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We introduce weighted regular tree grammars with storage as combination of (a) regular tree grammars with storage
and (b) weighted tree automata over multioperator monoids. Each weighted regular tree grammar with storage gen-
erates a weighted tree language, which is a mapping from the set of trees to the multioperator monoid. We prove
that, for multioperator monoids canonically associated to particular strong bimonoids, the support of the generated
weighted tree languages can be generated by (unweighted) regular tree grammars with storage. We characterize the
class of all generated weighted tree languages by the composition of three basic concepts. Moreover, we prove results
on the elimination of chain rules and of finite storage types, and we characterize weighted regular tree grammars with
storage by a new weighted MSO-logic.

Keywords: regular tree grammars, weighted tree automata, multioperator monoids, storage types, weighted MSO-
logic

1 Introduction
In automata theory, weighted string automata with storage are a very recent topic of research [HV15,
HV16, VDH16]. This model generalizes finite-state string automata in two directions. On the one hand, it
is based on the concept of “sequential program + machine”, which Scott [Sco67] proposed in order to har-
monize the wealth of upcoming automaton models. Each of them has a finite control (sequential program)
and allows to control computations by means of some storage (machine), like pushdown, stack, nested-
stack, or counter. The storage contains configurations which can be tested by predicates and transformed
by instructions. On the other hand, finite-state automata have been considered in a weighted setting in
order to investigate quantitative aspects of formal languages [Eil74, SS78, KS86, BR88, Sak09, DKV09].
Weighted automata have been defined over several weight structures such as semirings [Eil74], strong
bimonoids [DSV10, CDIV10, DV12], and valuation monoids [DM10, DM11, DM12]. In [DV13, DV14]
weighted pushdown automata were investigated where the weights are taken from a unital valuation
monoid. The automata studied in [HV15, VDH16] are weighted string automata with arbitrary storage
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in which the weights are taken from unital valuation monoids. In [HV16] weighted symbolic automata
with data storage were introduced, which cover weighted string automata with storage and, e.g., weighted
visibly pushdown automata and weighted timed automata.

Finite-state tree automata and regular tree grammars generalize finite-state string automata and regular
grammars, respectively (cf. [Eng75, GS84, GS97] for surveys(i)). Also for tree automata and tree gram-
mars there is a rich tradition of adding storages, like pushdown tree automata [Gue83] and tree pushdown
automata [SG85]. In [Eng86] the general concept of regular tree S grammar was introduced, where S
is an arbitrary storage type, e.g., iterated pushdown [Eng86, EV86, EV88]. Moreover, tree automata and
tree grammars have also been considered in a weighted setting, in particular, for commutative semirings
[AB87], for continuous semirings [ÉK03], for complete distributive lattices [ÉL07], for fields [BR82], for
tree valuation monoids [DGMM11], and multioperator monoids [Kui99, Mal04, SVF09]. For a survey on
weighted tree automata we refer to [FV09].

In this paper we investigate the combination of both generalizations of regular tree grammars, and we
introduce weighted regular tree grammars with storage. We consider an arbitrary storage type S with
configurations, predicates, and instructions. The generated trees are built up over some ranked alphabet
Σ. The weights are taken from a complete multioperator monoid K, which is a commutative monoid
(K,+, 0) with a set of operations on K. We call such a device an (S,Σ,K)-regular tree grammar, for
short: (S,Σ,K)-rtg. Each rule of an (S,Σ,K)-rtg G has one of the following two forms:

A(p)→ σ(A1(f1), . . . , Ak(fk)) (1)
A(p)→ B(f) (2)

where A, A1, . . ., Ak, and B are nonterminals, σ is a terminal in Σ, p is a predicate of S, and f , f1, . . .,
fk are instructions of S. We call rules of type (2) chain rules. Each rule is equipped with an operation on
K, of which the arity is the rank of the symbol σ (for rules of type (1)) or one (otherwise).

The semantics of G is based on the concept of derivation tree. A derivation tree d is a parse tree
for derivations of G in the sense of [GTWW77, Sect. 3.1] (where we view G as a context-free grammar
with extra symbols for parentheses and comma; cf., e.g., [Eng75, Def. 3.18]). Figure 1 without the
grey shaded part shows an example of a derivation tree. Each position of d is labeled by a rule of G,
and the nonterminals occurring in the right-hand side match with the nonterminals in the left-hand sides
of the children. In addition, there is a requirement which refers to the storage type. To each position
of d a storage configuration is associated (cf. the grey part of Figure 1): the root is associated with
the initial configuration c0 of S, and the other configurations are computed successively by applying
the corresponding instructions fi. Moreover, at each position, the predicate of the local rule has to be
satisfied. From the viewpoint of attribute grammars [Knu68], one can consider G as an attribute grammar
with one inherited attribute (cf. [Eng86, Sect. 1.2] for a discussion of this viewpoint). Each derivation
tree represents a derivation of a terminal tree where this latter is obtained by reading off the terminal
symbols from the rules of type (1) and disregarding rules of type (2). For instance, the derivation tree
in Figure 1 represents a derivation of the terminal tree σ(γ(α), β). By composing the operations which
are associated to the rules we obtain an element in K and we call it the weight of that derivation tree.
Finally, by summing up, in the monoid (K,+, 0) the weights of all derivation trees of a terminal tree, we
obtain the weight of that terminal tree. We call the mapping, which takes a terminal tree to its weight, the
weighted tree language generated by G.
(i) We use the numbering in the arXiv-version of [GS84] published in 2015.
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A(p)→ σ(B(f1), C(f2))

B(p1)→ γ(D(f4))

D(p2)→ α

C(p3)→ E(f3)

E(p4)→ β

Fig. 1: An example of a derivation tree, where c1 = f1(c0), c2 = f4(f1(c0)), c3 = f2(c0), and c4 = f3(f2(c0)).

Two special cases of weighted regular tree grammars with storage are obtained by (i) choosing S to be
the trivial storage type TRIV and (ii) choosing K to be the Boolean multioperator monoid B. The trivial
storage type contains exactly one configuration and, hence, essentially no information can be stored. Thus,
for every multioperator monoid MK associated to a semiring K, (TRIV,Σ,MK)-rtgs are extensions of
K-weighted regular tree grammars of [AB87] (because in [AB87] there are no chain rules). The Boolean
multioperator monoid B is an extension of the monoid ({0, 1},∨, 0) of truth values with disjunction as
binary operation. The extension amounts to equip this monoid with an n-ary conjunction for each n ∈ N.
If K = B, then such grammars are essentially (unweighted) regular tree grammars with storage [Eng86].

The reader might wonder why each rule of an (S,Σ,K)-rtg has either zero or one terminal, and not
an arbitrary number of terminals (as it is usual for regular tree grammars). On the one hand, there is no
technical problem to define such generalized (S,Σ,K)-rtgs. On the other hand, the proofs of most of
our results are based on the restricted form of rules (as in case of regular tree grammars [Bra69, GS84,
GS97]). To achieve a normal form lemma which takes a generalized (S,Σ,K)-rtg and transforms it into
an equivalent (S,Σ,K)-rtg requires rather technical conditions (in fact restrictions) on the M-monoid
(the operation of the original rule has to be decomposed into approriate operations). Thus we refrain from
dealing with generalized (S,Σ,K)-rtgs. Indeed, our (S,Σ,K)-rtgs might also be called weighted tree
automata with ε-moves (and storage).

In this paper we start to develop a theory of the class of weighted tree languages generated by (S,Σ,K)-
rtg. In Section 3, after introducing our new grammar model, we show that (S,Σ,B)-rtgs have the same
power as (TRIV,Σ,B)-rtgs assuming that S is a finite storage type containing the always true predicate
and the identity instruction.

In Section 4 we prove that the supports of (S,Σ,K)-regular tree languages are (S,Σ,B)-regular pro-
vided that K is associated to a complete, zero-sum free, and commutative strong bimonoid. For the proof
we employ the approach and the technique of [Kir11].

In Section 5 we deal with two decompositions of the weighted tree language generated by an (S,Σ,K)-
rtg. First, we represent every (S,Σ,K)-regular tree language as the composition of some particular
mapping B∆ and some (TRIV,Θ,K)-regular tree language. The mapping B∆ is based on the concept
of storage behaviour of S: roughly speaking, it enriches each terminal tree with a possible behaviour of
S. This result was inspired by the decomposition of CFT(S)-transducers into an approximation and a
macro tree transducer in [EV86, Thm. 3.26]. Our second result is based on [DV13, Lm. 3 and Lm. 4] and
shows that the weights of an (S,Σ,K)-rtg can be encoded into an alphabetic mapping, which is applied
to an unambiguous, chain-free (S,Θ,B)-rtg. As a consequence of this and the fact that finite storage can
be eliminated from (S,Σ,B)-rtgs, we can prove that one can drop finite storage types from (S,Σ,K)-
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rtgs (for arbitrary K) without loosing power. Finally, we combine the two decomposition results and
obtain a characterization of the class of (S,Σ,K)-regular tree languages in terms of three simple and
basic components: the mapping B∆, an unambiguous and chain-free (TRIV,Θ,B)-rtg, and an alphabetic
mapping. We illustrate the decomposition results by showing an example in detail.

In Section 6 we show that, even for the Boolean multioperator monoid, chain rules increase the power
of (weighted) regular tree grammars with storage. Moreover, we study under which restrictions on the
multioperator monoid K chain rules can be eliminated from (S,Σ,K)-rtgs.

In Section 7 we prove a characterization of (S,Σ,K)-regular tree languages in terms of weighted
monadic second order logic (MSO). For this, we introduce a weighted MSO-logic with storage behaviour
based on M-expressions of [FSV12, FV18] and on the MSO-logic introduced in [VDH16]. However, our
new logic generalizes the weighted MSO-logic with storage behaviour of [VDH16] by considering trees
as models and by allowing chain rules.

Apart from Section 7 we have tried to write the paper in such a way that it is self-contained. In Section
7 we have given detailed references to the literature where the reader can find the relevant definitions.
Readers who are familiar with algebraic structures (like semirings and multioperator monoids) and con-
cepts concerning trees (like tree transformations, weighted tree languages, and term rewriting systems)
can skip Sections 2.2 and 2.3 on first reading and consult them later if necessary.

2 Preliminaries
2.1 Notations
We denote the set {0, 1, 2, . . .} of natural numbers by N and the set {1, 2, . . .} by N+. For every n ∈ N
we define [n] = {1, . . . , n}.

Let A1, A2 be two sets and let a = (a1, a2) ∈ A1 × A2. Then, for each i ∈ [2], the i-th projection of
a, denoted by pri(a), is defined by pri(a) = ai.

Let A be a set. Then A∗ denotes the set of all finite sequences over A including the empty sequence
denoted by ε. We denote the set of all subsets of A by P(A). Moreover, we denote by idA the identity
mapping over A. If A contains exactly one element, then sometimes A is identified with that element. For
every B, C ⊆ A∗ we let BC = {bc | b ∈ B, c ∈ C}.

Let u, w ∈ A∗. Wey say that u is a prefix of w, denoted by u � w, if there is a v ∈ A∗ with uv = w.
Moreover, for every a ∈ A we denote by |w|a the number of occurrences of a in w.

A set is countable if its cardinality coincides with that of a subset of the natural numbers.

2.2 Algebraic structures
We recall the concept of strong bimonoids and semirings from [DSV10, CDIV10] and [HW98, Gol99,
Eil74], respectively, and that of multioperator monoids from [Kui99].

A monoid (K,+, 0) is commutative if a + b = b + a, zero-sum free if a + b = 0 implies a = b = 0,
and idempotent if a + a = a for every a, b ∈ K. Moreover, K is complete if it has a sum operation∑
I : KI → K for each countable index set I which coincides with + when I is finite (for the axioms

cf. [Eil74, p. 124]).
A strong bimonoid [DSV10, CDIV10] is an algebra (K,+, ·, 0, 1), where (K,+, 0) is a commutative

monoid, (K, ·, 1) is a monoid, and 0 · a = a · 0 = 0 for each a ∈ K. We assume that 0 6= 1. We call
K commutative if (K, ·, 1) is commutative. The strong bimonoid K is called a semiring if a · (b + c) =
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a · b+ a · c and (b+ c) · a = b · a+ c · a for every a, b, c ∈ K. We refer to [DSV10, Ex. 1] for a number
of examples of strong bimonoids, e.g., each bounded lattice is a strong bimonoid.

A semiring (K,+, ·, 0, 1) is complete if the monoid (K,+, 0) is complete and the generalized distribu-
tivity law holds for infinite sums (cf. [Eil74, p. 124]). The semiring ({0, 1},∨,∧, 0, 1) is called the
Boolean semiring, where 0 and 1 stand for ‘false’ and ‘true’; and ∨ and ∧ are the usual disjunction and
conjunction of truth values, respectively. The Boolean semiring and the semiring (N∞,+, ·, 0, 1) with
N∞ = N∪{∞} and the natural extension of + to N∞ are complete (cf. [ÉL02, Example 1],[Eil74, Chap.
VI, Sec. 2]).

Let k ∈ N andK be a set. We denote the set of all k-ary operations (all operations) onK by Ops(k)(K)

(resp. Ops(K)). For every k ∈ N, the k-ary constant zero function 0k ∈ Ops(k)(K) is defined by
0k(a1, . . . , ak) = 0 for every a1, . . . , ak ∈ K. For a set Ω ⊆ Ops(K) we define Ω(k) = Ω∩Ops(k)(K).

A multioperator monoid (for short: M-monoid) [Kui99, Mal04, SVF09] is a tuple (K,+, 0,Ω) such
that (K,+, 0) is a commutative monoid and {0k | k ∈ N} ⊆ Ω ⊆ Ops(K). Moreover, we require that
for every k ∈ N, each operation ω ∈ Ω(k) is absorptive, which means that for every a1, . . . , ak ∈ K,
and i ∈ [k], the equality ai = 0 implies ω(a1, . . . , ak) = 0. We note that in [SVF09, FSV12] such
an M-monoid was called absorptive. An M-monoid (K,+, 0,Ω) is called complete if (K,+, 0) has this
property. For instance, the structure (N ∪ {∞},+, 0,Ω) is a complete M-monoid, where + is extended to
sum over countable index sets in the obvious way, Ω = {0k | k ∈ N} ∪ {mink | k ∈ N}, and mink is the
k-ary minimum function (both extended to N ∪ {∞}).

The M-monoid ({0, 1},∨, 0,Ω) is called the Boolean M-monoid, denoted by B, where for every k ∈
N, we have Ω(k) = {0k, allk,1} and for every a1, . . . , ak ∈ {0, 1}, we have allk,1(a1, . . . , ak) = 1
if and only if a1 = . . . = ak = 1. Then B, equipped with the the operations

(∨
I : {0, 1}I →

{0, 1} | I is a countable index set
)
, is a complete M-monoid, where for every I and f ∈ {0, 1}I , we

have
∨
I(f) = 1 if there is an i ∈ I with f(i) = 1, and 0 otherwise.

To every strong bimonoid (K,+, ·, 0, 1) we associate the M-monoid (MK ,+, 0,Ω), where MK = K
and Ω(k) = {mulk,a | a ∈ K} and mulk,a(a1, . . . , ak) = a1 · . . . · ak · a for every a1, . . . , ak ∈ K.
(Note that mulk,0 = 0k for every k ≥ 0.) The corresponding construction for semirings can be found
in [FMV09, Def. 8.5] and [FSV12, page 261]. Note that the Boolean M-monoid is equal to the M-monoid
associated to the Boolean semiring.

For the remainder of the paper, ifK is left unspecified, then it stands for an arbitrary complete
M-monoid (K,+, 0,Ω).

2.3 Trees, tree transformations, weighted tree languages, and term rewriting
systems

By an alphabet we mean a finite, non-empty set. A ranked alphabet is an alphabet Σ together with a
mapping rkΣ : Σ → N; the natural number rkΣ(σ) is called the rank of σ. For every k ∈ N we let
Σ(k) = rk−1

Σ (k). To avoid obvious cases, we assume that Σ(0) 6= 0. If σ ∈ Σ(k), i.e., the rank of
σ is k, then we write briefly σ(k). We denote the maximal rank which occurs in Σ, i.e., the number
max{k | Σ(k) 6= ∅}, by maxrk(Σ).

Let Σ be a ranked alphabet and H be a set. The set of trees over Σ indexed by H , denoted by TΣ(H),
is the smallest set T such that (i) H ⊆ T and (ii) for every k ∈ N, σ ∈ Σ(k), and ξ1, . . . , ξk ∈ T
also σ(ξ1, . . . , ξk) ∈ T . We abbreviate TΣ(∅) by TΣ. Also, for σ ∈ Σ(1) and ξ ∈ TΣ we abbreviate
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σ(. . . σ(ξ) . . .) with n occurrences of σ by σn(ξ). For each σ ∈ Σ(0) we abbreviate σ() by σ. We note
that each ξ ∈ TΣ has the form σ(ξ1, . . . , ξk) for some k ∈ N, σ ∈ Σ(k), and ξ1, . . . , ξk ∈ TΣ.

We define the mappings pos : TΣ → P(N∗), path : TΣ → P(Σ∗), and height : TΣ → N by induction
on the structure of their argument. For this, let ξ = σ(ξ1, . . . , ξk) in TΣ. If k = 0, then we let pos(ξ) =
{ε}, path(ξ) = {σ}, and height(ξ) = 1. If k ≥ 1, then we let pos(ξ) = {ε} ∪ {iw | i ∈ [k], w ∈
pos(ξi)}, path(ξ) =

⋃
i∈[k]{σw | w ∈ path(ξi)}, and height(ξ) = 1 + max{height(ξi) | i ∈ [k]}. We

call pos(ξ) the set of positions in ξ and denote the cardinality of pos(ξ) by size(ξ). Moreover, we can
define the lexicographic order ≤lex on pos(ξ) as usual.

Let ξ ∈ TΣ. For every w ∈ pos(ξ), we define the label ξ(w) ∈ Σ of ξ at position w and the subtree
ξ|w ∈ TΣ of ξ at position w in the usual way (cf. e.g. [FSV12]). Moreover, we abbreviate rkΣ(ξ(w)) by
rkξ(w). For every Θ ⊆ Σ, we let posΘ(ξ) = {w ∈ pos(ξ) | ξ(w) ∈ Θ}.

Let Σ and ∆ be two ranked alphabets. A tree transformation from Σ to ∆ is a mapping τ : TΣ →
P(T∆). Tree relabelings are particular tree transformations. For their definition, let τ : Σ → P(∆) be a
mapping such that τ(σ) ⊆ ∆(k) for every k ≥ 0 and σ ∈ Σ(k). This mapping is extended to a mapping
τ ′ : TΣ → P(T∆) by defining inductively

τ ′(σ(ξ1, . . . , ξk)) = {γ(ζ1, . . . , ζk) | γ ∈ τ(σ), ζ1 ∈ τ ′(ξ1), . . . , ζk ∈ τ ′(ξk)}

for every k ≥ 0, σ ∈ Σ(k), and ξ1, . . . , ξk ∈ TΣ. Obviously, τ ′(σ(ξ1, . . . , ξk)) is a finite set. Next we
extend τ ′ to a mapping τ ′′ : P(TΣ) → P(T∆) by defining τ ′′(L) = {ζ ∈ T∆ | ζ ∈ τ ′(ξ), ξ ∈ L} for
every L ∈ P(TΣ). We call τ ′ and τ ′′ the tree relabeling induced by τ . In the sequel we will drop the
primes from τ ′ and τ ′′.

For the remainder of the paper, if Σ is unspecified, then it stands for an arbitrary ranked
alphabet.

We call each mapping s : TΣ → K a weighted tree language. The support of s is defined by the
formula supp(s) = {ξ ∈ TΣ | s(ξ) 6= 0}. A weighted tree language s is called a monome if supp(s) is
the empty set or a singleton. If supp(s) ⊆ {ξ} for some ξ ∈ TΣ, then we also write s(ξ).ξ instead of s.
In particular, for each ξ ∈ TΣ the expression 0.ξ denotes the monome s with supp(s) = ∅. We denote the
set of all monomes of type TΣ → K by K[TΣ].

Let (si | i ∈ I) be a family of weighted tree languages of type TΣ → K with a countable index set I .
The sum of (si | i ∈ I), denoted by

∑
i∈I si, is the weighted tree language (

∑
i∈I si) : TΣ → K defined

for each ξ ∈ TΣ by
(
∑
i∈I

si)(ξ) =
∑
i∈I

si(ξ) .

Note that this sum is well defined because K is complete. We write s1 + s2 for
∑
i∈{1,2} si.

Let τ : TΣ → P(T∆) be a tree transformation and s : T∆ → K be a weighted tree language. We define
the composition of τ and s, denoted by (τ ; s), to be the weighted tree language (τ ; s) : TΣ → K defined
for each ξ ∈ TΣ by

(τ ; s)(ξ) =
∑
ζ∈τ(ξ)

s(ζ) .

Note that τ(ξ) can be infinite; however, the sum is well defined because K is complete. Whenever there
is no confusion we write τ ; s instead of (τ ; s).
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We fix a countable set X = {x1, x2, . . .} of variables and let Xk = {x1, . . . , xk} for each k ∈ N. We
assume that X is disjoint from each ranked alphabet considered in this paper.

A term rewriting system [BN99] is a tuple R = (Σ, R) where Σ is a ranked alphabet and R is a finite
set. Each element of R is called a rule and it has the form l → r where l, r ∈ TΣ(Xk) for some k ∈ N
such that l 6∈ X , and each variable which occurs in r also occurs in l. The rewrite relation induced byR,
denoted by⇒R, is the binary relation⇒R⊆ TΣ×TΣ defined for each ξ1, ξ2 ∈ TΣ as follows: ξ1 ⇒R ξ2
if
• there is a θ ∈ TΣ(X1) in which x1 occurs exactly once,
• there is a rule l→ r in R with l, r ∈ TΣ(Xk) for some k ∈ N, and
• there are θ1, . . . , θk ∈ TΣ

such that ξ1 is obtained from θ by replacing x1 by l′, and l′ is obtained from l by replacing each occurrence
of xi by θi (for each i ∈ [k]); ξ2 is obtained from θ by replacing x1 by r′, and r′ is obtained from r in the
same way as l′ is obtained from l. As usual for binary relations, we denote the reflexive, transitive closure
of⇒R by⇒∗R.

2.4 Storage types and behaviours
We recall the concept of storage type from [Eng86] with a slight modification (cf. [HV15]).

A storage type is a tuple S = (C,P, F, c0), where C is a set (configurations), c0 ∈ C (initial configu-
ration), P is a non-empty set of total functions each having the type p : C → {0, 1} (predicates), and F
is a non-empty set of partial functions f : C → C (instructions). A storage type is finite if C is a finite
set.

The identity instruction is the total function idC . The always true predicate, denoted by trueC , is the
predicate such that trueC(c) = 1 for each c ∈ C. For the storage type S = (C,P, F, c0), we denote by
Strue,id the storage type (C,P ∪ {trueC}, F ∪ {idC}, c0). Thus, S contains trueC and idC if and only if
Strue,id = S.

We note that our definition of storage type is a special case of the one in [Eng86] (and also in [EV86,
EV88]) in the sense that there the initial configuration c0 is replaced by a set I of inputs, a set E of
encoding symbols, and a meaning function m. Each encoding symbol e is interpreted as a partial function
m(e) : I → C and allows to define machines with input and output. Thus, our storage type (C,P, F, c0)
is the storage type (C,P ′, F ′, I, E,m) in the sense of [Eng86] with I = {i}, E = {e}, m(e)(i) = c0,
P ′ = {p′ | p ∈ P}, and F ′ = {f ′ ∈ F | f ∈ F} are sets of names for elements in P and F , respectively,
and m(p′) = p and m(f ′) = f .

For the remainder of the paper, if S is unspecified, then it stands for an arbitrary storage type
S = (C,P, F, c0).

Particular storage types Here we recall three particular storage types from [Eng86, EV86]: the trivial
storage type, the pushdown storage type, and the counter storage type.

The trivial storage type, denoted by TRIV, is the storage type ({c}, {true{c}}, {id{c}}, c) for some
arbitrary but fixed symbol c.

Let Γ be a fixed infinite set (pushdown symbols) and let γ0 ∈ Γ be a fixed symbol. The pushdown of S
is the storage type P(S) = (C ′, P ′, F ′, c′0) where
• C ′ = (Γ× C)+ (there is no empty pushdown),
• c′0 = (γ0, c0),
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• P ′ = {bottom} ∪ {(top = γ) | γ ∈ Γ} ∪ {test(p) | p ∈ P} such that for every (δ, c) ∈ Γ × C
and α ∈ (Γ× C)∗ we have

bottom
(
(δ, c)α

)
= 1 iff α = ε

(top = γ)
(
(δ, c)α

)
= 1 iff γ = δ

(test(p)
(
(δ, c)α

)
= p(c) ,

• F ′ = {pop} ∪ {stay(γ) | γ ∈ Γ} ∪ {push(γ, f) | γ ∈ Γ, f ∈ F} ∪ {idC′} such that for every
(δ, c) ∈ Γ× C and α ∈ (Γ× C)∗ we have

pop
(
(δ, c)α

)
= α if α 6= ε

push(γ, f)
(
(δ, c)α

)
= (γ, f(c))(δ, c)α if f(c) is defined

and undefined in all other situations. Moreover,

stay(γ)
(
(δ, c)α

)
= (γ, c)α .

Recall that idC′ is the identity instruction on C ′.
For each n ≥ 0 we define the storage type Pn(S) inductively as follows: P0(S) = S and Pn(S) =

P(Pn−1(S)) if n ≥ 1. The n-iterated pushdown storage, denoted by Pn, is the storage type Pn(TRIV).
We note that Pn contains the always true predicate test(. . . test︸ ︷︷ ︸

n

(true{c} ) . . .)︸ ︷︷ ︸
n

and the identity instruction.

Thus, (Pn)true,id = Pn. Moreover, for the 1-iterated pushdown storage, we write Γ+ for (Γ× {c})+ and
abbreviate instructions by ignoring the part of the trivial storage type, e.g., we write push(γ) instead of
push(γ, id{c}). In this case we abbreviate the predicate test(true{c}) by true.

The storage type counter, denoted by COUNT, is defined by (N, {trueN, zero}, {idN, inc,dec}, 0)
where for each c ∈ N
• zero(c) = 1 iff c = 0,
• inc(c) = c+ 1, and dec(c) = c− 1 if c ≥ 1 and undefined otherwise.

Behaviour Let P ′ ⊆ P and F ′ ⊆ F be finite non-empty subsets. Moreover, let n ∈ N. We define
the ranked alphabet ∆ =

⋃
0≤k≤n ∆(k) with ∆(k) = P ′ × (F ′)k. We call ∆ the ranked alphabet n-

corresponding to P ′ and F ′. We write elements (p, f1, . . . , fk) of ∆ in the shorter form (p, f1 . . . fk).
The concept of behaviour is inspired by and closely related to the concept of approximation [EV86,

Def. 3.23]. Formally, let c ∈ C, n ∈ N, and ∆ be the ranked alphabet n-corresponding to some finite sets
P ′ ⊆ P and F ′ ⊆ F . Then a tree b ∈ T∆ is a (∆, c)-behaviour if there is a family (cw ∈ C | w ∈ pos(b))
of configurations such that cε = c and for every w ∈ pos(b): if b(w) = (p, f1 . . . fk), then
• p(cw) = 1 and
• for every 1 ≤ i ≤ k, the configuration fi(cw) is defined and cwi = fi(cw).

If b is a (∆, c)-behaviour, then we call (cw ∈ C | w ∈ pos(b)) the family of configurations determined by
b and c. In Fig. 2 we illustrate these concepts for the storage type P1 and for n = 2.

A ∆-behaviour is a (∆, c0)-behaviour. We denote the set of all (∆, c)-behaviours by B(∆, c), and the
set of all ∆-behaviours by B(∆).

We will use the concept of corresponding ranked alphabet only in particular scenarios, for which we
will now define a more convenient notion. Let Σ be a ranked alphabet, P ′ ⊆ P and F ′ ⊆ F be finite
subsets. Then we call the ranked alphabet maxrk(Σ)-corresponding to P ′ and F ′ the ranked alphabet
corresponding to Σ, P ′, and F ′.
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(top = γ0, push(γ))

(top = γ, push(γ) push(γ))

(top = γ, pop)

(top = γ, pop)

(top = γ0, ε)

(top = γ, push(γ))

(top = γ, pop)

(top = γ, pop)

(top = γ, ε)

γ0

γ0 γ

γ0 γ γ

γ0 γ

γ0

γ0 γ γ

γ0 γ γ γ

γ0 γ γ

γ0 γ

Fig. 2: On the left-hand side, a (∆, γ0)-behaviour b for ∆ 2-corresponding to P ′ = {top = γ0, top = γ} and
F ′ = {push(γ), pop}, and on the right-hand side, the family (cw | w ∈ pos(b)) of configurations determined by b
and γ0.

3 Weighted regular tree grammars with storage
In this section we combine the concept of regular tree grammar with storage [Eng86] with the weighting
technique using multioperator monoids [Kui99, Mal05, SVF09, FSV12].

3.1 Definition of the concept, examples, and special cases
We recall that K is a complete M-monoid (K,+, 0,Ω), S = (C,P, F, c0) is a storage type, and Σ is a
ranked alphabet.

A regular tree grammar over Σ with storage S and weights in K (for short: (S,Σ,K)-rtg) is a tuple
G = (N,Z,R,wt), where
• N is a finite set (nonterminals) such that N ∩ Σ = ∅,
• Z ⊆ N (set of initial nonterminals),
• R is a finite and non-empty set of rules; each rule has one of the following forms:

A(p)→ σ(A1(f1), . . . , Ak(fk)) (1)
A(p)→ B(f) (2)

where k ≥ 0, A,A1, . . . , Ak, B ∈ N , p ∈ P , σ ∈ Σ(k), and f1, . . . , fk, f ∈ F , and
• wt : R → Ω is the weight function such that each rule of the form (1) is mapped to an element in

Ω(k) and each rule of the form (2) is mapped to an element in Ω(1).
If r is a rule of the form (1), then we denote its parts A and A` (with 1 ≤ ` ≤ k) by lhsN (r) and

rhsN,`(r), respectively; if r is a rule of the form (2), then we denote A and B by lhsN (r) and rhsN,1(r),
respectively. Rules of type (2) are called chain rules. If G does not contain chain rules, then we call it
chain-free.

In [Eng86, EV86, EV88] a binary derivation relation was defined for (unweighted) regular tree gram-
mars with storage. Intuitively, the application of a rule follows the principle of context-free rewriting. In
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each sentential form each occurrence of a nonterminal keeps a configuration c of S and a rule may only
be applied if its predicate holds on c. Each instruction f occurring in the right-hand side of the rule is
replaced by the configuration f(c) if this is defined.

Here we formalize derivations in a different, but equivalent way using derivation trees (cf. Figure 1).
Let G = (N,Z,R,wt) be an (S,Σ,K)-rtg and PG ⊆ P and FG ⊆ F be the finite sets of predicates and
instructions, respectively, which occur inR. Moreover, let ∆G be the ranked alphabet corresponding to Σ,
PG , and FG . We note that ∆G is non-empty because we required that R 6= ∅. (In particular, if R contains
one rule of the form (1) with k = 0 and no rule of the form (2), then PG = {p} and FG = ∅. Hence
∆G = ∆

(0)
G = {(p, ε)}.)

In the following we will consider R as a ranked alphabet by associating rank k with a rule if its right-
hand side contains k nonterminals. Let d ∈ TR. We can retrieve from d a tree in TΣ by using the mapping
π : TR → TΣ defined by induction on its argument such that for each d = r(d1, . . . , dk) in TR we have

π(r(d1, . . . , dk)) =

{
σ(π(d1), . . . , π(dk)) if r is of type (1)
π(d1) if r is of type (2) .

Also we can retrieve from d a tree over ∆G by using the tree relabeling β. This tree relabeling is induced
by the mapping β : R→ ∆G defined by β(r) = (p, f1 . . . fk) if r has the form (1), and by β(r) = (p, f)
if r has the form (2).

Let ξ ∈ TΣ, N ′ ⊆ N , and c ∈ C. An (N ′, c)-derivation tree of G for ξ is a tree d ∈ TR such that
• lhsN (d(ε)) ∈ N ′,
• π(d) = ξ,
• for each w ∈ pos(d) and each ` ∈ [rkd(w)] we have rhsN,`(d(w)) = lhsN (d(w`)), and
• the tree β(d) is in B(∆G , c).

We denote the set of all such trees by DG(N ′, ξ, c) and we abbreviate DG(Z, ξ, c0) by DG(ξ). We note
that, if G is chain-free, then pos(d) = pos(ξ) for each d ∈ DG(ξ), and hence, DG(ξ) is finite for each
ξ ∈ TΣ. Finally, a derivation tree of G for a ξ ∈ TΣ is an (N ′, c)-derivation tree of G for ξ for some N ′

and c.
Let d ∈ DG(N ′, ξ, c). We define wt′(d) ∈ K by wt′(d) = wt′′(d, ε) and, in its turn, for each

w ∈ pos(d) we define the value wt′′(d,w) ∈ K inductively on w as follows:

wt′′(d,w) = wt(d(w))
(

wt′′(d,w 1), . . . ,wt′′(d,w rkd(w))
)
.

We note that wt(d(w)) is an operation in Ω of arity rkd(w). For notational convenience we will drop in
the sequel the primes from wt′ and wt′′ and simply write wt.

Then the weighted tree language generated by G is the mapping [[G]] : TΣ → K defined for each ξ ∈ TΣ

by
[[G]](ξ) =

∑
d∈DG(ξ)

wt(d).

Since G may contain chain rules, the set DG(ξ) can be infinite. However, this sum is well defined because
K is complete.

A weighted tree language s : TΣ → K is called (S,Σ,K)-regular if there is an (S,Σ,K)-rtg G such
that s = [[G]], and we call s chain-free (S,Σ,K)-regular if additionally G is chain-free. The class of all
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(S,Σ,K)-regular tree languages and of all chain-free (S,Σ,K)-regular tree languages are denoted by
Reg(S,Σ,K) and Regnc(S,Σ,K), respectively.(ii)

Example 3.1. Let (MN∞ ,+, 0,Ω) be the complete M-monoid associated to the complete semiring
(N∞,+, ·, 0, 1) of natural numbers. Moreover, let Σ = {α(0), δ(1), σ(2)}. We consider the weighted
tree language s : TΣ →MN∞ with

s(ξ) =

{
8n if ξ = σ(δn(α), δn(α)) for some n ≥ 0

0 otherwise

for each ξ ∈ TΣ.
Then s can be generated by a (P1,Σ,MN∞)-rtg G. Intuitively, G first generates, using chain rules,

a pushdown configuration of length n, then it generates σ and makes two copies of this configuration,
and finally it turns each copy of each pushdown cell into a δ. For this, recall that Γ is the infinite set of
pushdown symbols and that γ0 ∈ Γ is the initial pushdown symbol. Let γ ∈ Γ with γ 6= γ0.

We construct the (P1,Σ,MN∞)-rtg G = (N,Z,R,wt), where N = {Z,A} and R consists of the rules

r1 : Z(true)→ Z(push(γ)) r2 : Z(true)→ σ(A(idΓ+), A(idΓ+))

r3 : A(top = γ)→ δ(A(pop)) r4 : A(top = γ0)→ α

where wt(r1) = wt(r3) = mul1,2, wt(r2) = mul2,1, and wt(r4) = mul0,1.
For each n ≥ 0 and ξ = σ(δn(α), δn(α)), we have DG(ξ) = {dn} where dn = rn1 r2(rn3 r4, r

n
3 r4).

Figure 3 shows d2 for the tree ξ = σ(δ2(α), δ2(α)), the ∆G-behaviour b = β(d2), and the family of
configurations determined by b and γ0.

Then
wt(dn) = mul1,2(. . .mul1,2(︸ ︷︷ ︸

n

mul2,1(u, u) ) . . .)︸ ︷︷ ︸
n

with u = mul1,2(. . .mul1,2(︸ ︷︷ ︸
n

mul0,1 ) . . .)︸ ︷︷ ︸
n

for each n ≥ 0. Since u = 2n, we have wt(dn) = 8n. Thus,

for each ξ = σ(δn(α), δn(α)), we have [[G]](ξ) = wt(dn) = 8n. Since for each tree ξ 6∈ supp(s) we have
DG(ξ) = ∅ and hence [[G]](ξ) =

∑
d∈∅ wt(d) = 0, we finally obtain that G generates the weighted tree

language s, i.e., [[G]] = s.

In the next lemma we will prove that the restriction to exactly one initial nonterminal has no effect
on the generating power of (S,Σ,K)-rtg. This kind of initial state (or nonterminal) normal form has
been proved for semiring-weighted tree automata (cf., e.g., [Bor04, p. 517] or [FV09, Thm.3.6]) using the
following classical idea: take a new initial nonterminal and derive nondeterministically each right-hand
side of an original rule that has an initial nonterminal at its left-hand side, and the weight of this new
initial rule is the sum of the weights of the original initial rules. Generalizing this idea to the case of
(S,Σ,K)-grammars requires to sum up operations and thus, to assume that the set of operations of K is
closed under summation. We avoid this by employing a slightly more complicated construction.

(ii) By “nc” we would like to express that there are “no chain rules”.
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γ0

γ0 γ

γ0 γ γ

γ0 γ γ

γ0 γ

γ0

γ0 γ γ

γ0 γ

γ0

σ

δ

δ

α

δ

δ

α

Z(true) → Z(push(γ))

Z(true) → Z(push(γ))

Z(true) → σ (A(id
Γ+), A(id

Γ+))

A(top = γ) → δ (A(pop))

A(top = γ) → δ (A(pop))

A(top = γ0) → α ()

A(top = γ) → δ (A(pop))

A(top = γ) → δ (A(pop))

A(top = γ0) → α ()

π

β (true, push(γ))

(true, push(γ))

(true, id
Γ+ id

Γ+)

(top = γ, pop)

(top = γ, pop)

(top = γ0, ε)

(top = γ, pop)

(top = γ, pop)

(top = γ0, ε)

Fig. 3: The derivation tree d2 ∈ DG(ξ), the tree ξ = π(d2) = σ(δ2(α), δ2(α)), and the ∆G-behaviour b = β(d2)
together with the family (cw | w ∈ pos(b)) of configurations determined by b and γ0.

Lemma 3.2. For each (S,Σ,K)-rtg G there is an (S,Σ,K)-rtg G′ such that [[G]] = [[G′]] and G′ has
exactly one initial nonterminal.

Proof: Let G = (N,Z,R,wt) be an (S,Σ,K)-rtg. We may assume that Z 6= ∅ since otherwise
supp([[G]]) = ∅ and thus our statement is obvious. We construct an (S,Σ,K)-rtg G′ that uses only
one initial nonterminal Z0. Intuitively, G′ encodes the initial nonterminals of G as second component in
its nonterminals. Then any (Z0, c0)-derivation tree d′ of G′ encodes an (A0, c0)-derivation tree d of G for
some initial nonterminal A0 by keeping A0 in the nodes of d′. In this way, for each tree ξ the sets DG(ξ)
and DG′(ξ) are in a weight preserving one-to-one correspondence.

So let Z0 be a symbol not in (N ×Z)∪Σ. We construct the (S,Σ,K)-rtg G′ = (N ′, Z0, R
′,wt′) such

that [[G]] = [[G′]] as follows. We let N ′ = (N × Z) ∪ {Z0}. Moreover, for each A0 ∈ Z,
• if r = (A0(p)→ σ(A1(f1), . . . , Ak(fk))) ∈ R,

then r′ = (Z0(p)→ σ((A1, A0)(f1), . . . , (Ak, A0)(fk))) ∈ R′,
• if r = (A0(p)→ B(f)) ∈ R, then r′ = (Z0(p)→ (B,A0)(f)) ∈ R′,
• if r = (A(p)→ σ(A1(f1), . . . , Ak(fk))) ∈ R,

then r′ = ((A,A0)(p)→ σ((A1, A0)(f1), . . . , (Ak, A0)(fk))) ∈ R′,
• if r = (A(p)→ B(f)) ∈ R, then r′ = ((A,A0)(p)→ (B,A0)(f)) ∈ R′,

and in each case we let wt′(r′) = wt(r).
We can prove that [[G]] = [[G′]] as follows. For every ξ ∈ TΣ we define the mapping g : DG(ξ) →

DG′(ξ) (note that DG′(ξ) = DG′(Z0, ξ, c0)). For this let ξ = σ(ξ1, . . . , ξk) for some k ≥ 0 and d ∈
DG(A0, ξ, c0) for some A0 ∈ Z.

Then either
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(1) d = r(d1, . . . , dk) for some rule r = (A0(p) → σ(A1(f1), . . . , Ak(fk))) and di ∈
DG(Ai, ξi, fi(c0)) for each i ∈ [k] or

(2) d = r(d1) for some rule r = (A0(p)→ B(f)) and d1 ∈ DG(B, ξ, f(c0)).

In case (1) we let g(d) = r′(d′1, . . . , d
′
k), where

• r′ = (Z0(p)→ σ((A1, A0)(f1), . . . , (Ak, A0)(fk))) and
• we obtain d′i from di by replacing every nonterminal A by (A,A0).

In case (2) let g(d) = r′(d′1), where
• r′ = (Z0(p)→ (B,A0)(f)) and
• we obtain d′1 from d1 as in case (1).

By the construction of G′ it should be clear that g is a bijection and that wt(d) = wt′(g(d)) for each
d ∈ DG(ξ). Then it is easy to see that [[G]] = [[G′]].

Special cases. Here we define and analyze four special cases of (S,Σ,K)-regular weighted tree lan-
guages: (i) the unweighted case, (ii) the storage-free case, (iii) the unweighted and storage-free case, and
(iv) the string case.

(i) K = B: A regular tree grammar over Σ with storage S (for short: (S,Σ)-rtg) is an (S,Σ,B)-rtg. In
the specification of an (S,Σ)-rtg we assume w.l.o.g. that each k-ary rule is mapped to allk,1, and hence
we drop the weight function wt.

Let G be an (S,Σ)-rtg. Since wt(d) = 1 for each d ∈ DG(ξ), we have that supp([[G]]) = {ξ ∈ TΣ |
DG(ξ) 6= ∅}. We call this set the tree language generated by G and denote it by L(G). Moreover, we say
that G is unambiguous if for each ξ ∈ TΣ we have |DG(ξ)| ≤ 1.

A tree language L ⊆ TΣ is called (S,Σ)-regular if there is an (S,Σ)-rtg G such that L(G) = L. We
denote the class of all (S,Σ)-regular tree languages by Reg(S,Σ).

We note that each (S,Σ)-rtg G is an RT(S)-transducer MG as defined in [EV86, Def. 3.3] and in
[EV88, Def. 3.3] where RT means the class of regular tree grammars [Bra69, GS84, GS97]; the range
of the translation induced byMG is L(G). Vice versa, each RT(S)-transducerM (with the definition of
storage type of the present paper) is an (S,Σ)-rtg if the Boolean expressions occurring in the rules ofM
are predicates (and not arbitrary Boolean expressions over P ).

Moreover, by [EV88, Thm. 6.15], we have that Reg(Pn,Σ) is the class of level-n OI-tree languages for
each n ≥ 0 (denoted by n-T in [EV88]; also cf. [DG81]). This hierarchy has been intensively investigated
in [Dam82, DG81]. The classes for n = 0 and n = 1 are the class of regular tree languages and of OI
context-free tree languages, respectively (cf. [EV88, Prop. 4.4]).

We recall from [Dam82, Thm. 7.8] that the emptiness problem for level-n OI-tree languages is decid-
able (for each n ≥ 0).

(ii) S = TRIV: AK-weighted regular tree grammar over Σ (for short: (Σ,K)-rtg) is a (TRIV,Σ,K)-
rtg. In the rules of a (Σ,K)-rtg we drop the always true predicate from the left-hand side and the identity
instruction from the right-hand side. A weighted tree language s : TΣ → K is called (Σ,K)-regular if
there is a (Σ,K)-rtg G such that s = [[G]]. We denote the class of all (Σ,K)-regular tree languages by
Reg(Σ,K).

In [FSV12, Sec. 2.6], weighted tree automata were defined over M-monoids which need not be absorp-
tive and complete. However, it is obvious that each chain-free (Σ,K)-rtg corresponds to a weighted tree
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automata over Σ and K (in the sense of [FSV12, Sec. 2.6]), and vice versa. Thus we obtain the following
characterization.

Observation 3.3. Regnc(Σ,K) is the class of recognizable tree series over Σ and K defined in [FSV12].

Now let, additionally, K be an arbitrary complete semiring and MK be the M-monoid associated with
K. Then each chain-free (Σ,MK)-rtg is essentially a semiring-weighted tree automaton in the sense of
[FV09], and vice versa.

(iii) K = B and S = TRIV: A regular tree grammar over Σ (for short: Σ-rtg) is a (TRIV,Σ,B)-rtg.
A tree language L ⊆ TΣ is called Σ-regular if there is a Σ-rtg G such that L(G) = L. We denote the class
of all Σ-regular tree languages by Reg(Σ).

Clearly, the class Reg(Σ) coincides with the class of recognizable (or: regular) tree languages
over Σ [GS84]. Since finite-state tree automata can be determinized [GS84, Thm. 2.2.6], we can always
assume that a Σ-rtg G is unambiguous.

(iv) String case: For semirings as weight structures, it is demonstrated in [FV09, p. 324] that, roughly
speaking, (a) weighted string automata (without storage) are the same as (b) weighted tree automata over
a monadic ranked alphabet. We can generalize this relation to (a’) weighted string automata (including ε-
transitions) with arbitrary storage and (b’) weighted regular tree grammars over a monadic ranked alphabet
(with chain rules) with arbitrary storage. Moreover, in the tree case we can use the M-monoid associated
to the semiring as weight structure.

3.2 Elimination of finite storage types in the Boolean case
It is easy to see that each (S,Σ)-rtg can be simulated by a Σ-rtg assuming that S is a finite storage type.

Lemma 3.4. Let S be finite. For each (S,Σ)-rtg G there is a Σ-rtg G′ such that L(G) = L(G′). Moreover,
if G is chain-free (resp., unambiguous), then so is G′.

Proof: Let G = (N,Z,R) be an (S,Σ)-rtg. For the construction of a Σ-rtg G′, we simply encode
the finitely many configurations into the new set of nonterminals. Formally, we construct G′ = (N ×
C,Z ′, R′) such that Z ′ = Z × {c0} and
• if r = (A(p)→ σ(A1(f1), . . . , Ak(fk)) is a rule in R, then for each c ∈ C such that p(c) = 1 and
f1(c), . . . , fk(c) are defined, the rule

r′ = ((A, c)→ σ((A1, f1(c)), . . . , (Ak, fk(c)))

is in R′,
• if r = (A(p)→ B(f)) is in R, then for each c ∈ C such that p(c) = 1 and f(c) is defined, the rule

r′ = ((A, c)→ (B, f(c))

is in R′.
It is clear that G′ is chain-free (resp., unambiguous) if G is so.

For each ξ ∈ TΣ, we define the mapping θ : DG(ξ) → DG′(ξ) as follows. Let d ∈ DG(ξ) and
(cw | w ∈ pos(β(d))) be the family of configurations determined by the (∆G , c0)-behaviour β(d) and c0.
We recall that β is a tree relabeling and hence pos(β(d)) = pos(d). Then we define pos(θ(d)) = pos(d).
Moreover, for each w ∈ pos(d),
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• if d(w) = (A(p)→ σ(A1(f1), . . . , Ak(fk)), then we define

(θ(d)(w)) = ((A, cw)→ σ((A1, cw1), . . . , (Ak, cwk)) ,

• if d(w) = (A(p)→ B(f)), then we define

(θ(d)(w)) = ((A, cw)→ (B, cw1)) .

Due to the construction, it is clear that θ(d) ∈ DG′(ξ). Moreover, θ is surjective. However, it is not
necessarily injective, as can be seen if, e.g., two rules A(p) → B(f1) and A(p) → B(f2) are in R and
there exists a c ∈ C with p(c) = 1 and f1(c) = f2(c).

Then it follows that DG(ξ) 6= ∅ iff DG′(ξ) 6= ∅ (where the surjectivity of θ is needed in the “if”-
implication). Thus L(G) = L(G′).

4 Support
In this section we prove that, for each complete, zero-sum free, and commutative strong bimonoid K
(cf. Section 2.2), the supports of (S,Σ,MK)-regular weighted tree languages are (S,Σ)-regular tree lan-
guages. We follow the same approach as in [Kir11], where the support theorem was proved for weighted
string automata without ε-transitions. We generalize this approach in a straightforward way to the case of
weighted regular tree grammars with storage (including chain rules, which correspond to ε-transitions in
string automata).

First we recall some definitions. Let (K, ·, 1) be a monoid. An element 0 ∈ K with 0 6= 1 is called a
zero if a·0 = 0·a = 0 for every a ∈ K. For every a1, . . . , an ∈ K, we let 〈a1, . . . , an〉 denote the smallest
submonoid of K containing a1, . . . , an. For every a ∈ K and A ⊆ K, we let a ·A = {a · a′ | a′ ∈ A}.

As defined by Kirsten [Kir11], the zero generation problem (ZGP) for a monoid (K, ·, 1) with zero
0 is, given two integers m,n ∈ N and elements a1, . . . , am, a

′
1, . . . , a

′
n ∈ K, the question whether

0 ∈ a1 · . . . · am · 〈a′1, . . . , a′n〉. For instance, if K is idempotent and commutative, then it has a decidable
ZGP, because in this case the set a1 · . . . · am · 〈a′1, . . . , a′n〉 is finite.

For every tuples z̄ = (z1, . . . , zn) ∈ Nn and ȳ = (y1, . . . , yn) ∈ Nn, we define z̄ ≤ ȳ if zi ≤ yi for all
i = 1, . . . , n. Obviously, ≤ is a partial order on Nn. For a subset M ⊆ Nn, an element z̄ ∈M is minimal
in M if ȳ ≤ z̄ implies ȳ = z̄ for every ȳ ∈ M . We denote by min(M) the set of all minimal elements in
M . By Dickson’s lemma [Dic13], min(M) is finite (cf. [Kir11, Lm. 2.1] and [KR08]). For every z̄ ∈ Nn
and k ∈ N, we define the cut of z̄ and k, denoted by bz̄ck, to be the vector bz̄ck ∈ Nn with

(bz̄ck)i = min{zi, k}

as i-th component for each i = 1, . . . , n.
Now let (K, ·, 1) be a commutative monoid with a zero 0. For every a ∈ K and z ∈ N, we let az be the

product of z many as. In particular, a0 = 1.
Fix a tuple ā = (a1, . . . , an) ∈ Kn. We define the mapping

[[ . ]]ā : Nn → K by letting [[z̄]]ā = az11 · . . . · aznn

for each z̄ = (z1, . . . , zn) ∈ Nn. We put [[0]]−1
ā = {z̄ ∈ Nn | [[z̄]]ā = 0}. Note that (0, . . . , 0) 6∈ [[0]]−1

ā ,
because a0

1 · . . . · a0
n = 1. Clearly, if z̄, ȳ ∈ Nn with [[z̄]]ā = 0 and z̄ ≤ ȳ, then also [[ȳ]]ā = 0. Since
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min([[0]]−1
ā ) is finite, there is a smallest number m ∈ N satisfying min([[0]]−1

ā ) ⊆ {0, . . . ,m}n, and we
define dg(ā) = m.

We state the following obvious connection between the defined concepts.

Observation 4.1. Let ā = (a1, . . . , an) be an element of Kn. Then the following three statements are
equivalent:

1. [[0]]−1
ā = ∅.

2. dg(ā) = 0.
3. The submonoid (〈a1, . . . , an〉, ·, 1) is zero-divisor free, i.e., for each a, b ∈ 〈a1, . . . , an〉 we have

that a · b = 0 implies that a = 0 or b = 0.

Moreover, we recall from [Kir11] the following statements.

Lemma 4.2. ([Kir11, Lm. 4.1]) For each z̄ ∈ Nn, we have [[z̄]]ā = 0 iff [[bz̄cdg(ā)]]ā = 0 .

Lemma 4.3. ([Kir11, Lm. 4.2]) Let (K, ·, 1) be a commutative monoid with a zero, n ∈ N, and ā ∈ Kn.
If the ZGP for K is decidable, then dg(ā) is effectively computable.

Now we can prove the main theorem of this section. We follow the proof and the construction of the
corresponding results [Kir11, Thm. 3.1] for weighted automata over semirings and [Göt16, Thm. 4.6] for
weighted tree automata over tv-monoids (also cf. [DH15] for a similar result for weighted unranked tree
automata over bimonoids). Also we provide the correctness proof of the construction.

Theorem 4.4. Let K be a complete, zero-sum free, and commutative strong bimonoid and MK be the
M-monoid associated with K.

1. (a) For every (S,Σ,MK)-rtg G, there is an (S,Σ)-rtg G′ such that L(G′) = supp([[G]]). (b) More-
over, if (K, ·, 1) has a decidable ZGP, then G′ can be constructed effectively.

2. Assume that |Σ(1)| ≥ 2. If there is an effective construction of a Σ-rtg which generates supp([[G]])
from any given (Σ,MK)-rtg G, then (K, ·, 1) has a decidable ZGP.

Proof: First we prove 1(a). Let G = (N,Z,R,wt) be an (S,Σ,MK)-rtg. By Lemma 3.2 we may assume
that Z ∈ N . Since the weight of each rule is an operation mulk,a for some k ∈ N and a ∈ K, the weight
of each derivation tree is the (bimonoid) multiplication of the a’s appearing in the rules in that tree. Since
K is commutative, this amounts to counting how many times each such a occurs.

Formally, we define the mapping wtK : R → K such that, for each r ∈ R, we let wtK(r) = b if
wt(r) = mulk,b for some k ∈ N. We let W = wtK(R) be the set comprising all elements of K each of
which corresponds to the weight of some rule of G. Let ā = (a1, . . . , an) ∈ Kn be an enumeration of W .
Then the weight of each derivation tree can be written in the form [[ȳ]]ā for some ȳ ∈ Nn. Moreover, let
T = {0, . . . ,dg(ā)}. We define the mapping

⊕ : Tn ×W → Tn by letting
z̄ ⊕ ai = bȳcdg(ā) for ȳ = (y1, . . . , yn) ∈ Nn with yi = zi + 1 and

yj = zj for each j 6= i ,

and the mapping

⊕̄ : Tn × Tn → Tn by letting
z̄ ⊕̄ z̄′ = bȳcdg(ā) for ȳ = (y1, . . . , yn) ∈ Nn with yi = zi + z′i for all i ∈ [n].
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With these mappings, we will be able to count, up to the threshold of dg(ā), the number of occurrences
of the ai’s in the derivation trees of G.

Now we define an (unweighted) (S,Σ)-rtg G′ which simulates the derivations of G and counts the ele-
ments ofK corresponding to the weights which occur in derivation trees as follows. Let G′ = (N ′, Z ′, R′)
such that
• N ′ = N × Tn,
• Z ′ = {(Z, z̄) | z̄ ∈ Tn, [[z̄]]ā 6= 0},
• R′ is defined as follows:

– Let r = (A(p) → α) be a rule in R. Then ((A, z̄)(p) → α) is in R′ where z̄ = (0, . . . , 0) ⊕
wtK(r).

– Let r = (A(p) → σ(A1(f1), . . . , Ak(fk))) be a rule in R. Moreover, let z̄1, . . . , z̄k ∈ Tn.
Then ((A, z̄)(p) → σ((A1, z̄1)(f1), . . . , (Ak, z̄k)(fk))) is in R′ where z̄ = (z̄1⊕̄ . . . ⊕̄z̄k) ⊕
wtK(r).

– Let r = (A(p) → B(f)) be a rule in R. Moreover, let z̄1 ∈ Tn. Then ((A, z̄)(p) →
(B, z̄1)(f)) ∈ R′ where z̄ = z̄1 ⊕ wtK(r).

Next we prove the equality L(G′) = supp([[G]]).
First, we prove that supp([[G]]) ⊆ L(G′). For this, we show the following Statement:
(*) For each l ∈ N+, ξ ∈ TΣ, A ∈ N , c ∈ C, and d ∈ DG(A, ξ, c) : if size(d) = l, then there are

ȳ ∈ Nn and d′ ∈ DG′((A, bȳcdg(ā)), ξ, c) such that size(d′) = l and [[ȳ]]ā = wt(d).
We prove Statement (*) by strong induction on l.
Let l = 1. Then d ∈ DG(A, ξ, c) has to be of the form r = (A(p) → α) for some r ∈ R such that

p(c) = true. Then α ∈ Σ(0) and ξ = α. Clearly, wt(d) = wtK(r). Now let ȳ = (y1, . . . , yn) be
the tuple in Nn such that, for each i ∈ [n], yi = 1 if ai = wtK(r), and yi = 0 otherwise. Obviously,
[[ȳ]]ā = wtK(r) = wt(d). Moreover, by construction, the rule r′ = ((A, bȳcdg(ā))(p) → α) is in R′.
Since p(c) = true, r′ is in DG′((A, bȳcdg(ā)), ξ, c).

Now, let l > 1 and assume that Statement (*) holds for all l′ ∈ N with l′ < l. We consider two cases.
Case 1: There exist some r = (A(p) → B(f)) in R and d1 ∈ DG(B, ξ, f(c)) such that d = r(d1).

Then p(c) = true and f(c) is defined. Moreover, l = size(d1) + 1 and wt(d) = wt(d1) · wtK(r). By
IH there exist ȳ1 = (y1,1, . . . , y1,n) in Nn and d′1 ∈ DG′((B, bȳ1cdg(ā)), ξ, f(c)) such that size(d′1) =
size(d1) and [[ȳ1]]ā = wt(d1). Then let ȳ = (y1, . . . , yn) in Nn such that, for each i ∈ [n], yi = y1,i + 1
if ai = wtK(r), and yi = y1,i otherwise. Obviously, [[ȳ]]ā = wt(d). Moreover, by construction, there
is a rule r′ = ((A, bȳcdg(ā))(p) → (B, bȳ1cdg(ā))(f)) in R′. Since p(c) = true and f(c) is defined,
d′ = r′(d′1) is an element in DG′((A, bȳcdg(ā)), ξ, c) with size(d′) = l.

Case 2: There exist some k ≥ 1, r = (A(p) → σ(B1(f1), . . . , Bk(fk))) in R, and di ∈
DG(Bi, ξi, fi(c)) for each i ∈ [k] such that d = r(d1, . . . , dk). Hence, p(c) = true and fi(c) is de-
fined for each i ∈ [k]. Then ξ = σ(ξ1, . . . , ξk) and l = size(d1) + . . . + size(dk) + 1. Moreover,
wt(d) = wt(d1) · . . . · wt(dk) · wtK(r). For each i ∈ [k], by IH, there exist ȳi = (yi,1, . . . , yi,n) in
Nn and d′i ∈ DG′((Bi, bȳicdg(ā)), ξi, fi(c)) such that size(d′i) = size(di) and [[ȳi]]ā = wt(di). Then
let ȳ = (y1, . . . , yn) in Nn such that, for each j ∈ [n], yj = y′j + 1 if aj = wtK(r), and yj = y′j
otherwise, where ȳ′ = ȳ1 + . . . + ȳk with + denoting the pointwise addition of tuples. It is not hard
to see that [[ȳ]]ā = wt(d). Furthermore, by construction there exists a rule r′ = ((A, bȳcdg(ā))(p) →
σ((B1, bȳ1cdg(ā))(f1), . . . , (Bl, bȳkcdg(ā))(fk))) in R′. Since p(c) = true and fi(c) is defined for each
i ∈ [k], d′ = r′(d′1, . . . , d

′
k) is an element in DG′((A, bȳcdg(ā)), ξ, c) with size(d′) = l.

This finishes the proof of Statement (*).
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Now let ξ ∈ supp([[G]]). Then there is a derivation tree d ∈ DG(Z, ξ, c0) with wt(d) 6= 0. By Statement
(*) there are ȳ ∈ Nn and d′ ∈ DG′((Z, bȳcdg(ā)), ξ, c0) such that [[ȳ]]ā = wt(d). Since [[ȳ]]ā 6= 0, also
[[bȳcdg(ā)]]ā 6= 0 (by Lemma 4.2). Thus, (Z, bȳcdg(ā)) ∈ Z ′ and ξ is in L(G′).

Secondly, we prove that L(G′) ⊆ supp([[G]]). For this, we show the following Statement:
(**) For each l ∈ N+, ξ ∈ TΣ, A ∈ N , z̄ ∈ Tn, c ∈ C, and d′ ∈ DG′((A, z̄), ξ, c): if size(d′) = l, then

there are ȳ ∈ Nn and d ∈ DG(A, ξ, c) such that size(d) = l, [[ȳ]]ā = wt(d) and z̄ = bȳcdg(ā).
Statement (**) can be proved by strong induction on l. Since the proof is very similar to that of

Statement (*), we drop it here.
Now let ξ ∈ L(G′). Then there is a derivation tree d′ ∈ DG′((Z, z̄), ξ, c0) for some z̄ ∈ Tn with

[[z̄]]ā 6= 0. By Statement (**) there are ȳ ∈ Nn and d ∈ DG(Z, ξ, c0) such that [[ȳ]]ā = wt(d) and
z̄ = bȳcdg(ā). Since [[z̄]]ā 6= 0 also [[ȳ]]ā 6= 0 (by Lemma 4.2). Thus, since K is zero-sum free, ξ is in
supp([[G]]).

The proof of 1(b) follows from the fact that if the ZGP for (K, ·, 1) is decidable, then by Lemma 4.3
we can compute the number dg(ā) and hence construct G′ effectively.

For the proof of 2, we note the following. Due to the conditions |Σ(1)| ≥ 2, the weighted finite
automaton constructed in the corresponding part of the proof of [Kir11, Thm. 3.1.] can be simulated by
an (Σ,MK)-rtg, hence that proof can be adapted to this setting.

We note that the construction in the proof of Theorem 4.4(1) becomes very simple if K is zero-divisor
free. Then, by Observation 4.1, dg(ā) = 0 for every ā, and hence N ′ is essentially N (and the same holds
for Z ′ and Z). Thus, the rules of G′ are obtained from those of G simply by dropping the weights.

Also we note that the first part of Theorem 4.4(1) (choosing S = TRIV) provides a sufficient condition
for the recognizability of support tree languages, which is different from the following well-known fact:
If K is a zero-sum free and zero-divisor free (not necessarily commutative) semiring, then the support of
[[G]] for any (Σ,K)-rtg G is a recognizable tree language (cf., e.g., [FV09, Thm. 3.12]).

In the next example we illustrate the construction of Theorem 4.4.

Example 4.5. We consider the strong bimonoid (K,max, ·, 0, 1) where K = {i ∈ N | 0 ≤ i ≤ 9},
max is extended to maximum over countable index sets in the obvious way, and · is the multiplication of
natural numbers modulo 9; thus, e.g., 3 · 4 = 12 (mod 9) = 3. Indeed, K is complete, zero-sum free, and
commutative. We note that (K, ·, 1) has a decidable ZGP.

We consider the ranked alphabet Σ = {γ(1), α(0), β(0)} and the (Σ,MK)-rtg G = ({A}, A,R,wt)
where the rules in R and the corresponding weights are:

r1 : A→ γ(A), wt(r1) = mul1,2

r2 : A→ α, wt(r2) = mul1,3

r3 : A→ β, wt(r3) = mul1,6 .

By direct inspection of G we can easily see that supp([[G]]) = TΣ.
Using the notations in the proof of Theorem 4.4, we have W = {2, 3, 6}. We let ā = (2, 3, 6). Then

the set [[0]]−1
ā contains, e.g., the following three elements: (0, 2, 0), (0, 0, 2), and (0, 1, 1). Indeed,

min([[0]]−1
ā ) = {(0, 2, 0), (0, 0, 2), (0, 1, 1)} .

The degree of ā is dg(ā) = 2, because min([[0]]−1
ā ) ⊆ {0, 1, 2}3 and min([[0]]−1

ā ) 6⊆ {0, 1}3. Hence
T = {0, 1, 2}.

Applying the construction of Theorem 4.4, we obtain the following Σ-rtg G′ = (N ′, Z ′, R′) with
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• N ′ = {A} × T 3; we abbreviate (A, (n1, n2, n3)) by (n1, n2, n3);
• Z ′ = {(0, 0, 0)} ∪ {(n, 1, 0) | 0 ≤ n ≤ 2} ∪ {(n, 0, 1) | 0 ≤ n ≤ 2};
• R′ contains the following eight useful rules:

(0, 1, 0)→ α (0, 0, 1)→ β

(1, 1, 0)→ γ((0, 1, 0)) (1, 0, 1)→ γ((0, 0, 1))

(2, 1, 0)→ γ((1, 1, 0)) (2, 0, 1)→ γ((1, 0, 1))

(2, 1, 0)→ γ((2, 1, 0)) (2, 0, 1)→ γ((2, 0, 1)) .

Hence also L(G′) = TΣ. 2

From Theorem 4.4(1) and the fact, that the emptiness problem of iterated pushdown tree automata is
decidable [Dam82, Thm. 7.8], we obtain the following result:

Corollary 4.6. Let K be a complete, zero-sum free, and commutative strong bimonoid with a decid-
able ZGP and MK be the complete M-monoid associated with K. Moreover, let s : TΣ → MK be
(Pn,Σ,MK)-recognizable for some n ∈ N. Then it is decidable whether supp(s) = ∅.

As particular case of Corollary 4.6, let us consider a complete lattice (V,∨,∧, 0, 1) with 0 and 1 as
smallest and largest elements, respectively. It is clear that V is a complete, zero-sum free, commutative,
and ∧-idempotent strong bimonoid. Thus, the ZGP of the monoid (V,∧, 1) is decidable. Then, Corollary
4.6 shows that, for every complete lattice (V,∨,∧, 0, 1) and (Pn,Σ,MV )-recognizable weighted tree
language s, it is decidable whether supp(s) = ∅.

Moreover, combining Theorem 4.4(1) and Lemma 3.4 we obtain the following result.

Corollary 4.7. Let S be finite and K a complete, zero-sum free, and commutative strong bimonoid such
that the ZGP of (K, ·, 1) is decidable. For every (S,Σ,MK)-rtg G, a Σ-rtg can effectively be constructed
which generates supp(||G||).

We finish this section by showing that, in general, the empty-support problem is not decidable. Let us
recall that B is the Boolean M-monoid.

Lemma 4.8. There is a storage type S and a ranked alphabet Σ such that the empty-support problem for
(S,Σ,B)-rtg is undecidable.

Proof: We reduce this decidability problem to the Post-correspondence problem. Let PCP =
(u1, v1) . . . (un, vn) be a Post-correspondence problem [Pos46] where ui, vi are non-empty strings over
some alphabet ∆ for each i ∈ [n]. We construct the storage type SPCP = (∆∗ × ∆∗, P, F, (ε, ε)) with
P = {equal, true∆∗×∆∗} and F = [n] where for each (u, v) ∈ ∆∗ ×∆∗ we define
• equal((u, v)) = 1 iff u = v

and for each i ∈ [n]:
• i((u, v)) = (uui, vvi).

We let Σ be the ranked alphabet with Σ = Σ(0) = {#}. We construct the (SPCP,Σ,B)-rtg G =
({Z}, Z,R,wt) with the following rules: Z(true∆∗×∆∗) → Z(i) for each i ∈ [n] and Z(equal) → #.
Moreover, the weight of each rule is 1.

Then it should be clear that [[G]] = 1.# if PCP has a solution, and 0̃ otherwise (where 0̃ : TΣ →MK is
the weighted tree language which maps each tree to 0). Hence supp([[G]]) 6= ∅ iff PCP has a solution.
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5 Decomposition results
In this section we will decompose the weighted tree language generated by an (S,Σ,K)-rtg in two dif-
ferent ways. As a combination of them, we can characterize elements of Reg(S,Σ,K) by elementary
concepts: a tree transformation, an alphabetic mapping, and a regular tree language.

First, we separate the storage and second we separate weights. For this we need the concept of be-
haviour on a tree ξ ∈ TΣ. Since we need this concept also in Section 7, we place its definition here (and
not inside Section 5.1). Intuitively, a behaviour on ξ is a tree that is obtained from ξ by adding to the label
of each position w a pair (p, f1 . . . fk) of predicate p and instructions f1, . . . , fk if w has k successors,
and inserting an arbitrarily long, but finite sequence of unary symbols of the form 〈(p, f), ∗〉 above each
position of ξ. Figure 4 gives a first rough impression (where the storage type is P1). A behaviour on ξ can
be seen as a trace of a derivation tree of an (S,Σ,K)-rtg for ξ in which the occurrences of nonterminals
are dropped; the unary symbols 〈(p, f), ∗〉 represent applications of chain rules.

Formally, let Σ be a ranked alphabet and P ′ ⊆ P and F ′ ⊆ F be finite sets. Moreover, let ∆ be the
ranked alphabet corresponding to Σ, P ′, and F ′ (cf. Section 2.4). Furthermore, let ∗ be a symbol of rank
1 such that ∗ 6∈ Σ. We define the Σ-extension of ∆, denoted by 〈∆,Σ〉, to be the ranked alphabet where
〈∆,Σ〉(1) = ∆(1) × (Σ(1) ∪ {∗}) and 〈∆,Σ〉(k) = ∆(k) × Σ(k) for k 6= 1.

Additionally, letR be the term rewriting system having the rules:

σ(x1, . . . , xk)→ 〈(p, f), ∗〉(σ(x1, . . . , xk)),

for every k ≥ 0, σ ∈ Σ(k), and (p, f) ∈ ∆(1), and
σ(x1, . . . , xk)→ 〈(p, f1 . . . fk), σ〉(x1, . . . , xk),

for every k ≥ 0, σ ∈ Σ(k), and (p, f1 . . . fk) ∈ ∆(k).

Then we define the mapping B∆ : TΣ → P(T〈∆,Σ〉) for each ξ ∈ TΣ by

B∆(ξ) = {ζ ∈ T〈∆,Σ〉 | ξ ⇒∗R ζ and pr1(ζ) ∈ B(∆)}

and we call the set B∆(ξ) the set of ∆-behaviours on ξ.
Let Θ = 〈∆,Σ〉 \ (∆(1) × {∗}). It is clear that, for each ξ ∈ TΣ and ζ ∈ B∆(ξ), there is a unique

bijection θ : pos(ξ) → posΘ(ζ) which preserves the lexicographic order, i.e., if w1 ≤lex w2, then
θ(w1) ≤lex θ(w2) for every w1, w2 ∈ pos(ξ). We denote this bijection by θξ,ζ . In Figure 4 we illustrate
a ∆-behaviour ζ on some tree ξ ∈ TΣ (for the storage type P1) and the bijection θξ,ζ .

5.1 Separating storage
Inspired by the decomposition of CFT(S)-transducers into an approximation and a macro tree transducer
(see [EV86, Thm. 3.26]), we can decompose an (S,Σ,K)-rtg into the mapping B∆ (for appropriate ∆)
and a (〈∆,Σ〉,K)-rtg.

Definition 5.1. Let G = (N,Z,R,wt) be an (S,Σ,K)-rtg. Moreover, let P ′ ⊆ P and F ′ ⊆ F be finite
subsets, ∆ the ranked alphabet corresponding to Σ, P ′ and F ′, and G′ = (N ′, Z ′, R′,wt′) a chain-free
(〈∆,Σ〉,K)-rtg. We say that G and G′ are related if
• ∆ = ∆G ,
• N = N ′ and Z = Z ′,
• there is a bijection between R and R′ such that the following holds:
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σ

δ

α

α

〈(top = γ0, push(γ)), ∗〉

〈(top = γ, push(γ) push(γ)), σ 〉

〈(top = γ, pop), ∗〉

〈(top = γ, pop), δ 〉

〈(top = γ0, ε), α 〉

〈(top = γ,push(γ)), ∗〉

〈(top = γ,pop), ∗〉

〈(top = γ,pop), ∗〉

〈(top = γ, ε), α 〉

Fig. 4: A tree ξ ∈ TΣ on the left side, an element ζ of B∆(ξ) on the right side for the ranked alphabet ∆ corresponding
to Σ, P ′ = {top = γ0, top = γ}, and F ′ = {push(γ), pop}, and the bijection θξ,ζ .

– r = (A(p)→ σ(B1(f1), . . . , Bk(fk))) in R corresponds to
r′ = (A→ 〈(p, f1 . . . fk), σ〉(B1, . . . , Bk)) in R′ and

– r = (A(p)→ B(f)) in R corresponds to
r′ = (A→ 〈(p, f), ∗〉(B) in R′;

– wt′(r′) = wt(r) for each r and r′ in this bijection.

Lemma 5.2. Let G be an (S,Σ,K)-rtg. Moreover, let P ′ ⊆ P and F ′ ⊆ F be finite subsets and ∆ the
ranked alphabet corresponding to Σ, P ′, and F ′. Also let G′ be a chain-free (〈∆,Σ〉,K)-rtg. If G and G′
are related, then [[G]] = B∆; [[G′]].

Proof: Let ξ ∈ TΣ. It is obvious that there is a one-to-one correspondence between the sets DG(ξ)
and {(ζ, d′) | ζ ∈ B∆(ξ), d′ ∈ DG′(ζ)}. Moreover, if d and (ζ, d′) correspond to each other, then
wt(d) = wt′(d′).

Then we can calculate as follows for each ξ ∈ TΣ:

[[G]](ξ) =
∑

d∈DG(ξ)

wt(d) =
∑

ζ∈B∆(ξ)

∑
d′∈DG′ (ζ)

wt′(d′)

=
∑

ζ∈B∆(ξ)

[[G′]](ζ) = (B∆; [[G′]])(ξ) .

Theorem 5.3. For every s : TΣ → K the following two statements are equivalent:
(i) s is (S,Σ,K)-regular.

(ii) There are finite sets P ′ ⊆ P and F ′ ⊆ F and there is a chain-free (〈∆,Σ〉,K)-rtg G such that ∆
is the ranked alphabet corresponding to Σ, P ′, and F ′ and s = B∆; [[G]].

Proof: “(i)⇒ (ii)”: Let G be a (S,Σ,K)-rtg. Then we can easily construct a chain-free (〈∆G ,Σ〉,K)-rtg
G′ such that G and G′ are related. Lemma 5.2 implies [[G]] = B∆G ; [[G′]].

“(ii) ⇒ (i)”: Let P ′ ⊆ P and F ′ ⊆ F be finite sets and ∆ be the ranked alphabet corresponding
to Σ, P ′, and F ′. Moreover, let G be a chain-free (〈∆,Σ〉,K)-rtg. Then we can easily construct an
(S,Σ,K)-rtg G′ such that G′ and G are related. Lemma 5.2 implies that B∆; [[G]] = [[G′]].
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5.2 Separating weights
Let Θ be a ranked alphabet and let h = (hk | 0 ≤ k ≤ maxrk(Θ)) be a family of mappings such that

h1 : Θ(1) → Ω(1) ∪ (Ω(1) × Σ(1)) and

hk : Θ(k) → Ω(k) × Σ(k) for k 6= 1 .

Then the alphabetic mapping induced by h is h′ : TΘ → K[TΣ] defined as follows: for every k ∈ N,
θ ∈ Θ(k), and ζ1, . . . , ζk ∈ TΘ we let

h′(θ(ζ1, . . . , ζk)) =

{
ω(a1).ξ1 if k = 1 and h1(θ) = ω

ω(a1, . . . , ak).σ(ξ1, . . . , ξk) if hk(θ) = (ω, σ),

where h′(ζi) = ai.ξi for each i ∈ [k]. In the sequel we identify h and h′. Now let L ⊆ TΘ. We define the
weighted tree language h(L) : TΣ → K by

h(L) =
∑
ζ∈L

h(ζ) .

The following theorem shows how to decompose an (S,Σ,K)-rtg into an alphabetic mapping and an
unambiguous and chain-free (S,Θ)-rtg. This theorem is inspired by [DV13, Lm. 3 and Lm. 4] and [HV15,
Th. 6] and uses the same proof technique.

Theorem 5.4. For every s : TΣ → K the following two statements are equivalent:
(i) s = [[G]] for some (S,Σ,K)-rtg G.

(ii) There are a ranked alphabet Θ, an unambiguous and chain-free (S,Θ)-rtg H, and an alphabetic
mapping h : TΘ → K[TΣ] such that s = h(L(H)).

Moreover, if in (i) G is chain-free, then in (ii) h1(Θ(1)) ⊆ Ω(1) × Σ(1), and vice versa.

Proof: (i)⇒(ii): Let G = (N,Z,R,wt). As before we view R as ranked alphabet by associating rank k
with a rule r ∈ R if its right-hand side contains k nonterminal occurrences. We choose Θ = R. Moreover,
we letH = (N,Z,R′) be the (S,R)-rtg and h : TR → K[TΣ] be the alphabetic mapping such that
• if r = (A(p)→ σ(A1(f1), . . . , Ak(fk))) is in R, then let
r′ = (A(p)→ r(A1(f1), . . . , Ak(fk))) be in R′ and hk(r) = (wt(r), σ), and

• if r = (A(p)→ B(f)) is in R, then let r′ = (A(p)→ r(B(f)) be in R′ and h1(r) = wt(r).
If G is chain-free, then h1(R(1)) ⊆ Ω(1) × Σ(1). Obviously, H is chain-free. It is also easy to see that
H is unambiguous because the tree relabeling µ : TR → TR′ defined by the correspondence r 7→ r′ is a
bijection and, for every d ∈ L(H), the only derivation tree ofH for d is µ(d). Moreover,

L(H) =
⋃
ξ∈TΣ

DG(ξ). (†)

In fact, each d ∈ L(H) is a derivation tree of G for π(d), where π : TR → TΣ is the mapping defined on
page 10. Moreover, if d ∈ DG(ξ) for some ξ ∈ TΣ, then µ(d) ∈ TR′ is the (only) derivation tree ofH for
d, hence d ∈ L(H). Finally, we note that for every d ∈ L(H) and ξ ∈ TΣ we have

(h(d))(ξ) =

{
wt(d) if d ∈ DG(ξ)

0 otherwise.
(∗)
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Then we have

[[G]](ξ) =
∑

d∈DG(ξ)

wt(d) =
∑

d∈L(H) : d∈DG(ξ)

(h(d))(ξ) =
∑

d∈L(H)

(h(d))(ξ) = (h(L(H)))(ξ)

where the second equality is justified by (†) and (∗).
(ii)⇒(i): Let H = (N ′, Z ′, R′) be an unambiguous chain-free (S,Θ)-rtg and let h : TΘ → K[TΣ]

be an alphabetic mapping. We construct an (S,Σ,K)-rtg G such that [[G]] = h(L(H)). The idea for
the construction is to code the preimage of h in the nonterminals of G as in [DV13, Lm. 4]. We let
G = (N,Z,R,wt) with N = N ′ ×Θ, Z = Z ′ ×Θ and R and wt are defined as follows.
• If A(p) → θ(A1(f1), . . . , Ak(fk)) is in R′ with h(θ) = (ω, σ), then for every θ1, . . . , θk ∈ Θ the

rule r = ((A, θ)(p)→ σ((A1, θ1)(f1), . . . , (Ak, θk)(fk))) is in R and wt(r) = ω.
• If A(p) → θ(A1(f1)) is in R′ with h(θ) = ω, then for every θ1 ∈ Θ the rule r = ((A, θ)(p) →

(A1, θ1)(f1)) is in R and wt(r) = ω.
If h1(Θ(1)) ⊆ Ω(1) × Σ(1), then G is chain-free.

For every ζ ∈ L(H) let us denote by dH(ζ) the unique derivation tree of H for ζ (note that H is
unambiguous). Moreover, for every ξ ∈ TΣ, let us denote by DH(h−1(ξ)) the set

{dH(ζ) | ζ ∈ L(H), h(ζ)(ξ) 6= 0}.

Let d = dH(ζ), for some ζ ∈ L(H), and let d′ ∈ DG(ξ). We say that d corresponds to d′ if pos(d) =
pos(d′) and for each w ∈ pos(d):
• if d(w) = (A(p) → θ(A1(f1), . . . , Ak(fk))) with h(θ) = (ω, σ), then d′(w) = ((A, θ)(p) →
σ((A1, ζ(w1))(f1), . . . , (Ak, ζ(wk))(fk))), and
• if d(w) = (A(p)→ θ(B(f))) with h(θ) = ω, then d′(w) = ((A, θ)(p)→ (B, ζ(w1))).

It is not hard to see that the above correspondence is a bijection between DH(h−1(ξ)) and {d′ ∈ DG(ξ) |
wt(d′) 6= 0} for every ξ ∈ TΣ. Moreover, if dH(ζ) corresponds to d′, then wt(d′) = (h(ζ))(ξ). Then,
for every ξ ∈ TΣ, we have

(h(L(H)))(ξ) =
∑

ζ∈L(H)

(h(ζ))(ξ) =
∑

ζ∈L(H):
h(ζ)(ξ)6=0

(h(ζ))(ξ) =(†)
∑

ζ∈L(H):

dH(ζ)∈DH(h−1(ξ))

(h(ζ))(ξ)

=(∗)
∑

d′∈DG(ξ):
wt(d′)6=0

wt(d′) =
∑

d′∈DG(ξ)

wt(d′) = [[G]](ξ),

where (†) holds because for ζ ∈ L(H) we have (h(ζ))(ξ) = 0 if dH(ζ) 6∈ DH(h−1(ξ)); and (∗) holds
due to the bijection described above.

Now we can prove that, even in the weighted case, we can eliminate finite storage types.

Corollary 5.5. Let S be finite.
1. Reg(S,Σ,K) ⊆ Reg(Σ,K) and Regnc(S,Σ,K) ⊆ Regnc(Σ,K).
2. If Strue,id = S, then Reg(Σ,K) ⊆ Reg(S,Σ,K) and Regnc(Σ,K) ⊆ Regnc(S,Σ,K).

Proof: First we prove 1. Let G be an (S,Σ,K)-rtg. By Theorem 5.4(i)⇒(ii), there are a ranked alphabet
Θ, an unambiguous and chain-free (S,Θ)-rtg H, and an alphabetic mapping h : TΘ → K[TΣ] such that
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s = h(L(H)). By Lemma 3.4 there is a Θ-rtgH′ such thatL(H) = L(H′). Moreover,H′ is unambiguous
and chain-free. Hence, by Theorem 5.4(ii)⇒(i) (with S = TRIV), we obtain that s ∈ Reg(Σ,K).

Now let, additionally, G be chain-free. Then h1(Θ(1)) ⊆ Ω(1) × Σ(1) and thus, by the same argumen-
tation as above, we obtain that s ∈ Regnc(Σ,K).

Next we prove 2. Let G = (N,Z,R,wt) be a (Σ,K)-rtg. Then we construct the (S,Σ,K)-rtg G′ =
(N,Z,R′,wt′) such that
• if r = (A→ σ(A1, . . . , Ak)) is a rule in R,

then r′ = (A(trueC)→ σ(A1(idC), . . . , Ak(idC))) is in R′,
• if r = (A→ B) is a rule in R,

then r′ = (A(trueC)→ B(idC)) is in R′, and
• in both cases we let wt′(r′) = wt(r).

If G is chain-free, then so is G′. For each ξ ∈ TΣ, there is a bijection θ : DG(ξ) → DG′(ξ) such that
wt′(θ(d)) = wt(d) for each d ∈ DG(ξ). This implies that [[G′]] = [[G]].

From Corollary 5.5 we immediately obtain the following result.

Corollary 5.6. If S is finite and Strue,id = S, then Reg(S,Σ,K) = Reg(Σ,K) and Regnc(S,Σ,K) =
Regnc(Σ,K).

5.3 Combination of separation results
In this section we combine the separation of storage with the separation of weights. In this way, we
can characterize each element in Reg(S,Σ,K) by elementary concepts: a tree transformation B∆, an
alphabetic mapping h, and an element in Reg(Θ).

Theorem 5.7. For every s : TΣ → K the following two statements are equivalent:
(i) s is (S,Σ,K)-regular.

(ii) s = B∆;h(L(H)) for some finite sets P ′ ⊆ P , F ′ ⊆ F , ranked alphabet ∆ corresponding to Σ,
P ′, and F ′, ranked alphabet Θ, unambiguous and chain-free Θ-rtg H, and alphabetic mapping
h : TΘ → K[T〈∆,Σ〉].

Proof: (i) ⇒ (ii): By Theorem 5.3 there are finite sets P ′ ⊆ P and F ′ ⊆ F and there is a chain-free
(〈∆,Σ〉,K)-rtg G such that ∆ is the ranked alphabet corresponding to Σ, P ′, and F ′ and s = B∆; [[G]].

According to Theorem 5.4 there are a ranked alphabet Θ, an unambiguous and chain-free Θ-rtgH, and
an alphabetic mapping h : TΘ → K[T〈∆,Σ〉] such that [[G]] = h(L(H)).

(ii)⇒ (i): By Theorem 5.4 we have that h(L(H)) is (〈∆,Σ〉,K)-recognizable. Then, by Theorem 5.3,
B∆;h(L(H)) is (S,Σ,K)-recognizable.

Example 5.8. Here we show a slightly more complex example of a weighted tree language s, we show a
weighted regular tree grammar G with storage, and we apply the decompositions inherent in the proof of
Theorem 5.7 to G in order to show that s = [[G]].

First, we define the weighted tree language s. For this, we let Σ = {σ(2), δ(2),#(0)}. Roughly speak-
ing, the mapping s maps each tree ξ ∈ TΣ to its degree of unbalancedness [SVF09, Example 1] if ξ has
the following path property, and to 0 otherwise. A tree ξ has the path property if, for each position w of
ξ, the number of occurrences of σ’s above w or at w is greater than or equal to the number of occurrences
of δ’s above w or at w.
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The degree of unbalancedness is formalized as follows. For each tree ξ ∈ TΣ and each w ∈ pos(ξ) we
define

ubal(ξ, w) =

{
|height(ξ|w1)− height(ξ|w2)| if ξ(w) ∈ {σ, δ},
0 otherwise,

and we define ubal(ξ) = max(ubal(ξ, w) | w ∈ pos(ξ)), which is the degree of unbalancedness of ξ.
(At the end of this example we will use ubal for another ranked alphabet.)

The path property can be captured by the formal string language

L = {w ∈ {σ, δ}∗{#} | ∀u ∈ {σ, δ}∗{#} : if u � w, then |u|σ ≥ |u|δ} .

Then we define the weighted tree language s : TΣ → N for each ξ ∈ TΣ by

s(ξ) =

{
ubal(ξ) if path(ξ) ⊆ L,
0 otherwise.

Second, we define a (COUNT,Σ,Kmax)-rtg G (for some specific M-monoid Kmax) which generates
s (cf. Section 2.4 for the definition of COUNT; we abbreviate the predicate trueN by true). For this, we
define the complete M-monoid

Kmax = (N ∪ {∞},max, 0,Ω)

where max is extended to maximum over countable index sets in the obvious way. Moreover, we let

Ω = {0k | k ∈ N} ∪ {10} ∪ {π(2)
1 , π

(2)
2 ,diff(2),ht(2)}

where 10 is the 0-ary function defined by 10() = 1, and for every a, b ∈ N ∪ {∞} we define the binary
operations by case analysis as follows.

Case 1: If a = 0 or b = 0, then π1(a, b) = π2(a, b) = diff(a, b) = ht(a, b) = 0. (These definitions
guarantee that each binary operation of Ω is absorptive.)

Case 2: If a ∈ N \ {0} and b ∈ N \ {0}, then π1(a, b) = a, π2(a, b) = b, diff(a, b) = |a − b|, and
ht(a, b) = 1 + max(a, b).

Case 3: Otherwise we define π1(a, b), π2(a, b), diff(a, b), and ht(a, b) arbitrarily.
We note that Cases 1 and 3 will not occur in computations in our example.
Now we construct the (COUNT,Σ,Kmax)-rtg G = (N,U,R,wt) with the following intuition. As in

[SVF09, Example 1], we use two nonterminals, i.e., N = {H,U}, such that for each tree ξ ∈ TΣ and
derivation tree d of ξ, there is exactly one position w ∈ pos(d) such that at w and each of its predecessors
a rule with left-hand side nonterminal U is applied and at each other position a rule with left-hand side
nonterminal H is applied. Then the weight of this derivation tree is ubal(ξ, w). Since the position w is
chosen nondeterministically, the value max(ubal(ξ, w) | w ∈ pos(ξ)) is computed, which is the degree
of unbalancedness of the whole tree ξ. The path property is checked by using the storage COUNT: on
each generation of a σ-labeled position, the counter is incremented, and on each generation of a δ-labeled
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U(true)→ σ (U(inc), H(inc))

U(true)→ δ (H(dec), H(dec))

H(true)→ # H(true)→ σ (H(inc), H(inc))

H(true)→ # H(true)→ #

H(true)→ #

Fig. 5: A derivation tree d ∈ DG(ξ) for the tree ξ = σ(δ(#, σ(#,#)),#).

position it is decremented.

r1 : H(true)→ # , 10 r2 : U(true)→ # , 00

r3 : H(true)→ σ(H(inc), H(inc)) , ht r4 : U(true)→ σ(H(inc), H(inc)) , diff

r5 : U(true)→ σ(H(inc), U(inc)) , pr2 r6 : U(true)→ σ(U(inc), H(inc)) , pr1

r7 : H(true)→ δ(H(dec), H(dec)) , ht r8 : U(true)→ δ(H(dec), H(dec)) , diff

r9 : U(true)→ δ(H(dec), U(dec)) , pr2 r10 : U(true)→ δ(U(dec), H(dec)) , pr1 .

Indeed, the grammar G does not use the predicate zero. In Figure 5 we show a derivation tree d of G
for the tree ξ = σ(δ(#, σ(#,#)),#) with wt(d) = 1.

Third, we apply to the (COUNT,Σ,Kmax)-rtg G the decompositions that are inherent in the proof of
Theorem 5.7 consecutively, i.e., the separation of the storage (cf. Theorem 5.3(i)⇒(ii)) and the separation
of the weights (cf. Theorem 5.4(i)⇒(ii)). Since we use the storage to check the path property and the
weights to calculate the degree of unbalancedness, Theorem 5.7 suggests that we can prove s = [[G]] in
two independent steps. For this, let ξ ∈ TΣ.

Step 1: Applying the construction of the storage separation theorem (cf. Theorem 5.3(i)⇒(ii)), we
obtain the following objects:

1. the ranked alphabet ∆G corresponding to G with P ′ = {true}, F ′ = {inc,dec}, and

∆G = {(true, ε)(0)} ∪ {(true, f)(1) | f ∈ F ′} ∪ {(true, f1f2)(2) | f1, f2 ∈ F ′} and

2. the chain-free (〈∆G ,Σ〉,Kmax)-rtg G′ = (N,U,R′,wt′) where R′ consists of rules derived from
R by using enriched terminal symbols instead of storage predicates and instructions, e.g., the rule

r3 : H(true)→ σ(H(inc), H(inc))

of G is transformed into the rule

r′3 : H → 〈(true, inc inc), σ〉(H,H)

of G′ with wt′(r′3) = wt(r3). It is obvious how the other rules of R′ and wt′ look like.
It is easy to see that supp([[G′]]) ⊆ TΨ where Ψ ⊆ 〈∆G ,Σ〉 is the ranked alphabet

Ψ = {〈(true, ε),#〉(0), 〈(true, inc inc), σ〉(2), 〈(true,dec dec), δ〉(2)} .
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〈(true, inc inc), σ〉

〈(true, dec dec), δ〉

〈(true, ε),#〉 〈(true, inc inc), σ〉

〈(true, ε),#〉 〈(true, ε),#〉

〈(true, ε),#〉

Fig. 6: The tree ζξ ∈ B∆G (ξ) ∩ TΨ for the tree ξ = σ(δ(#, σ(#,#)),#).

By Theorem 5.3(i)⇒(ii) and the fact that supp([[G′]]) ⊆ TΨ, we have

[[G]](ξ) = max([[G′]](ζ) | ζ ∈ B∆G (ξ)) = max([[G′]](ζ) | ζ ∈ B∆G (ξ) ∩ TΨ) .

We distinguish two cases. First, let B∆G (ξ) ∩ TΨ = ∅. Then [[G]](ξ) = max([[G′]](ζ) | ζ ∈ ∅) = 0.
Moreover, there is no behaviour b ∈ B(∆G) such that pos(b) = pos(ξ) and b increments at σ-labeled
positions of ξ and decrements at δ-labeled positions of ξ. In other words, ξ does not have the path
property. Hence s(ξ) = 0 and thus [[G]](ξ) = s(ξ).

Now let B∆G (ξ)∩TΨ 6= ∅. For each ζ ∈ B∆G (ξ)∩TΨ, we have that pos(ξ) = pos(ζ), because G does
not have chain rules. Moreover, due to the definition of the mapping B∆G , the set B∆G (ξ) ∩ TΨ has one
element, denoted by, say ζξ, that is defined for each w ∈ pos(ξ) by

ζξ(w) =

 〈(true, inc inc), σ〉 if ξ(w) = σ
〈(true,dec dec), δ〉 if ξ(w) = δ
〈(true, ε),#〉 if ξ(w) = # .

Figure 6 shows ζξ for the tree ξ = σ(δ(#, σ(#,#)),#). Thus,

[[G]](ξ) = [[G′]](ζξ) .

Since pr1(ζξ) is a ∆G-behaviour, we can consider the family (cw | w ∈ pos(pr1(ζξ))) of configurations
determined by pr1(ζξ) and 0 (the initial configuration of COUNT). Then, by definition, cw ≥ 0 for each
w ∈ pos(pr1(ζξ)). Moreover, it is easy to see that cw is the difference between the number of occurrences
of σ above w or at w and the number of occurrences of δ above w or at w. Hence, ξ has the path property.

Step 2: It remains to prove that, if ξ has the path property, then [[G]](ξ) = ubal(ξ). So let ξ ∈ TΣ and
ξ have the path property. Applying the construction of the weight separation theorem to G′ (cf. Theorem
5.4(i)⇒(ii)), we obtain the following objects:

1. the ranked alphabet Θ, i.e., Θ = {r′(0)
1 , r

′(0)
2 } ∪ {r′(2)

i | 3 ≤ i ≤ 10},
2. the unambiguous and chain-free Θ-rtg H = (N,U,R′′) and the alphabetic mapping h : TΘ →
K[TΣ] where R′′ contains the following rules; for each rule r′′i we have indicated the pair hj(r′′i )
(for appropriate rank j ∈ {0, 2}) after the comma.

r′′1 : H → r′1, (1, 〈(true, ε),#〉) r′′2 : U → r′2, (1, 〈(true, ε),#〉)
r′′3 : H → r′3(H,H), (ht, 〈(true, inc inc), σ〉) r′′4 : U → r′4(H,H), (diff, 〈(true, inc inc), σ〉)
r′′5 : U → r′5(H,U), (pr2, 〈(true, inc inc), σ〉) r′′6 : U → r′6(U,H), (pr1, 〈(true, inc inc), σ〉)
r′′7 : H → r′7(H,H), (ht, 〈(true,dec dec), δ〉) r′′8 : U → r′8(H,H), (diff, 〈(true,dec dec), δ〉)
r′′9 : U → r′9(H,U), (pr2, 〈(true,dec dec), δ〉) r′′10 : U → r′10(U,H), (pr1, 〈(true,dec dec), δ〉).
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U → 〈(true, inc inc), σ〉
(
U,H

)
U → 〈(true, dec dec), δ〉

(
H,H

)
H → 〈(true, ε),#〉 H → 〈(true, inc inc), σ〉

(
H,H

)
H → 〈(true, ε),#〉 H → 〈(true, ε),#〉

H → 〈(true, ε),#〉

Fig. 7: The tree dw ∈ TΦ for w = 1 and ζξ of Figure 6; w is indicated by the grey shaded nonterminals.

According to Theorem 5.4(i)⇒(ii), we have that

[[G′]](ζξ) = max(h(d)(ζξ) | d ∈ L(H)) .

Let d ∈ L(H). As shown in the proof of Theorem 5.4(i)⇒(ii), the tree d is a derivation tree of G′ for
π(d) (where π is the mapping defined on page 10). If π(d) 6= ζξ, then h(d)(ζξ) = 0 by definition of h.
Thus we have

[[G′]](ζξ) = max(h(d)(ζξ) | d ∈ L(H) ∩ π−1(ζξ)) .

We note that pos(d) = pos(ζξ) = pos(ξ) for each d ∈ L(H) ∩ π−1(ζξ).
Due to the behaviour of the nonterminals in H, each tree in L(H) ∩ π−1(ζξ) has a particular shape.

More precisely,
L(H) ∩ π−1(ζξ) = {dw | w ∈ pos(ζξ)}

where, for each w ∈ pos(ζξ), we define the tree dw ∈ TΘ such that pos(dw) = pos(ζξ) and, for each
v ∈ pos(dw), we have

dw(v) =



U → (ζξ(v))
(
U,H

)
if (∃u ∈ N∗) : w = v1u

U → (ζξ(v))
(
H,U

)
if (∃u ∈ N∗) : w = v2u

U → (ζξ(v))
(
H,H

)
if v = w and v is not a leaf

U → ζξ(v) if v = w and v is a leaf

H → (ζξ(v))
(
H,H

)
if v is not a leaf and (v 6� w or ∃u ∈ N+ : v = wu)

H → ζξ(v) if v is a leaf and (v 6� w or ∃u ∈ N+ : v = wu) .

Figure 7 shows the tree dw ∈ L(H) ∩ π−1(ζξ) for w = 1 and ζξ as shown in Figure 6.
Hence

[[G′]](ζξ) = max(h(dw)(ζξ) | w ∈ pos(ζξ)) .

Due to the definition of h it is also obvious that, for each w ∈ pos(ζξ),

h(dw|w1)(ζξ|w1) = height(ζξ|w1),

h(dw|w2)(ζξ|w2) = height(ζξ|w2),

h(dw|w)(ζξ|w) = diff(height(ζξ|w1),height(ζξ|w2)) = ubal(ζξ, w),

h(dw)(ζξ) = ubal(ζξ, w)
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where we have used here ubal for the ranked alphabet Ψ.

[[G′]](ζξ) = max(ubal(ζξ, w) | w ∈ pos(ζξ)) = ubal(ζξ) .

Finally, we have [[G]](ξ) = [[G′]](ζξ) = ubal(ζξ) = ubal(ξ) = s(ξ), where the last but one equation
holds because pos(ζξ) = pos(ξ).

6 Elimination of chain rules
It is well known that, for each (Σ,MK)-rtg where K is a complete semiring, an equivalent chain-free
(Σ,K)-rtg can be constructed [ÉK03, FMV09] by solving the corresponding classical algebraic path
problem [Rot85]. This is not true if we consider non-trivial storage types as the following theorem shows.

Theorem 6.1. Reg(P1,Σ) \
⋃
S Regnc(S,Σ) 6= ∅ where S ranges over the set of all storage types.

Proof: Let Σ = {α(0), δ(1), σ(2)}. The tree language

L = {σ(δn(α), δn(α)) | n ≥ 0}

is in Reg(P1,Σ), because it can be generated by the (P1,Σ)-grammar which we obtain from G of Example
3.1 by dropping its weight structure and weight function (cf. [Gue83]).

On the other hand, we can show by contradiction that L 6∈ Regnc(S,Σ) for any storage type S. For this,
we assume that there is a storage type S and a chain-free (S,Σ)-rtg G = (N,Z,R) such that L(G) = L.
By Lemma 3.2 we can assume that Z is a single nonterminal. There are finitely many σ-rules in R, i.e.,
rules of the form

r = (Z(p)→ σ(A(f), B(g))) . (1)

Since L is infinite, there is a σ-rule which is the root of some d ∈ DG(σ(δn(α), δn(α))) for infinitely
many n’s. Let (1) be such a rule. Then p(c0) = true and f(c0) and g(c0) are defined (where c0 is the
initial configuration of S), and there are
• integers n,m ∈ N with n 6= m,
• (A, f(c0))-derivation trees dn, dm for δn(α), δm(α), respectively,
• (B, g(c0))-derivation trees d′n, d

′
m for δn(α), δm(α), respectively,

such that r(dn, d′n) ∈ DG(σ(δn(α), δn(α))) and r(dm, d
′
m) ∈ DG(σ(δm(α), δm(α))). But then

r(dn, d
′
m) ∈ DG(σ(δn(α), δm(α))) and hence σ(δn(α), δm(α)) ∈ L with m 6= n. This is a contra-

diction to L = {σ(δn(α), δn(α)) | n ≥ 0}.

Thus, in general, chain rules cannot be eliminated from (S,Σ,K)-rtg (even if K = B). But we can
eliminate chain rules for particular (S,Σ,K)-rtg, which we will call ’simple’. There is another problem
which concerns the weight algebra. For (Σ,MK)-rtg where K is a complete semiring, the eliminiation
typically uses elements a∗ ∈ K (for some a ∈ K) to capture the weight of cycles of chain rules. Here
a∗ is the sum of all powers an of a and the powers are defined by the multiplication of the semiring. In
our setting we deal with M-monoids and, instead of the binary multiplication, we have operations with
different arities. Thus, we will have to guarantee that the M-monoid is closed under iterated composition
of operations. Let us now formalize these requirements on the (S,Σ,K)-rtg and on the M-monoid.
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We call an (S,Σ,K)-rtg simple if for each chain rule A(p)→ B(f) we have p = trueC and f = idC .
Let Regsimple(S,Σ,K) denote the class of all weighted tree languages generated by simple (S,Σ,K)-
rtgs.

Now we introduce the necessary closure properties of K. An operation ω ∈ Ops(k)(K) for k ≥ 1 is
completely distributive if

ω(
∑
i1∈I1

ai1 , . . . ,
∑
ik∈Ik

aik) =
∑
i1∈I1

. . .
∑
ik∈Ik

ω(ai1 , . . . , aik)

for all countable index sets Ij and family (aij ∈ K | ij ∈ Ij), j ∈ [k]. We say that K is completely
distributive if each operation in Ω is completely distributive. (This concept was introduced as complete
DM-monoid in [Kui98], cf. also [ÉK03].)

Let k ≥ 0, I be a countable index set, and (ωi ∈ Ops(k)(K) | i ∈ I) a family of operations. We define
the operation

∑
i∈I ωi ∈ Ops(k)(K) by letting(∑

i∈I
ωi
)
(a1, . . . , ak) =

∑
i∈I

ωi(a1, . . . , ak)

for every a1, . . . , ak ∈ K. We say that K is completely 1-sum closed if
∑
i∈I ωi ∈ Ω(1) for every

countable index set I and family (ωi ∈ Ω(1) | i ∈ I).
Let ω ∈ Ops(1)(K) and ω′ ∈ Ops(k)(K) for some k ≥ 0. The composition of ω and ω′ is the operation

ω ◦ω′ ∈ Ops(k) defined by (ω ◦ω′)(a1, . . . , ak) = ω(ω′(a1, . . . , ak)) for every a1, . . . , ak ∈ K. We say
that K is (1, k)-composition closed if ω ◦ ω′ ∈ Ω(k) for every ω ∈ Ω(1) and ω′ ∈ Ω(k). Moreover, K is
(1, ∗)-composition closed if it is (1, k)-composition closed for every k ≥ 0 (cf. [FMV09, Def. 4.3]).

The following statement follows easily from the corresponding definitions.

Observation 6.2. For every countable index set I , family (ωi ∈ Ops(1)(K) | i ∈ I), k ≥ 0, and
ω ∈ Ops(k)(K), we have

∑
i∈I(ωi ◦ ω) =

(∑
i∈I ωi

)
◦ ω.

Let N be a finite set. Moreover, let V and W be (N × N)-matrices over Ops(1)(K). We define the
product V ·W of V and W by (V ·W )A,B =

∑
C∈N VA,C ◦WC,B for every A,B ∈ N . Note that,

although the setN is not ordered, the expression
∑
C∈N VA,C ◦WC,B is well defined, because the monoid

(Ops(1)(K),+, 0) is commutative. Moreover, for every n ≥ 0 we define the (N × N)-matrix Wn over
Ops(1)(K) by induction as follows: let W 0 = E and Wn = W ·Wn−1 for every n ≥ 1, where E is the
unit matrix over Ops(1)(K) defined by EA,B = idK if A = B and 01 otherwise for every A,B ∈ N .
Finally, we define W ∗ =

∑
n≥0W

n, where
(∑

n≥0W
n
)
A,B

=
∑
n≥0W

n
A,B for every A,B ∈ N .

Finally, we say that K has identity if idK ∈ Ω(1).
We call K compressible if it has identity, it is (1, ∗)-composition closed, completely 1-sum closed, and

completely distributive. Each M-monoid associated with a complete semiring is compressible. The fact
that such an M-monoid is completely 1-sum closed and completely distributive can be derived from the
generalized distributivity law of the complete semiring. In particular, the Boolean M-monoid is compress-
ible.

First we show that if K is compressible and S contains the always true predicate and the identity
instruction, then chain rules can be eliminated from simple (S,Σ,K)-rtgs.
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Similar results for the elimination of chain rules (or ε-transitions) in the weighted case have been proved
in [ÉK03, Thm. 3.2] and [FMV11, Lm. 3.2]. In fact, in [ÉK03, Thm. 3.2] it was shown that ε-transitions
can be eliminated from weighted tree automata over commutative and continuous semirings. The same
was shown for weighted tree automata over commutative and complete semirings in [FMV11, Lm. 3.2].
The second result generalizes the first because any continuous semiring is complete [ÉK03, Prop. 2.2].
The next lemma generalizes further [FMV11, Lm. 3.2] because simple (S,Σ,K)-rtgs, where K is a
compressible M-monoid, generalize weighted tree automata over commutative and complete semirings.

Theorem 6.3. If Strue,id = S and K is compressible, then Regsimple(S,Σ,K) = Regnc(S,Σ,K).

Proof: Since each chain-free (S,Σ,K)-rtg is simple, we only have to prove Regsimple(S,Σ,K) ⊆
Regnc(S,Σ,K). Let G = (N,Z,R,wt) be a simple (S,Σ,K)-rtg. Recall that PG and FG are the fi-
nite sets of predicates and instructions, respectively, which occur in G. Without loss of generality we
can assume that for each k ∈ N, σ ∈ Σ(k), A,B1, . . . , Bk ∈ N , p ∈ PG , and f1, . . . , fk ∈ FG , there
is a rule r = (A(p) → σ(B1(f1), . . . , Bk(fk))) in R. If there is no such rule, then we can add it
to R and let wt(r) = 0k. In a similar way, we can assume that for each A,A′ ∈ N there is a rule
r = (A(trueC)→ A′(idC)) in R.

We let W be the (N ×N)-matrix over Ω(1) such that

WA,A′ = wt(A(trueC)→ A′(idC))

for each A,A′ ∈ N .
We construct the chain-free (S,Σ,K)-rtg G′ = (N,Z,R′,wt′) as follows. For each k ∈ N, σ ∈ Σ(k),

A,B1, . . . , Bk ∈ N , p ∈ PG , and f1, . . . , fk ∈ FG there is a rule r′ = (A(p)→ σ(B1(f1), . . . , Bk(fk)))
in R′ and

wt′(r′) =
∑
A′∈N

(
(W ∗)A,A′ ◦ wt(A′(p)→ σ(B1(f1), . . . , Bk(fk)))

)
.

SinceK has identity, it is (1,1)-composition closed, and completely 1-sum closed, each entry of the matrix
W ∗ is in Ω(1). Moreover, since K is (1, k)-composition closed, the right-hand side of the above equality
is an operation in Ω(k). Hence, wt′(r′) is well defined.

We define the family eff = (effA,ξ,c | ξ ∈ TΣ, A ∈ N, c ∈ C) of mappings

effA,ξ,c : DG(A, ξ, c)→ DG′(A, ξ, c)

as follows. Let ξ = σ(ξ1, . . . , ξk) and d ∈ DG(A, ξ, c). Then
• there are n ≥ 0 and rules r1 = (A1(trueC) → A2(idC)), . . . , rn = (An(trueC) → An+1(idC)),

and An+1(p)→ σ(B1(f1), . . . , Bk(fk)) in R such that p(c) = true and
• for each i ∈ [k] the function fi is defined on c and there is a derivation tree di ∈ DG(Bi, ξi, fi(c))

such that
d = r1 . . . rn(An+1(p)→ σ(B1(f1), . . . , Bk(fk)))

(
d1, . . . , dk

)
.

We define
effA,ξ,c(d) = (A1(p)→ σ(B1(f1), . . . , Bk(fk)))(d′1, . . . , d

′
k),

where d′i = effBi,ξi,fi(c)(di) for each i ∈ [k]. Note that lhsN (d′i(ε)) = Bi.
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Then we can prove:

[[G]](ξ) =
∑

d∈DG(ξ)

wt(d) =
∑
A∈Z

∑
d∈DG(A,ξ,c0)

wt(d)

=
∑
A∈Z

∑
d′∈DG′ (A,ξ,c0)

∑
d∈DG(A,ξ,c0):
effA,ξ,c0 (d)=d′

wt(d)

=(∗)
∑
A∈Z

∑
d′∈DG′ (A,ξ,c0)

wt′(d′) =
∑

d′∈DG′ (ξ)

wt′(d′) = [[G′]](ξ) .

At (∗) we have used the following statement: for each ξ ∈ TΣ, A ∈ N , c ∈ C, and d′ ∈ DG′(A, ξ, c):∑
d∈DG(A,ξ,c):
effA,ξ,c(d)=d′

wt(d) = wt′(d′) .

We prove this statement by induction on ξ. We only show the induction step because it contains the base
of the induction.

Let ξ = σ(ξ1, . . . , ξk) for some k ∈ N. Let A ∈ N , c ∈ C, and d′ ∈ DG′(A, ξ, c). Then
• there is a rule r′ = (A(p) → σ(B1(f1), . . . , Bk(fk))) in R′ such that p(c) = true and fi(c) is

defined and
• for each i ∈ [k] there is a d′i ∈ DG′(Bi, ξi, fi(c))

such that d′ = r′(d′1, . . . , d
′
k). Then we can calculate as follows (by abbreviating wt(B(trueC) →

B′(idC)) by wt(B,B′) and wt(B(p)→ σ(B1(f1), . . . , Bk(fk))) by wt(B(p), σ(B1(f1) . . . , Bk(fk)));
moreover, we use©n

j=1ωj to denote the composition ω1 ◦ . . . ◦ ωn of n unary operations):∑
d∈DG(A,ξ,c):

effA,ξ,c(d)=r′(d′1,...,d
′
k)

wt(d)

=
∑
n∈N

∑
A1,...,An+1∈N :

A1=A

∑
d1∈DG(B1,ξ1,f1(c)),...,dk∈DG(Bk,ξk,fk(c)):

∀i∈[k]:effBi,ξi,fi(c)(di)=d
′
i

©n
j=1 wt(Aj , Aj+1) ◦ wt(An+1(p), σ(B1(f1), . . . , Bk(fk)))

(
wt(d1), . . . ,wt(dk)

)
=
∑
n∈N

∑
A1,...,An+1∈N :

A1=A

©n
j=1wt(Aj , Aj+1) ◦ wt(An+1(p), σ(B1(f1), . . . , Bk(fk)))( ∑

d1∈DG(B1,ξ1,f1(c)):
effB1,ξ1,f1(c)(d1)=d′1

wt(d1), . . . ,
∑

dk∈DG(Bk,ξk,fk(c)):
effBk,ξk,fk(c)(dk)=d′k

wt(dk)
)

(because K is completely distributive)
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=
∑
n∈N

∑
A1,...,An+1∈N :

A1=A

©n
j=1wt(Aj , Aj+1) ◦ wt(An+1(p), σ(B1(f1), . . . , Bk(fk)))(

wt′(d′1), . . . ,wt′(d′k)
)

(due to I.H.)

=
∑
A′∈N

∑
n∈N

∑
A1,...,An+1∈N :
A1=A,An+1=A′

©n
j=1wt(Aj , Aj+1) ◦ wt(A′(p), σ(B1(f1), . . . , Bk(fk)))(

wt′(d′1), . . . ,wt′(d′k)
)

(by renaming of An+1 by A′)

=
∑
A′∈N

((∑
n∈N

∑
A1,...,An+1∈N :
A1=A,An+1=A′

©n
j=1wt(Aj , Aj+1)

)
◦ wt(A′(p), σ(B1(f1), . . . , Bk(fk)))

)
(

wt′(d′1), . . . ,wt′(d′k)
)

(by Observation 6.2)

=
∑
A′∈N

((∑
n∈N

(Wn)A,A′
)
◦ wt(A′(p), σ(B1(f1), . . . , Bk(fk)))

)(
wt′(d′1), . . . ,wt′(d′k)

)
(by definition of Wn)

=
∑
A′∈N

(
(W ∗)A,A′ ◦ wt(A′(p), σ(B1(f1), . . . , Bk(fk)))

)(
wt′(d′1), . . . ,wt′(d′k)

)

=

( ∑
A′∈N

(W ∗)A,A′ ◦ wt(A′(p), σ(B1(f1), . . . , Bk(fk)))

)(
wt′(d′1), . . . ,wt′(d′k)

)
(by Observation 6.2)

= wt′(r′) ◦
(

wt′(d′1), . . . ,wt′(d′k)
)

(by construction of G′)

= wt′(r′(d′1, . . . , d
′
k)).
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We can instantiate the previous theorem to (1) the trivial storage type and (2) the Boolean M-monoid
and obtain the following corollary.

Corollary 6.4.
1. If K is compressible, then Reg(Σ,K) = Regnc(Σ,K).
2. If Strue,id = S, then Regsimple(S,Σ) = Regnc(S,Σ). In particular, for each n ∈ N we have

Regsimple(Pn,Σ) = Regnc(Pn,Σ).

Proof: First we prove Statement 1. Since TRIVtrue,id = TRIV and each (Σ,K)-rtg is simple, the
statement follows from Theorem 6.3.

Then we prove Statement 2 as follows. Since the Boolean M-monoid B is compressible, the first
statement follows from Theorem 6.3. Then the second follows from the first one, because (Pn)true,id =
Pn.

For an arbitrary compressible M-monoid, we can even go beyond the trivial storage type and prove the
following chain rule elimination result for particular finite storage types.

Corollary 6.5. If K is compressible, S is finite, and Strue,id = S, then Reg(S,Σ,K) =
Regsimple(S,Σ,K) = Regnc(Σ,K).

Proof: We have Reg(S,Σ,K) = Reg(Σ,K) = Regnc(Σ,K) by Corollary 5.6 and Corollary 6.4(1),
respectively. The inclusion Regnc(Σ,K) ⊆ Regnc(S,Σ,K) follows from Corollary 5.5(2), and the
inclusions Regnc(S,Σ,K) ⊆ Regsimple(S,Σ,K) and Regsimple(S,Σ,K) ⊆ Reg(S,Σ,K) are obvious.

7 Büchi-Elgot-Trakhtenbrot theorem
By the classical results of Büchi [Büc60, Büc62], Elgot [Elg61], and Trakhtenbrot [Tra61], recognizable
languages are the same as languages definable in monadic second order logic (MSO-logic). We call this
characterization Büchi-Elgot-Trakhtenbrot theorem and in this section we present a corresponding one for
weighted tree languages generated by (S,Σ,K)-rtg (including chain rules). For this, we will introduce
a weighted MSO-logic with storage behaviour, where the weights are taken from a complete M-monoid.
Each formula, called expression, of this logic is interpreted over finite, labeled, and ordered trees. Our
new weighted MSO-logic generalizes (i) the weighted MSO-logic with storage behaviour of [VDH16]
by considering trees as models, and (ii) M-expressions of [FSV12, FV18] by adding storage type. Our
Büchi-Elgot-Trakhtenbrot theorem states that weighted tree languages generated by (S,Σ,K)-rtg are the
same as weighted tree languages definable by expressions. Thus, our result generalizes the corresponding
one of [VDH16] in the sense that we allow chain rules on the rtg side (which corresponds to ε-transitions
for the automata considered in [VDH16]).

We note that in [DV11, Ch. 7] an alternative weighted MSO-logic was used for the characterization
of the class Regnc(Σ,MK) where K is an arbitrary semiring. In its turn, that logic is based on the
weighted MSO-logic in [DG05, DG07, DG09] for weighted string automata. For a recent survey we refer
to [GM18].

Since the formulas of our new weighted MSO-logic generalize M-expressions of [FSV12], we recall
the syntax of M-expressions. For the definitions of all semantic notions, like variable assignment, corre-
spondence between (i) pairs of a tree and a variable assignment and (ii) trees over some extended ranked
alphabet, and semantics of M-expressions we refer to [FSV12]; here we only recall some of them.
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First, we recall the (unweighted) MSO-logic for trees [GS97]. For this, let Θ be an arbitrary ranked
alphabet. We define the set of formulas of MSO-logic over Θ, denoted by MSO(Θ), as the language
generated by the following EBNF with nonterminals ψ and ϕ and with initial nonterminal ϕ:

ψ ::= labelσ(x) | edgei(x, y) | (x ∈ X)

ϕ ::= ψ | ¬ϕ | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | ∃x.ϕ | ∀x.ϕ | ∃X.ϕ | ∀X.ϕ

where σ ∈ Θ and i ∈ [maxrkΘ]. For any finite set V of first-order or second-order variables we define
the ranked alphabet ΘV by Θ

(k)
V = Θ(k) × P(V). We denote the set of all trees in TΘV in which each

first-order variable of V occurs exactly once by T vΘV . It is well known that such trees can be identified
with pairs of a tree and an assignment to variables in V . For an MSO-formula ϕ over Θ with free variables
contained in V , we let

LV(ϕ) = {ξ ∈ T vΘV | ϕ |= ξ} ,

the set of models of ϕ. The models operator |= is defined straightforwardly as for (classical) MSO-
formulas for the string case (cf. [Str84, Ch. II.2]).

Second, we recall from [FSV12, Def. 3.1] the definition of M-expressions. Note that K is some arbi-
trary complete M-monoid. The atomic M-expressions have the form H(ω) where ω = (ωσ | σ ∈ ΘU )
is a ΘU -family of operations for some finite set U of variables; moreover, we require that ωσ ∈ Ω(k) for
every k ∈ N and σ ∈ Θ

(k)
U . The set of M-expressions over (Θ,K), denoted by MExp(Θ,K), is the set of

all formulas generated by the following EBNF with nonterminal E:

E ::= H(ω) | (E + E) | (ϕ� E) |
∑

x
E |

∑
X
E ,

where ω is a ΘU -family of operations in Ω for some finite set U of variables, and ϕ ∈ MSO(Θ). A
sentence is an M-expression without free variables.

The semantics of H(ω) with ω = (ωσ | σ ∈ ΘU ) is based on the following concept from universal
algebra. Since (K,ω) is a ΘU -algebra, there is a unique ΘU -homomorphism from the ΘU -term algebra
TΘU to (K,ω) [Wec92, Thm. 4]; we denote this homomorphism by hω . Then the semantics of H(ω) on a
tree ξ is obtained by applying hω to ξ (after adaptation of ω to the set of free variables occurring in ξ, cf.
[FSV12, p. 249]).

Intuitively, the semantics of (ϕ� e) on a tree ξ is the semantics of e on ξ if ξ is a model of ϕ, otherwise
it is 0. Formulas of the form (e1 + e2),

∑
x e, and

∑
X e are interpreted by employing the summation

operation ofK in the usual way (viewing
∑
x e and

∑
X e as weighted first-order existential quantification

and weighted second-order existential quantification, respectively).
The semantics of a sentence e ∈ MExp(Θ,K) is a weighted tree language [[e]] : TΘ → K defined

in [FSV12, Def. 3.3]. We say that a weighted tree language s : TΘ → K is M-definable if there is a
sentence e such that [[e]] = s. We denote by M(Θ,K) the class of all weighted tree languages which are
M-definable by some sentence e ∈ MExp(Θ,K).

We recall the main theorem of [FSV12] (using Observation 3.3).

Theorem 7.1. [FSV12, Thm. 4.1] Regnc(Θ,K) = M(Θ,K) for each ranked alphabet Θ.

Now we define the main logic of this paper: (weighted) expressions with behaviour. We recall that
S = (C,P, F, c0) denotes an arbitrary storage type and Σ is a ranked alphabet. In the sequel, we let
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P ′ ⊆ P and F ′ ⊆ F be finite non-empty sets and we let ∆ be the ranked alphabet corresponding to Σ,
P ′, and F ′ (cf. Section 2.4).

In a similar spirit as in [VDH16], an expression is an existentially quantified M-expression where the
quantification runs over the set B∆(ξ) of ∆-behaviours on the tree ξ ∈ TΣ over which the expression is
interpreted. The involved M-expression is over (〈∆,Σ〉,K).

Definition 7.2. We define the set of expressions over Σ and K with ∆-behaviours (for short: (∆,Σ,K)-
expressions) to be the set of all formulas of the form∑beh

e

where e ∈ MExp(〈∆,Σ〉,K) is a sentence. The semantics of
∑beh

e is the weighted tree language
[[
∑beh

e]] : TΣ → K defined by

[[
∑beh

e]] = B∆; [[e]] . 2

Let s : TΣ → K be a weighted tree language. We say that s is (∆,Σ,K)-definable if there is a
(∆,Σ,K)-expression

∑beh
e with [[

∑beh
e]] = s. Moreover, s is (S,Σ,K)-definable if there are non-

empty finite subsets P ′ ⊆ P and F ′ ⊆ F such that s is (∆,Σ,K)-definable where ∆ is the ranked
alphabet corresponding to Σ, P ′, and F ′. We denote the class of all (S,Σ,K)-definable weighted tree
languages by Def(S,Σ,K).

Now we want to compare (∆,Σ,K)-expressions of Definition 7.2 with (∆,Σ,K)-expressions of
[VDH16, Def. 5 and 6]. (Since in [VDH16] Ω refers to a finite subset of P × F , whereas in this pa-
per Ω is used as set of operations of an M-monoid, we have replaced in the notations of [VDH16] Ω by
∆.) The following table gives an overview on this comparison.

[VDH16] present paper

structures: string u ∈ Σ∗ tree ξ ∈ TΣ

behaviours: b ∈ ∆∗ ζ ∈ B∆(ξ) ⊆ T〈∆,Σ〉
with pos(b) = pos(u) and pos(ξ) can be embedded

into pos(ζ) (cf. Sect. 5)

weight algebra: valuation monoid (K,+, 0,Val) complete M-monoid (K,+, 0,Ω)

expressions:
∑beh
B e

∑beh
e

where e is a B-expression where e is an M-expression
over (∆,Σ,K) of [FSV12] over (〈∆,Σ〉,K)

semantics: [[
∑beh
B e]](u) = [[

∑beh
e]](ξ) =∑

b∈B(∆,|u|)
[[e]]{B}

(
u, [B 7→ b]

) ∑
ζ∈B∆(ξ)

[[e]](ζ)

There are two significant differences between the two approaches:
1) The behaviour b in [VDH16] has the same shape as the structure u over which the formula is in-

terpreted (i.e., pos(b) = pos(u)). In the present paper, the behaviour ζ is obtained by replacing, at each
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position w ∈ pos(ξ), the tree fragment ξ(w)(x1, . . . , xk) by the tree fragment

〈(p1, g1), ∗〉
(
. . . 〈(pn, gn), ∗〉

(
〈(p, f1 . . . fk), ξ(w)〉(x1, . . . , xk)

)
. . .
)

for some n ∈ N, 〈(pi, gi), ∗〉 ∈ ∆(1)×{∗}, and 〈(p, f1 . . . fk), ξ(w)〉 ∈ ∆(k)×Σ(k). Then we might say
that the sequence

〈(p1, g1), ∗〉 . . . 〈(pn, gn), ∗〉〈(p, f1 . . . fk), ξ(w)〉

is the segment of ζ belonging to w.
In particular, ξ can be embedded into ζ, i.e., there is a unique bijection θξ,ζ : pos(ξ)→ posΘ(ζ) which

preserves the lexicographic order, where Θ = 〈∆,Σ〉 \ (∆(1) × {∗}) (cf. Section 5 and Fig. 4). This
extension of ξ will allow us to cope with chain rules in our Büchi-Elgot-Trakhtenbrot theorem.

2) B-expressions of [VDH16] are almost the same as M-expressions except that, in addition, there
is a variable B, which is assigned to a behaviour, and in a B-expression of the form ϕ � e, the guard
formula ϕ may contain atomic formulas of the form (B(x) = (p, f)); they allow to check whether, for a
variable assignment ρ, the behaviour ρ(B) carries the symbol (p, f) at position ρ(x). In M-expressions
such atomic formulas do not occur, and the M-expression e in the formula

∑beh
e is a sentence, i.e., does

not contain any free variable (in particular, it does not contain the variable B). The information about the
behaviour is coded into the tree ζ ∈ T〈∆,Σ〉 over which the M-expression e is interpreted. For instance,
an atomic formula of the form (B(x) = (p, f)) occurring in a B-expression will be represented by the
formula

∨
σ∈Σ(1) label〈(p,f),σ〉(x) in the M-expression (note that this replacement only makes sense if the

variable x is associated with a unary position). This modular definition of syntax and semantics makes it
possible to apply directly results on M-expressions known from the literature. In particular, when we will
prove the Büchi-Elgot-Trakhtenbrot theorem, there is no need for a proof by induction on the structure
of M-expressions to show that such formulas induce recognizability/regularity (as it was necessary for
B-expression in [VDH16]); instead, we can directly apply the appropriate result from the literature.

Example 7.3. Here we show an example of our new logic. For this, recall from Example 3.1 the
(P1,Σ,MN∞)-recognizable tree language s, which maps each tree of the form σ(δn(α), δn(α)) to 8n

(n ≥ 0) and any other tree to 0. This tree language can be defined by a (∆,Σ,MN∞)-expression
∑beh

e for
the ranked alphabet ∆ corresponding to Σ, P ′ = {true, top = γ0, top = γ}, and F ′ = {push(γ),pop}
and an appropriate sentence e ∈ MExp(〈∆,Σ〉,MN∞).

For the specification of e we need some auxiliary formulas. We define the binary relation edge(x, y) by

edge(x, y) = edge1(x, y) ∨ . . . ∨ edgemaxrk(〈∆,Σ〉)(x, y) .

Moreover, we define the binary relation edge+(x, y) to be the transitive closure of edge(x, y); recall from
[CE12, p. 43] that it can be defined by a formula in MSO(〈∆,Σ〉). Finally, we denote the formula ¬ϕ∨ψ
by ϕ→ ψ for every ϕ,ψ ∈ MSO(〈∆,Σ〉).

Now we construct

e = ϕ� H(ω) with ϕ = ∃x.(ϕlabel(x) ∧ ϕabove(x) ∧ ϕbelow(x)).

Intuitively, for every ξ ∈ TΣ and behaviour ζ ∈ B∆(ξ) on ξ, the formula ϕ determines a position
v ∈ pos(ζ) such that the following holds (recall the definition of θξ,ζ from the beginning of Section 5):



38 Zoltán Fülöp, Luisa Herrmann, Heiko Vogler

• (ζ, [x 7→ v]) |= ϕlabel(x) ∧ ϕabove(x) iff the segment of ζ belonging to θ−1
ξ,ζ(v) has the form

〈(true,push(γ)), ∗〉n 〈(true, idΓ+ idΓ+), σ〉

for some n ∈ N where σ is the label of ξ at θ−1
ξ,ζ(v)

• (ζ, [x 7→ v]) |= ϕbelow(x) iff for each position v′ ∈ pos(ζ) below v, the segment of ζ belonging to
θ−1
ξ,ζ(v

′) has the form
〈(top = γ,pop), δ〉 or 〈(top = γ0, ε), α〉 .

Formally, let
• ϕlabel(x) = label〈(true,idΓ+ idΓ+ ),σ〉(x),
• ϕabove(x) = ∀y.edge+(y, x)→ label〈(true,push(γ)),∗〉(y),

• ϕbelow(x) = ∀y.edge+(x, y)→ (label〈(top=γ,pop),δ〉(y) ∨ label〈(top=γ0,ε),α〉(y)).
Moreover, we define the 〈∆,Σ〉-family of operations ω by letting

ω〈(true,idΓ+ idΓ+ ),σ〉 = mul2,1,

ω〈(true,push(γ)),∗〉 = ω〈(top=γ,pop),δ〉 = mul1,2,

ω〈(top=γ0,ε),α〉 = mul0,1.

This finishes the construction of e = ϕ� H(ω). Next we show that [[
∑beh

e]] = s. For this, let ξ ∈ TΣ.
Then:

[[
∑beh

e]](ξ) = (B∆; [[e]])(ξ) =
∑

ζ∈B∆(ξ)

[[e]](ζ)

=
∑

ζ∈B∆(ξ)

[[ϕ� H(ω)]](ζ) =
∑

ζ∈B∆(ξ)∩L∅(ϕ)

[[H(ω)]](ζ) .

Now we analyse the set of models of ϕ. If ξ ∈ supp(s), i.e., ξ = σ(δn(α), δn(α)) for some n ≥ 0, then
the set B∆(ξ) ∩ L∅(ϕ) consists of exactly one tree, denoted as ζξ, that is determined as follows.
• If n = 0, then ζξ = 〈b1, σ〉

(
〈b2, α〉, 〈b2, α〉

)
, and

• if n ≥ 1, then ζξ = 〈b3, ∗〉n
(
〈b4, σ〉(ζ ′, ζ ′)

)
where ζ ′ = 〈b5, δ〉n

(
〈b2, α〉

)
and b1 = (true, idΓ+ idΓ+), b2 = (top = γ0, ε), b3 = (true,push(γ)),

b4 = (true, idΓ+ idΓ+), and b5 = (top = γ,pop). Thus∑
ζ∈B∆(ξ)∩L∅(ϕ)

[[H(ω)]](ζ) = [[H(ω)]](ζξ) .

Moreover, we have
[[H(ω)]](ζξ) = mul1,2(. . .mul1,2(︸ ︷︷ ︸

n

mul2,1(u, u) ) . . .)︸ ︷︷ ︸
n

with u = mul1,2(. . .mul1,2(︸ ︷︷ ︸
n

mul0,1 ) . . .)︸ ︷︷ ︸
n

for every n ≥ 0. Since u = 2n, we obtain:

[[
∑beh

e]](ξ) = [[H(ω)]](ζξ) = 8n = s(ξ) .
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If ξ /∈ supp(s), then B∆(ξ) ∩ L∅(ϕ) = ∅ and thus we have

[[
∑beh

e]](ξ) =
∑
ζ∈∅

[[H(ω)]](ζ) = 0 .

Hence [[
∑beh

e]] = s.

As first result we prove a Büchi-Elgot-Trakhtenbrot theorem for (S,Σ,K)-rtgs.

Theorem 7.4. Reg(S,Σ,K) = Def(S,Σ,K).

Proof: First we prove Reg(S,Σ,K) ⊆ Def(S,Σ,K). Let s be an (S,Σ,K)-regular weighted tree
language. By Theorem 5.3 there are finite sets P ′ ⊆ P and F ′ ⊆ F and there is a chain-free (〈∆,Σ〉,K)-
rtg G such that ∆ is the ranked alphabet corresponding to Σ, P ′, and F ′ and s = B∆; [[G]]. By Theorem
7.1, there is a sentence e ∈ MExp(〈∆,Σ〉,K) such that [[G]] = [[e]]. Then, by Definition 7.2, we have that
s is (S,Σ,K)-definable.

By reading the above proof backwards, we obtain the proof of Def(S,Σ,K) ⊆ Reg(S,Σ,K).

As second result we prove that expressions with behaviours generalize M-expressions as defined in
[FSV12, FV18].

Theorem 7.5. Let s : TΣ → K be a weighted tree language. Then the following two statements hold.
1. If s = [[e]] for some sentence e ∈ MExp(Σ,K), then s is (TRIV,Σ,K)-definable.
2. If K is compressible and s is (TRIV,Σ,K)-definable, then s = [[e]] for some sentence e ∈

MExp(Σ,K).

Proof: We abbreviate the only predicate true{c} and the only instruction id{c} of TRIV by true and id,
respectively. Let ∆ be the ranked alphabet corresponding to Σ, {true}, and {id} and 〈∆,Σ〉 as defined in
Subsection 2.4.

For each ξ ∈ TΣ, the set B∆(ξ) contains exactly one element ζ with pos(ζ) = pos(ξ). We denote this
element by ζξ. Then for each w ∈ pos(ξ) we have ζξ(w) = 〈(true, id . . . id), ξ(w)〉 where the number of
occurrences of id is the rank of ξ(w).

Proof of 1: Let e ∈ MExp(Σ,K) be a sentence. Let us construct the formula ē ∈ MExp(〈∆,Σ〉,K)
that can be obtained from e by replacing each subformula of the form labelσ(x) by label〈(true,id...id),σ〉(x)

where the number of occurrences of id is the rank of σ. Then [[ē]]
(
ζξ) = [[e]](ξ) for every ξ ∈ TΣ.

Moreover, let e′ = ϕ� ē, where ϕ = ¬∃x.label〈(true,id),∗〉(x). Then

L∅(ϕ) = {ζ ∈ T〈∆,Σ〉 | ¬∃w ∈ pos(ζ) : ζ(w) = 〈(true, id), ∗〉}.

Thus, for each ξ ∈ TΣ we have

[[
∑beh

e′]](ξ) =
∑

ζ∈B∆(ξ)

[[e′]]
(
ζ
)

=
∑

ζ∈B∆(ξ)

[[ϕ� ē]]
(
ζ
)

= [[ē]]
(
ζξ) = [[e]](ξ) ,

where the last but one equality is due to the fact that B∆(ξ) ∩ L∅(ϕ) = {ζξ}.
Proof of 2: Let s be (TRIV,Σ,K)-definable. By Theorem 7.4 we have that s is (TRIV,Σ,K)-regular.

SinceK is compressible, Lemma 6.3 implies that s is even chain-free (TRIV,Σ,K)-regular. By Theorem
7.1 we obtain that there is a sentence e ∈ MExp(Σ,K) such that [[e]] = s.
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[ÉL02] Z. Ésik and H. Leiβ. Greibach normal form in algebraically complete semirings. In J.C.
Bradfield, editor, Computer Science Logic, 16th International Workshop, CSL 2002, volume
2471 of LNCS, pages 135–150. Springer-Verlag, 2002.
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