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A construction of small regular bipartite

graphs of girth 8
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Let q be a prime a power and k an integer such that 3 ≤ k ≤ q. In this paper we present a method using Latin squares

to construct adjacency matrices of k-regular bipartite graphs of girth 8 on 2(kq2 − q) vertices. Some of these graphs

have the smallest number of vertices among the known regular graphs with girth 8.
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1 Introduction

Throughout this paper, only undirected simple graphs without loops or multiple edges are considered.

Unless otherwise stated, we follow the books by Godsil and Royle [16] and by Lint and Wilson [21] for

terminology and definitions.

Let G = (V (G), E(G)) be a graph with vertex set V = V (G) and edge set E = E(G). The girth
of a graph G is the number g = g(G) of edges in a smallest cycle. The degree of a vertex v ∈ V is the

number of vertices adjacent to v. A graph is called regular if all the vertices have the same degree. A

cage is a k-regular graph with girth g having the smallest possible number of vertices. Simply counting

the numbers of vertices in the distance partition with respect to a vertex yields a lower bound n0(k, g) on

the number of vertices n(k, g) in a cage, with the precise form of the bound depending on whether g is

even or odd.

n0(k, g) =

{

1 + k + k(k − 1) + . . . + k(k − 1)(g−3)/2 if g is odd;
2(1 + (k − 1) + . . . + (k − 1)g/2−1) if g is even.

(1)

As defined by Biggs [7], the excess of a k-regular graph G is the difference |V (G)| − n0(k, g). A

(k, g)-cage with even girth g and n0(k, g) vertices is said to be a generalized polygon graph. Generalized

polygon graphs exist if and only if g ∈ {4, 6, 8, 12} [7]. The question of the construction of graphs with

small excess is a difficult one. When g = 6, the existence of a graph with n0(k, 6) = 2(k2 − k + 1)
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vertices called generalized triangle, is equivalent to the existence of a projective plane of order k − 1,

that is, a symmetric ((n0(k, 6))/2, k, 1)-design. It is known that these designs exist whenever k − 1 is

a prime power, but the existence question for other values remains unsettled. Generalized quadrangles

when g = 8, and generalized hexagons when g = 12 are also known to exist for all prime power values

of k − 1 [5, 16, 21].

Cages have been studied intensely since they were introduced by Tutte [27] in 1947. Erdős and Sachs

[10] proved the existence of a graph for any value of the regularity k and the girth g, thus most of work

carried out has been focused on constructing a smallest such graph [1, 2, 4, 6, 9, 11, 13, 15, 22, 23, 24,

28, 29]. Biggs is the author of an impressive report on distinct methods for constructing cubic cages [8].

For some time, Royle [26] kept a web-site in which all the cages known so far appear. More details about

constructions on cages can be found in the survey by Wong [29], the survey by Holton and Sheehan [17]

or on the more recent dynamic cage survey by Exoo and Jajcay [12].

It is conjectured that cages with even girth are bipartite [25, 29]. A graph is bipartite if its vertex set V
can be partitioned into two partite sets, V1 and V2, such that any edge has one end in V1 and the other in

V2. If the vertices are ordered in such a way that the vertices of V1 come first, then the adjacency matrix

of a bipartite graph can be written in the form

A =

(

0 N
N⊤ 0

)

. (2)

An incidence graph is a bipartite graph in which the elements of one part V1 are declared as lines and the

elements of the other part V2 are declared as points. The terminology for incidence graphs is geometric.

A point and a line are said to be incident if they are adjacent, thus the submatrix N of (2) is called an

incidence matrix of the bipartite graph. If the number of points and the number of lines coincide, then N
is clearly a square matrix. An incidence matrix N defines a partial plane when

- any line has at least two points, and

- two points are incident with at most one line.

Consequently, two lines of a partial plane have at most one point in common. The corresponding bipartite

graph is called the incidence graph of the partial plane, which clearly has even girth g ≥ 6. Thus for

simplicity we shall say that the partial plane has girth g/2 if and only if the corresponding incidence

graph has girth g.

Let q be a prime power and k an integer such that 3 ≤ k ≤ q. In [3], incidence matrices of (k, 6)-
bipartite graphs of order 2(kq−1) were given. In this paper we present a method to construct the incidence

matrices of k-regular bipartite graphs of girth g = 8 on 2q(kq − 1) vertices.

2 Position matrices

Let S denote a set of symbols and let A be a matrix whose elements are subsets of S. Given x ∈ S let

Px(A) be a (0, 1)-matrix of the same dimension as A that satisfies

(Px(A))ij = 1 if and only if x ∈ Aij .

Thus, Px(A) is called the position matrix of the symbol x in A. Suppose that S = {0, x1, . . . , xn}. The

position matrices of all the symbols in A different from 0 give rise to the following (0, 1)-matrix P(A)
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called position matrix of A:

[P(A)] = [Px1
(A) · · ·Pxn

(A)].

Let {A1, A2, . . . , Ar} be a family of matrices of the same number of columns whose elements are subsets

of S. Then the (0, 1)-matrix spanned by the position matrices of all of them











P(A1)
P(A2)

...

P(Ar)











=











Px1
(A1) · · · Pxn

(A1)
Px1

(A2) · · · Pxn
(A2)

...

Px1
(Ar) · · · Pxn

(Ar)











, (3)

is said to be the position matrix of the family F = {A1, A2, . . . , Ar}. The following example shows two

matrices of order 2×2 whose elements are subsets of S = {0, a, b} and the position matrix of them. From

now on, if there is no confusion the 1–sets will be indicated as integers.

MATRICES SYMBOLS

a b

A1 a a 1 1 0 0

b b 0 0 1 1

A2 {a, b} 0 1 0 1 0

0 {a, b} 0 1 0 1

(4)

As already mentioned in the Introduction, our main aim is to obtain incidence matrices of bipartite

k-regular graphs of girth 8 with small excess. Such incidence matrices may be seen also as incidence

matrices of partial planes which will be obtained by identifying row i of Pz(A
α) as line i(α), and column

j of Pz(A
α) as point j(z), for any matrix Aα ∈ F and z ∈ S − 0. To achieve our goal we propose the

following definitions.

Definition 2.1 Let g ≥ 4 be an even number. A family of matrices F = {A1, A2, . . . , Ar} of the same

number of columns whose elements are subsets of a set of symbols S is said to have girth g if the position

matrix of F is the incidence matrix of a bipartite graph of girth g.

Each matrix of (4) has girth g = ∞, and the two matrices A1, A2 form a family of girth 8.

Let us recall that a Latin square of order q is a q × q matrix with entries from a set of q symbols such

that each symbol occurs exactly once in each row and exactly once in each column. A Latin square has

clearly girth g = ∞ because the position matrices of its elements are permutation matrices yielding the

incidence matrix of a partial plane consisting in a set of parallel lines (since they have no common point).

In [3] we introduced the notion of quasi row-disjoint matrices as follows.

Definition 2.2 [3] Let A1 and A2 be two matrices of the same number of columns whose elements are

subsets of a set of symbols S such that 0 ∈ S. A pair (x, y) with x, y ∈ S belongs to the cartesian product

of any two rows (A1)i × (A2)h if and only if (x, y) ∈ (A1)ij × (A2)hj for some j. Then A1 and A2 are

said to be quasi row-disjoint if and only if the cartesian product of any two rows (A1)i, (A
2)h contains at

most one pair (x, x) ∈ (A1)i × (A2)h with x 6= 0.
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The pair of matrices of the example (4) are quasi row-disjoint matrices. Moreover, in [3] we have stated

the following theorem which roughly speaking says that a family of r matrices is quasi row-disjoint if and

only if its girth is at least 6.

Theorem 2.1 [3] Let A1 and A2 be two matrices each one of girth at least 6 of the same number of

columns and whose elements are subsets of a set of symbols S such that 0 ∈ S. Then A1 and A2 are quasi

row-disjoint if and only the family {A1, A2} has girth at least 6.

In the next theorem we give a sufficient condition for a family of matrices to have girth at least 8.

Theorem 2.2 Let F = {A1, . . . , Ar} be a set of r ≥ 2 quasi row-disjoint matrices of the same number

of columns whose elements are subsets of a set of symbols S such that 0 ∈ S. Let (Au)i, (Av)i′ , (Aw)i′′

denote any three mutually distinct rows of matrices Au, Av, Aw ∈ F . Then the girth of F is at least 8

if the sets (Au)i × (Av)i′ , (A
v)i′ × (Aw)i′′ , (A

u)i × (Aw)i′′ contains at most two distinct pairs (x, x),
(y, y) with x, y 6= 0, x, y ∈ S.

Proof: Suppose (x, x) ∈ (Au)i × (Av)i′ , x 6= 0. Therefore the position matrix of F has the following

entries equal to 1:

Px(Au)(i, j) = Px(Av)(i′, j) = 1, (5)

where Px(Au) and Px(Av) are the position matrix of the element x in Au and Av respectively. Recall

that for any given matrix Aα ∈ F and z ∈ S − 0, row i of Pz(A
α) is line i(α), and column j of Pz(A

α)
is point j(z). Consequently, (5) means that lines i(u) and i′(v) have point j(x) as a common point.

Analogously, (y, y) ∈ (Av)i′ × (Aw)i′′ , y 6= 0, is equivalent to:

Py(Av)(i′, j′) = Py(Aw)(i′′, j′) = 1,

or in other words, lines i′(v) and i′′(w) have the point j′(y) in common, with j′(y) 6= j(x) because

y 6= x. Thus if there exists z 6= 0, z 6= x, y, such that (z, z) ∈ (Au)i × (Aw)i′′ , then lines i(u) and i′′(w)
have the point j′′(z) in common, j′′ 6= j, j′, yielding that the partial plane defined by the position matrix

of F contains the triangle j(x)j′(y)j”(z). In other words, the position matrix of F is the incidence matrix

of a bipartite graph of girth less than 8. ✷

Our immediate goal is to derive a method for constructing a family of matrices with girth 8, because

the position matrix of this family will be the incidence matrix of a bipartite graph of girth 8.

3 Method

Throughout this work let [[n]] denote the set of non negative integers {0, 1, . . . , n} and (n]] = [[n]] \ {0}.

Let In be the identity matrix and denote by (t × F )In the matrix obtained from In by replacing each

one with a subset {t} × F of {t} × [[n]] for some t ∈ [[n]] and F ⊆ [[n]]. In the following theorem we

demonstrate a method for obtaining a family of matrices with girth 8 using Latin squares.

Theorem 3.1 Let q be a prime power, and let Fq be the Galois field of order q. For each u, t ∈ Fq, define

the q × q matrix Lu,t by

Lu,t(i, j) = i + uj + ut, i, j ∈ Fq.

Then the following assertions hold:
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(i) For all u, v ∈ Fq \ {0}, u 6= v, and t, t′ ∈ Fq the matrices Lu,t and Lv,t′ are quasi row-disjoint

Latin squares with entries from [[q − 1]].

(ii) For any given u, t ∈ Fq, u 6= 0, the matrix Lu,t × Lu+u−1,t has q2 distinct entries. Moreover, the

position matrix of the family

{Lu,t × Lu+u−1,t : t ∈ Fq}

is a (0, 1)-matrix of order q2 × q3 considering symbol (0, 0) different from 0, and it is the incidence

matrix of a partial plane consisting in q2 parallel lines with q points on each.

(iii) The family {Lu,t × Lu+u−1,t : u, t ∈ Fq, u 6= 0} has girth 8 and its position matrix has order

(q3 − q2) × q3 and q ones in each row and q − 1 ones in each column.

(iv) The position matrix of the family

{Lu,t × Lu+u−1,t : u, t ∈ Fq, u 6= 0} ∪ { (t × [[q − 1]])Iq : t ∈ Fq}

is the incidence matrix of a q-regular bipartite graph of girth 8 with q3 vertices in each partite set.

Proof: (i) Clearly Lu,t and Lv,t′ are q × q Latin squares on [[q − 1]]. Let us show that they are quasi

row-disjoint. Otherwise, there exists i, i′j, j′ ∈ Fq with j 6= j′ such that

Lu,t(i, j) = Lv,t′(i′, j),

Lu,t(i, j′) = Lv,t′(i′, j′).

Equivalently,

i + uj + ut = i′ + vj + vt′,
i + uj′ + ut = i′ + vj′ + vt′.

Therefore u(j − j′) = v(j − j′) implying that u = v or j = j′, a contradiction in either case.

(ii) Note that Lu+u−1,t is also a Latin square if u + u−1 6= 0, otherwise L0,t(i, j) = i. In either case it

is very easy to check that Lu,t and Lu+u−1,t are orthogonal, which implies that Lu,t × Lu+u−1,t has q2

distinct entries. Hence, the position matrix of the family {Lu,t × Lu+u−1,t : t ∈ Fq} is a (0, 1)-matrix of

order q2 × q3 by considering entry (0,0) different from 0.

Let us show now that for every i, i′, j, t, t′ ∈ Fq such that t 6= t′ we have

(Lu,t × Lu+u−1,t)(i, j) 6= (Lu,t′ × Lu+u−1,t′)(i′, j).

Otherwise we would have

i + uj + ut = i′ + uj + ut′,
i + (u + u−1)j + (u + u−1)t = i′ + (u + u−1)j + (u + u−1)t′,

implying t = t′, which is a contradiction. As a consequence, the position matrix of the set {Lu,t ×

Lu+u−1,t : t ∈ Fq} has one unique entry equal to 1 in each column. Considering the rows of this (0, 1)-
matrix as lines and the columns as points, this is equivalent to say that each point belongs to a unique line.

Thus, this (0, 1)-matrix is the incidence matrix of q2 parallel lines with q points on each.
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(iii) First, let us show that the position matrix of the family M = {Lu,t×Lu+u−1,t : u, t ∈ Fq, u 6= 0}
has q entries equal to 1 in each row and q−1 entries equal to 1 in each column. By (ii) the position matrix

of each set {Lu,t × Lu+u−1,t : t ∈ Fq} contributes with a unique 1 in each column, yielding that each

column of the position matrix of M has q − 1 entries equal to 1. Since each matrix Lu,t × Lu+u−1,t

has q2 distinct entries, then the q position matrices of symbols starting with the same x for any x ∈ Fq

contribute with one unique 1 in each row. So the position matrix of M has q entries equal to 1 in each

row. Therefore, we conclude that the position matrix of M has order (q3 − q2) × q3 and q entries equal

to 1 in each row and q − 1 entries equal to 1 in each column.

Next, let us show that the girth of M is at least 6. Otherwise, there exists u, v ∈ Fq \ {0}, u 6= v and

i, i′j, j′ ∈ Fq with j 6= j′ for which

(Lu,t × Lu+u−1,t)(i, j) = (Lv,t′ × Lv+v−1,t′)(i′, j),

(Lu,t × Lu+u−1,t)(i, j′) = (Lv,t′ × Lv+v−1,t′)(i′, j′).

This implies that Lu,t and Lv,t′ are not quasi row-disjoint, a contradiction with item (i). Thus the family

{Lu,t × Lu+u−1,t : u, t ∈ Fq, u 6= 0} has girth at least 6. Next let us show that the girth is 8 applying

Theorem 2.2. By way of contradiction assume that for three elements u, v, w of Fq \ {0} there exist three

pairwise distinct columns j, j′, j′′ for which

(Lu,t × Lu+u−1,t)(i, j) = (Lv,t′ × Lv+v−1,t′)(i′, j)

(Lv,t′ × Lv+v−1,t′)(i′, j′) = (Lw,t′′ × Lw+w−1,t′′)(i′, j′)

(Lw,t′′ × Lw+w−1,t′′)(i′′, j′′) = (Lu,t × Lu+u−1,t)(i, j′′).

(6)

Note that u, v, w must be three distinct elements because by (ii) each matrix Lu,t × Lu+u−1,t has q2

distinct entries. Then from the equality between the first coordinates we have:

(u − v)j = i′ − i + vt′ − ut;
(v − w)j′ = i′′ − i′ + wt′′ − vt′;
(w − u)j′′ = i − i′′ + ut − wt′′.

Hence

(v − u)j + (w − v)j′ = (w − u)j′′. (7)

Moreover, from equalities between the second coordinates in (6) and taking into account (7) we obtain

(v−1 − u−1)j + (w−1 − v−1)j′ = (w−1 − u−1)j′′.

Multiplying this equality by uvw we get

w(u − v)j + u(v − w)j′ = v(u − w)j′′. (8)

Multiplying (7) by w we also obtain

w(v − u)j + w(w − v)j′ = w(w − u)j′′. (9)

Thus adding both equalities (8) and (9) we have

(u − w)(v − w)j′ = (v − w)(u − w)j′′.
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Taking into account that u, v, w are mutually distinct we get that j′ = j′′ which is a contradiction. There-

fore M = {Lu,t × Lu+u−1,t : u, t ∈ Fq, u 6= 0} has girth 8 as claimed.

(iv) By (iii) and applying Theorem 2.2, we only need to prove that for all u, v ∈ Fq \ {0} with u 6= v,

any three matrices Lu,t × Lu+u−1,t, Lv,t′ × Lv+v−1,t′ and (t′′ × [[q − 1]])Iq have girth 8. Otherwise we

would have
Lu,t × Lu+u−1,t(i, j) = Lv,t′ × Lv+v−1,t′(i′, j)

Lv,t′ × Lv+v−1,t′(i′, j′) ∈ (t′′ × [[q − 1]])Iq(j
′, j′)

Lu,t × Lu+u−1,t(i, j′) ∈ (t′′ × [[q − 1]])Iq(j
′, j′)

Then Lu,t(i, j) = Lv,t′(i′, j) and Lu,t(i, j′) = Lv,t′(i′, j′) = t′′, meaning that Lu,t and Lv,t′ are not

quasi row-disjoint, contradicting item (i). Further, by (iii, we know that the position matrix of {Lu,t ×

Lu+u−1,t : u, t ∈ Fq, u 6= 0} has q ones in each row and q − 1 ones in each column. Since the rows of

the position matrix of (t × [[q − 1]])Iq contributes with one additional one, then the result follows. ✷

To illustrate the method of Theorem 3.1, both the matrices provided by this theorem and their position

matrix for the first case q = 2 are shown in Table 1. From now on, if there is no confusion an entry (x, y)
will be denoted as xy. Thus this (0,1)-matrix is the incidence matrix of a 2-regular graph of girth 8, which

consists of two cycles of girth 8. In Table 2 the matrices for q = 3 are also depicted. The corresponding

position matrix is the incidence matrix of a 3-regular graph of girth 8 on 27 vertices in each partite set.

Table 3 contains the matrices for q = 4. Their position matrix is the incidence matrix of a 4-regular

bipartite graph on 64 vertices in each partite set.

MATRICES SYMBOLS
00 01 10 11

L1,0 × L0,0 00 10 1 0 0 0 0 1 0 0
11 01 0 0 0 1 0 0 1 0

L1,1 × L0,1 10 00 0 1 0 0 1 0 0 0
01 11 0 0 1 0 0 0 0 1

(0 × [[1]])I2 {00, 01} 0 1 0 1 0 0 0 0 0
0 {00, 01} 0 1 0 1 0 0 0 0

(1 × [[1]])I2 {10, 11} 0 0 0 0 0 1 0 1 0
0 {10, 11} 0 0 0 0 0 1 0 1

Tab. 1: Case q = 2.

Let us call array of r symbols and n columns the matrix of order r × n

Or,n =











1 · · · 1
2 · · · 2
...

...
...

r · · · r











.

When r = n the array is denoted by On. It is easy to see that the position matrix of Or,n is the incidence

matrix of a partial plane consisting in r parallel lines, each one having n points. Using the position

matrices of these arrays denoted by P(Or,n) and applying Theorem 3.1, we now present the method for

constructing the desired (k, 8)-bipartite graphs.



40 Camino Balbuena

L1,t × L2,t L2,t × L1,t (t × [[2]])I3

00 12 21 00 21 12 {00, 01, 02} 0 0
t=0 11 20 02 11 02 20 0 {00, 01, 02} 0

22 01 10 22 10 01 0 0 {00, 01, 02}
12 21 00 21 12 00 {10, 11, 12} 0 0

t=1 20 02 11 02 20 11 0 {10, 11, 12}
01 10 22 10 01 22 0 0 {10, 11, 12}
21 00 12 12 00 21 {20, 21, 22} 0 0

t=2 02 11 20 20 11 02 0 {20, 21, 22} 0
10 22 01 01 22 10 0 0 {20, 21, 22}

Tab. 2: Matrices for the case q = 3.

L1,t × L0,t L2,t × L1,t L3,t × L1,t (t × [[3]])I4

00 10 20 30 00 21 32 13 00 31 12 23 {00, 01, 02, 03} 0 0 0
11 01 31 21 11 30 23 02 11 20 03 32 0 {00, 01, 02, 03} 0 0

t=0 22 32 02 12 22 03 10 31 22 13 30 01 0 0 {00, 01, 02, 03} 0
33 23 13 03 33 12 01 20 33 02 21 10 0 0 0 {00, 01, 02, 03}
10 00 30 20 21 00 13 32 31 00 23 12 {10, 11, 12, 13} 0 0 0

t=1 01 11 21 31 30 11 02 23 20 11 32 03 0 {10, 11, 12, 13} 0 0
32 22 12 02 03 22 31 10 13 22 01 30 0 0 {10, 11, 12, 13} 0
23 33 03 13 12 33 20 1 02 33 10 21 0 0 0 {10, 11, 12, 13}
20 30 00 10 32 13 00 21 12 23 00 31 {20, 21, 22, 23} 0 0 0
31 21 11 01 23 02 11 30 03 32 11 20 0 {20, 21, 22, 23} 0 0

t=2 02 12 22 32 10 31 22 03 30 01 22 13 0 0 {20, 21, 22, 23} 0
13 03 33 23 01 20 33 12 21 10 33 02 0 0 0 {20, 21, 22, 23}
30 20 10 00 13 32 21 00 12 23 00 31 {30, 31, 32, 33} 0 0 0

t=3 21 31 01 11 02 23 30 11 03 32 11 20 0 {30, 31, 32, 33} 0 0
12 02 32 22 31 10 03 22 30 01 22 13 0 0 {30, 31, 32, 33} 0
03 13 23 33 20 01 12 33 21 10 33 02 0 0 0 {30, 31, 32, 33}

Tab. 3: Matrices for the case q = 4.

Theorem 3.2 Let q be a power prime, and let Fq be the Galois field of order q. For each u, t ∈ Fq, u 6= 0,

let Lu,t be the matrix Lu,t(i, j) = i + uj + ut, i, j ∈ Fq, and let M be the position matrix of the family

{Lu,t × Lu+u−1,t : u, t ∈ Fq, u 6= 0} ∪ { (t × [[q − 1]])Iq : t ∈ Fq}.

Then the following assertions hold:

(i) The (0, 1)-matrix

M P(Oq2,q)
⊤ (10)

is the incidence matrix of a bipartite graph of girth 8 with q3 + q2 vertices in one partite set having

degree q + 1, and q3 vertices in the other partite set having degree q.
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(ii) Let (Lu,t × Lu+u−1,t)0 denote the matrix obtained from Lu,t × Lu+u−1,t by replacing each entry

0x with 0 for all x ∈ Fq. Let M0 be the position matrix of the family

{(Lu,t × Lu+u−1,t)0 : u, t ∈ Fq, u 6= 0} ∪ { (t × [[q − 1]])Iq : t ∈ Fq, t 6= 0}.

Then

M0 P(Oq2−q,q)
⊤

[0]
(11)

is the incidence matrix of a q-regular bipartite graph of girth 8 with q3 − q vertices in each partite

set.

(iii) Let k be an integer such that 3 ≤ k ≤ q − 1 and let (Lu,t × Lu+u−1,t)q−k denote the matrix

obtained from Lu,t ×Lu+u−1,t by replacing with 0 the entries 0y and (x, x + s) for all x, y, s ∈ Fq

for s = 0, . . . , q − 1 − k. Let Mq−k be the position matrix of

{(Lu,t×Lu+u−1,t)q−k : u = 1, . . . , k−1}∪{ (t×([[q−1]]\{t, t+1, . . . , t+q−1−k}))Iq : t 6= 0}.

Suppose that the q columns of Okq−q,q are indexed by j ∈ Fq. Let O∗
kq−q,q be the matrix obtained

from Okq−q,q by changing for 0 the entries (i,−u2s) for all u = 1, . . . , k−1, i = (u−1)q+1, . . . , uq
and s = 0, . . . , q − 1 − k. Then

Mq−k P(O∗
kq−q,q)

⊤

[0]
(12)

is the incidence matrix of a k-regular bipartite graph of girth 8 with kq2 − q vertices in each partite

set.

Proof: (i) From Theorem 3.1, it follows that M is the incidence matrix of a bipartite graph of girth 8

with q3 lines and q3 points. Thus we need to prove that the q2 columns of P(Oq2,q)
⊤ can be added to

M without decreasing the girth 8. It is readily seen that after adding these columns, the girth is at least

6, because by Theorem 3.1, for each u ∈ Fq \ {0} the set {Lu,t × Lu+u−1,t : t ∈ Fq, } consists of q2

parallel lines. Thus suppose that (10) contains as a sub-matrix the incidence matrix of a cycle of length 6.

Then there exists u, v ∈ Fq \ {0} and i, i′, i′′, j, j′ ∈ Fq with u 6= v, i 6= i′ and j 6= j′ such that

(Lu,t × Lu+u−1,t)(i, j) = (Lv,t′ × Lv+v−1,t′)(i′′, j),

(Lu,t × Lu+u−1,t)(i′, j′) = (Lv,t′ × Lv+v−1,t′)(i′′, j′).

From the equalities between their coordinates we obtain

i − i′ + u(j − j′) = v(j − j′),
i − i′ + (u + u−1)(j − j′) = (v + v−1)(j − j′).

Hence u−1(j − j′) = v−1(j − j′), implying u = v or j = j′, a contradiction in either case. Further if

(Lu,t×Lu+u−1,t)(i, j) ∈ (t′× [[q−1]]Iq)(i
′′, j), and (Lu,t×Lu+u−1,t)(i′, j′) ∈ (t′× [[q−1]]Iq)(i

′′, j′),
then then i′′ = j = j′ which is also a contradiction.
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MATRICES SYMBOLS
10 11 12 20 21 22

0 12 21 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
11 20 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
22 0 10 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
12 21 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
20 0 11 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 10 22 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
21 0 12 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 11 20 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
10 22 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 21 12 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
11 0 20 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
22 10 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
21 12 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 20 11 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
10 0 22 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
12 0 21 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
20 11 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 22 10 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

{10, 11, 12} 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 {10, 11, 12} 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 {10, 11, 12} 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

{20, 21, 22} 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 {20, 21, 22} 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 {20, 21, 22} 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0

Tab. 4: Case q = 3 for (ii) of Theorem 3.2. Incidence matrix of a (3,8)-graph on 48 vertices.

(ii) This item follows directly from the fact that M0 is a sub-matrix of M obtained by deleting the

first q2 columns, which correspond to the position of the symbols starting by 0. Hence M0 has q3 − q2

columns. Moreover, the total number of rows of M0 is the number of matrices Lu,t × Lu+u−1,t, (that is,

(q − 1)q) plus the number of matrices (t × ([[q − 1]]))Iq, t 6= 0, (a total of q − 1) multiplied by q, that

is, q(q2 − q + q − 1) = q3 − q. Thus M0 is a matrix of order (q3 − q) × (q3 − q2). Since P(Oq2−q,q)
⊤

contributes with q2−q more columns, then (11) is a square matrix of order q3−q. Reasoning as in (iii) of

Theorem 3.1, we obtain that (11) is the incidence matrix of a bipartite graph of girth 8, which has q3 − q
columns and q3 − q rows both having q ones, so this item is valid. By way of example, both the matrices

provided by this item (ii) and their position matrix for the case q = 3 are shown in Table 4. Thus this

(0,1)-matrix is the incidence matrix of a 3-regular graph of girth 8 on 24 vertices in each partite set.

(iii) Note that (12) is a sub-matrix of (10), then it is the incidence matrix of a bipartite graph of girth 8.

Moreover, Mq−k is obtained from M by deleting the first q2 columns which corresponds to the position

matrix of symbols starting by 0, and by deleting also (q − k)(q − 1)q columns corresponding to the

symbols (x + s, x + 2s) for all s = 0, 1, . . . , q − 1 − k which have been changed for 0. Then the total

number of columns of Mq−k is

q3 − q2 − (q − k)(q − 1)q = kq(q − 1).

The total number of rows of Mq−k is given by the number of matrices (Lu,t × Lu+u−1,t)q−k, u =
1, . . . , k− 1, t ∈ Fq, plus the number of matrices (t× ([[q− 1]]\ {t, t+1, . . . , t+ q− 1−k}))Iq : t 6= 0,

t 6= 0, (a total of q − 1) multiplied by q, that is

(k − 1)q2 + (q − 1)q = kq2 − q.
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Thus Mq−k is a matrix of order (kq2 − q) × (kq2 − kq). Since P(O∗
kq−q,q)

⊤ contributes with kq − q

more columns, then (12) is a square matrix of order kq2 − q.

To finish the proof of this item, we only need to show that (12) has k ones in each row and k ones in

each column. To see this, let us show that given a fixed s = 0, 1, . . . , q − 1 − k, the entries (y, y + s) for

all y ∈ Fq, are in the same column of each matrix Lu,t × Lu+u−1,t. Suppose Lu,t × Lu+u−1,t(i, j) =
(y, y + s), that is

i + uj + ut = y, and i + (u + u−1)j + (u + u−1)t = y + s.

Then u−1(j + t) = s, which implies j = us − t. Thus our claim is true since the symbols (y, y + s)

are placed in the same column us − t of the matrix Lu,t × Lu+u−1,t. Therefore, after changing for 0 the

symbols 0x and (y, y+s) for all x, y ∈ Fq and for all s = 0, . . . , q−1−k we obtain a new matrix having

k entries different from 0 in the rows i such that i + u2s = 0, and in the remaining rows k − 1 entries

different from 0. Since in the rows i of P(O∗
qk−q,q)

⊤ such that i + u2s 6= 0 there is a 1 by hypothesis,

then P(O∗
qk−q,q)

⊤ contributes with one additional entry equal to 1 in the same rows as those having k−1

entries different from 0. Hence (12) is a square matrix of order kq2 − q having k ones in each row and

clearly in each column.

By way of example, both the matrices provided by this item (iii) and their position matrix for the case

q = 4 and k = 3 are shown in Table 5; and the corresponding matrices for q = 5 and k = 3 are shown in

Table 6. Thus, these (0,1)-matrices are the incidence matrix of a 3-regular graph of girth 8 on 44 vertices

in each partite set for q = 4 and 70 vertices in each partite set for q = 5. ✷

4 Conclusion

For q a prime power and 3 ≤ k ≤ q we have presented a method providing the incidence matrices of

k-regular bipartite graphs of girth 8 with kq2 − q vertices in each partite set. Thus if n(k, 8) denotes the

order of a (k, 8)-cage, it follows from (1) that

2k(k2 − 2k + 2) ≤ n(k, 8) ≤ 2q(kq − 1).

Hence the q-regular bipartite graphs constructed in this work have an excess of 4q2−6q. And the (q−1)-
regular bipartite graphs have an excess of 8q2 − 20q + 10.

As regards to known upper bounds on n(k, g), Lazebnik, Ustimenko and Woldar [19] gave the following

result: Let k ≥ 2 and g ≥ 5 be integers, and let q denote the smallest odd prime power for which k ≤ q.

Then,

n(k, g) ≤ 2kq
3

4
g−a , (13)

where a = 4, 11/4, 7/2, 13/4 for g ≡ 0, 1, 2, 3 (mod 4), respectively. According to (13), n(k, 8) ≤ 2kq2,

therefore the graphs provided by our method also improve this result for g = 8. A construction giving

this upper bound (13) for g = 8 appeared for the first time in [18] and was used later in [14] and probably,

the simplest exposition of it is in Section 2.4 of [20]. In [15], (q, 8)-graphs with 2q(q2 − 2) vertices were

constructed using geometrical techniques. But for regularities k < q the graphs constructed in this paper

have the smallest number of vertices among the known regular graphs with girth 8.
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SYMBOLS
10 12 13 20 21 23 30 31 32

0 10 20 30 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 31 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 32 0 12 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
0 23 13 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
10 0 30 20 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 21 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
32 0 12 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
23 0 0 13 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
20 30 0 10 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 12 0 32 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
13 0 0 23 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
30 20 10 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
12 0 32 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 13 23 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 21 32 13 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 30 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 10 31 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 12 0 20 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
21 0 13 32 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
30 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 31 10 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
12 0 20 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
32 13 0 21 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
23 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
10 31 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 20 0 12 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
13 32 21 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 23 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
31 10 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
20 0 12 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

{10, 12, 13} I4 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

{20, 21, 23} I4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

{30, 31, 32} I4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0

Tab. 5: Case q = 4 for k = 3 of Theorem 3.2 (iii). Incidence matrix of a (3,8)-graph on 88 vertices.

t=0 t=1 t=2 t=3 t=4

0 0 24 31 43 0 24 31 43 0 24 31 43 0 0 31 43 0 0 24 43 0 0 24 31

0 0 30 42 0 0 30 42 0 0 30 42 0 0 0 42 0 0 0 30 0 0 0 30 42

u=1 0 0 41 0 10 0 41 0 10 0 41 0 10 0 0 0 10 0 0 41 10 0 0 41 0

0 0 0 14 21 0 0 14 21 0 0 14 21 0 0 14 21 0 0 0 21 0 0 0 14

0 0 13 20 32 0 13 20 32 0 13 20 32 0 0 20 32 0 0 13 32 0 0 13 20

0 20 0 10 30 20 0 10 30 0 0 10 30 0 20 10 30 0 20 0 30 0 20 0 10

u=2 0 31 0 21 41 31 0 21 41 0 0 21 41 0 31 21 41 0 31 0 41 0 31 0 21

0 42 0 32 0 42 0 32 0 0 0 32 0 0 42 32 0 0 42 0 0 0 42 0 32

0 0 0 43 13 0 0 43 13 0 0 43 13 0 0 43 13 0 0 0 13 0 0 0 43

0 14 0 0 24 14 0 0 24 0 0 0 24 0 14 0 24 0 14 0 24 0 14 0 0

{10, 13, 14} I5 {20, 21, 24} I5 {30, 31, 32} I5 {41, 42, 43} I5

O∗

10,5
=

0 1 1 1 0

0 2 2 2 0

0 3 3 3 0

0 4 4 4 0

0 5 5 5 0

0 0 6 6 6

0 0 7 7 7

0 0 8 8 8

0 0 9 9 9

0 0 10 10 10

Tab. 6: Matrices for q = 5 and k = 3 according to Case (iii) of Theorem 3.2.
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