we can easily verify that $\gamma(K_{c+1}^*) = \gamma(S_{c+1}^*) = \gamma(P_{3c+1}) = c+1$, none of K_{c+1}^* , S_{c+1}^* and P_{3c+1} is \mathcal{H} -free. This implies that $\mathcal{H} \leq \{K_{c+1}^*, S_{c+1}^*, P_{3c+1}\}$, as desired.

Next we prove the "if" part. Let \mathcal{H} be a set of connected graphs such that $\mathcal{H} \leq \{K_k^*, S_\ell^*, P_m\}$ for some positive integers k, ℓ and m. Choose k, ℓ and m so that $k + \ell + m$ is as small as possible. Then k, ℓ and m are uniquely determined. In particular, the value $1 + \sum_{2 \leq i \leq m-2} f_{k,\ell}(i)$ only depends on \mathcal{H} . Furthermore, every \mathcal{H} -free graph is also $\{K_k^*, S_\ell^*, P_m\}$ -free. Thus it suffices to show that every connected $\{K_k^*, S_\ell^*, P_m\}$ -free graph G satisfies $\gamma(G) \leq 1 + \sum_{2 \leq i \leq m-2} f_{k,\ell}(i)$. Let $a \in V(G)$. Since G is P_m free, $N_G^i(a) = \emptyset$ for all $i \geq m-1$. Since G is connected, this implies that $V(G) = \bigcup_{0 \leq i \leq m-2} N_G^i(a)$. Since G is $\{K_k^*, S_\ell^*\}$ -free, it follows from Lemma 2.2 that for each i with $2 \leq i \leq m-2$, there exists a set $\hat{U}_i \subseteq V(G)$ with $|\hat{U}_i| \leq f_{k,\ell}(i)$ that dominates $N_G^i(a)$. Since $\{a\}$ dominates $N_G^0(a) \cup N_G^1(a)$, $\{a\} \cup (\bigcup_{2 \leq i \leq m-2} \hat{U}_i)$ is a dominating set of G, and so

$$\gamma(G) \le |\{a\}| + \sum_{2 \le i \le m-2} |\hat{U}_i| \le 1 + \sum_{2 \le i \le m-2} f_{k,\ell}(i),$$

as desired.

This completes the proof of Theorem 1.1.

3 Concluding remark

In this paper, we characterized the sets \mathcal{H} of connected graphs satisfying (A1). For similar problems concerning many domination-like invariants, we can use the sets appearing in Theorem 1.1.

Let μ be an invariant of graphs, and assume that

(D1) there exist two constants $c_1, c_2 \in \mathbb{R}^+$ such that $c_1\gamma(G) \le \mu(G) \le c_2\gamma(G)$ for all connected graphs G.

Note that many important domination-like invariants (for example, total domination number γ_t , paired domination number γ_{pr} , Roman domination number γ_R , rainbow domination number γ_{rk} , etc.) satisfy (D1). Furthermore, we focus on the condition that

(A'1) there exists a constant $c' = c'(\mu, \mathcal{H})$ such that $\mu(G) \leq c$ for every connected \mathcal{H} -free graph G.

We first suppose that a set $\mathcal H$ of connected graphs satisfies (A'1). Note that

Formatting an article for DMTCS

- $\bullet \ \mu(K^*_{\lceil (c'+1)/c_1\rceil}) \geq c_1\gamma(K^*_{\lceil (c'+1)/c_1\rceil}) = c_1\cdot \lceil (c'+1)/c_1\rceil \geq c'+1,$
- $\mu(S^*_{\lceil (c'+1)/c_1 \rceil}) \ge c_1 \gamma(S^*_{\lceil (c'+1)/c_1 \rceil}) = c_1 \cdot \lceil (c'+1)/c_1 \rceil \ge c'+1$, and
- $\mu(P_{3\lceil (c'+1)/c_1\rceil+1}) \ge c_1\gamma(P_{3\lceil (c'+1)/c_1\rceil+1}) = c_1 \cdot \lceil (c'+1)/c_1\rceil \ge c'+1.$

Thus, by similar argument to the proof of "only if" part of Theorem 1.1, we have $\mathcal{H} \leq \{K_k^*, S_\ell^*, P_m\}$ for some positive integers k, ℓ and m.

On the contrary, suppose that a set \mathcal{H} of connected graphs satisfies $\mathcal{H} \leq \{K_k^*, S_\ell^*, P_m\}$ for some positive integers k, ℓ and m. Then by Theorem 1.1, (A1) holds, and hence for a connected \mathcal{H} -free graph G, we have

$$\mu(G) \le c_2 \gamma(G) \le c_2 \cdot c(\mathcal{H}).$$

Consequently (A'1) holds (for $c' = c_2 \cdot c(\mathcal{H})$). Therefore, we obtain the following theorem.

Theorem 3.1 Let μ be an invariant for graphs satisfying (D1), and let \mathcal{H} be a set of connected graphs. Then \mathcal{H} satisfies (A'1) if and only if $\mathcal{H} \leq \{K_k^*, S_\ell^*, P_m\}$ for positive integers k, ℓ and m.

Acknowledgements

I would like to thank anonymous referees for careful reading and helpful comments.

References

- E.J. Cockayne, C.W. Ko and F.B. Shepherd, Inequalities concerning dominating sets in graphs, Technical Report DM-370-IR, Dept. Math., Univ. Victoria (1985).
- [2] P. Dankelmann, D. Rautenbach and L. Volkmann, Weighted domination in triangle-free graphs, Discrete Math. 250 (2002) 233–239.
- [3] R. Diestel, *Graph Theory* (5th edition), Graduate Texts in Mathematics **173**, Springer (2017).
- [4] P. Dorbec, S. Gravier and M.A. Henning, Paired-domination in generalized claw-free graphs, J. Comb. Optim. 14 (2007) 1–7.
- [5] D. Duffus, R.J. Gould and M.S. Jacobson, Forbidden subgraphs and the Hamiltonian theme, *The theory and applications of graphs*, pp.297–316, Wiley (1981).
- [6] S. Fujita, K. Kawarabayashi, C. L. Lucchesi, K. Ota, M. Plummer and A. Saito, A pair of forbidden subgraphs and perfect matchings, J. Combin. Theory Ser. B 96 (2006) 315–324.
- [7] M.R. Garey and D.S. Johnson, "Computers and Intractability: A Guide to the Theory of NP-Completeness", Freeman, New York (1979).
- [8] J. Haviland, Independent domination in triangle-free graphs, Discrete Math. **308** (2008) 3545–3550.
- [9] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc. New York (1998).

- [10] H. Jiang and L. Kang, Total restrained domination in claw-free graphs, J. Comb. Optim. 19 (2010) 60–68.
- [11] O. Ore, Theory of graphs, American Mathematical Society Colloquium Publications Vol.38 American Mathematics Society, Providence, RI (1962).