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In this paper, we give a lengthy proof of a small result! A graph is bisplit if its vertex set can be partitioned into three

stable sets with two of them inducing a complete bipartite graph. We prove that these graphs satisfy the Chen-Chvátal

conjecture: their metric space (in the usual sense) has a universal line (in an unusual sense) or at least as many lines

as the number of vertices.

Keywords: bisplit graphs, Chen-Chvátal conjecture, distances

Given a set of n points in the Euclidean plane, they are all collinear or they define at least n distinct

lines. This result is a corollary of Sylvester-Gallai Theorem (suggested by Sylvester (1893) in the late

nineteenth century and proven by Gallai forty years later as reported by Erdős (1982)). Later, de Bruijn

and Erdős (1948) proved a theorem on collections of subsets, which also implies that n points are either

collinear or define at least n distinct lines.

The notion of line admits several generalizations, one of which is of interest for us in this paper. Namely,

given a metric space (X, ρ), we say that an element b in X is between elements a and c if ρ(a, b)+ρ(b, c) =
ρ(a, c). More generally, we say that three elements of X are collinear if one of them is between the other

two. In that setting, the line generated by a and b (denoted ab) is the set {a, b} completed by all elements

collinear with a and b. Ten years ago, (Chen and Chvátal, 2008, Question 1) asked what has now become,

by lack of counter-example, the Chen-Chvátal Conjecture.

Conjecture 1 (Chen and Chvátal (2008)). Every finite metric space (X, ρ) where no line consists of the

entire ground set X determines at least |X | distinct lines.

A line consisting of the entire ground set is called a universal line. Conjecture 1 remains unsettled

when restricted to graph metrics (for connected graphs). Let us say that a graph G on n vertices has the

de Bruijn-Erdős property if the metric space induced by G has a universal line or at least n distinct lines.
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In a paper gathering more coauthors than pages, Beaudou, Bondy, Chen, Chiniforooshan, Chudnovsky,

Chvátal, Fraiman and Zwols (Beaudou et al., 2015, Theorem 1) proved that connected chordal graphs

have the de Bruijn-Erdős property. Recently, Aboulker et al. (2018) improved this result by encompassing

a larger family of graphs.

One may find out quite easily that connected graphs with a bridge have a universal line. As noted

in (Beaudou et al., 2015, Section 3) connected bipartite graphs also have the de Bruijn-Erdős prop-

erty (each line generated by both ends of an edge is universal).

A significant number of results have appeared concerning the asymptotic number of lines in a graph

with no universal lines. A notable one is due to Aboulker, Chen, Huzhang, Kapadia and Supko. They

prove (Aboulker et al., 2016, Theorem 7.4) that graphs with n vertices and diameter d(n) haveΩ((n/d(n))4/3)
distinct lines or a universal line. This implies that any class of graphs with bounded diameter ultimately

has the de Bruijn-Erdős property.

Thus, large graphs of diameter 2 have the de Bruijn-Erdős property. Chvátal filled the gap for small

graphs of diameter 2 by proving the stronger result (Chvátal, 2014, Theorem 1) that every 1-2 metric

space has the de Bruijn-Erdős property.

A connected graph G is bisplit if its vertex set can be partitioned into three stable sets X , Y and Z
such that Y and Z induce a complete bipartite graph. This class of graphs has diameter bounded by 4.

Thus they ultimately have the de Bruijn-Erdős property. Moreover, bisplit graphs are one step away from

bipartite graphs (when Z or Y is empty). One may think that they could easily be tamed. It turns out that

we could not find a short proof.

In this paper, we prove that bisplit graphs have the de Bruijn-Erdős property.

Theorem 2. For any integer n greater than or equal to 2, all connected bisplit graphs on n vertices have

a universal line or at least n distinct lines.

This settles Problem 1 from Chvátal (2018). Chen and Chiniforooshan (see final note of Chvátal (2018)

in the online version) provided a proof using computer enumeration for small cases. Our proof does not

use computer enumeration.

1 Calculus 101

In this section, we state easy results that will be used in the flow of the proof of Theorem 2. We do not

give the proof of the following lemma. It is straightforward.

Lemma 3. For any integer x,
(

x
2

)

≥ x − 1. Besides, for any pair of positive integers x and y, xy ≥
x+ y − 1. Moreover, if both x and y are greater than or equal to 2, then xy ≥ x+ y.

The next lemma is a bit more tedious. While one might use any computer to have this answer, we give

a formal proof hereafter. The reader is advised to skip the proof if the word trinomial does not sound

thrilling enough.

Lemma 4. Given two positive integers x and y,

(

y

2

)

+

(

⌈ 2x
y ⌉

2

)

< x+ y − 1 (1)

if and only if y = 2 and x is in {1, 2} or y = 3 and x = 3.
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Proof: It is easy to check that the solutions provided satisfy the inequality. Let us now assume that we are

given two integers x and y such that x is positive, y is at least 2 and they satisfy the inequality.

Note that
(

⌈ 2x
y ⌉

2

)

=
⌈ 2x

y ⌉2 − ⌈ 2x
y ⌉

2
≥

4x2

y2 − 2x
y

2
.

Inequality (1) implies then that

y2 − y

2
+

4x2

y2 − 2x
y

2
− x− y + 1 < 0.

This inequality can be simplified and expressed as a trinomial on variable x.

4x2 − 2(y2 + y)x+ (y4 − 3y3 + 2y2) < 0. (2)

Since the coefficient of x2 is positive, (2) has solutions if and only if its discriminant is positive. This

discriminant can be simplified and (2) has solutions if and only if,

−3y2 + 14y − 7 ≥ 0.

This trinomial is even easier than the first one. The value of y must be between 1 and 4. We may now

check each case individually.

• If y = 1, Inequality (1) becomes
(

2x
2

)

< x which has no integer solution.

• If y = 2, Inequality (1) reads
(

x
2

)

< x and the only solutions are for x in {1, 2}.

• If y = 3, we may check the first values of x and see that the only solution is for x = 3.

• If y = 4, the solutions of the trinomial (2) are in the interval [3, 7]. One may check that no integral

solution exists.

This concludes our proof of Lemma 4.

2 Proof of Theorem 2

Let us consider a bisplit graph G. Among all valid partitions for G, we consider one that maximizes the

size of Y ∪ Z . Then, we specify a more precise partition of vertices:

• the set X is split into three sets: the set XY (respectively XZ) made of vertices of X whose only

neighbours are in Y (respectively Z) and the set X ′ made of vertices with neighbours in both Y
and Z ,

• the set Y (respectively Z) is split into two sets: the set Y1 (respectively Z1) made of vertices with

at least one neighbour in XY (respectively XZ ) and the set Y2 (respectively Z2) made of vertices

with no neighbour in XY (respectively XZ).
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Fig. 1: Possible distances in a bisplit graph

Armed with this new partition, we may derive a sketch of all possible distances between vertices of

a bisplit graph. Numbers on Figure 1 refer to the possible distance between two vertices in a same set

(numbers in the circles), or between two vertices in two separate sets (numbers on edges between two

sets). For example, if a and b are two vertices in X ′, they both have neighbours in Y and Z . If they have

a common neighbour they are at distance 2 and if not, they must be at distance 3.

A vertex in XY adjacent to all the set Y could be put in the set Z from the start. Since we chose to

maximize the size of Y ∪ Z among all valid partitions, we may assume that,

no vertex in XY is complete to Y. (3)

Moreover, if either X ′, Y or Z is empty, the whole graph is bipartite and thus satisfies the de Bruijn-

Erdős property. From now on, we consider that

X ′, Y and Z are not empty. (4)

Before diving into the proof, we warn the reader that we will extensively use a simple fact. For three

points to be collinear in a metric space with distances ranging from 0 to 4, the triple of distances they

define can only be one of the following: (1, 1, 2), (1, 2, 3), (1, 3, 4) or (2, 2, 4). They are the only cases

when the triangle inequality is tight.

The proof is declined as a case study depending on the emptiness of sets XY and XZ .

2.1 When both XY and XZ are empty

Restricting to the case when XY and XZ are empty amounts to considering bisplit graphs for which all

vertices in X have at least one neighbour in Y and one in Z .
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Proposition 5. If a bisplit graph is such that all vertices in X have at least one neighbour in both Y and

Z , then it has the de Bruijn-Erdős property.

Proof: Let G be such a bisplit graph. By (4), sets X , Y and Z are not empty. If the distance between any

two vertices is at most 2, then G has the de Bruijn-Erdős property (Chvátal proved that every 1-2 metric

space has the de Bruijn-Erdős property (Chvátal, 2014, Theorem 1)). So there are at least two vertices a
and b at distance 3 from each other. Both a and b must be vertices in X since all distances involving some

vertex in Y or Z is 1 or 2 (see Figure 2). Moreover, Y and Z both have cardinality at least 2 (if Y was

a singleton, a and b would have a common neighbour since they must have a neighbour in Y ). Finally,

vertex a cannot be complete neither to Y nor to Z (or it would be at distance 2 from b).

1, 2 1, 2

1

2, 3

X

2

Y

2

Z

Fig. 2: Possible distances in a bisplit graph where XY and XZ are empty

Concerning notation, we shall use N(v) to represent the neighbourhood of a vertex a. If we want to

restrict ourselves to the neighbours of a vertex a in a set S, we shall write NS(a). Moreover, for an

integer i, N i(a) denotes the vertices which are at distance exactly i from a. Similarly, we may restrict to

a specific set by using a subscript. Finally, NS(a) denotes the non-neighbours of vertex a within set S.

Let FX denote the set of all lines generated by a and another vertex x in X \{a}. For every such vertex

x, the intersection of ax with X is always restricted to the generators a and x (all tight triple of distances

must have a 1 or a 4). Then FX is a set of |X | − 1 distinct lines.

For all x in X \ {a}, ax = {a, x} ∪

{

N(a) ∩N(x) if ax = 2

N(a) ∪N(x) if ax = 3.
(LX)

Let FY denote the set of all lines generated by a and a vertex in Y which is not adjacent to a.

For all y in NY (a), ay = {a} ∪ (N3
X(a) ∩NX(y)) ∪ {y} ∪NZ(a). (LY )

Since the intersection of such a line with Y is restricted to the singleton containing the other generator,

all those lines must be distinct.

Let F ′
Y be the set of all lines generated by a pair of vertices in Y which are adjacent to a.

For all y and y′ in NY (a), yy′ = NX(y) ∩NX(y′) ∪ {y, y′} ∪ Z. (L′
Y )
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Since the intersection of such a line with Y is exactly the pair of generators, all those lines are also

distinct. Moreover, they are distinct from lines in FY since the latter intersect Y on a singleton. As a

consequence, FY ∪ F ′
Y is a set of

(

dY (a)

2

)

+ |Y | − dY (a)

distinct lines. Note that this quantity is always greater than or equal to |Y | − 1.

We define FZ and F ′
Z similarly.

No intersection. We first prove that FX does not intersect the other families of lines. For a contradiction,

suppose that FX intersects FY . Then there are two vertices x in X \ {a} and y in Y ∩ N(a) such

that ax = ay. Let us focus on the intersection with Y . It must be exactly {y}. If d(a, x) = 2 then

{y} = N(a) ∩N(x) which is impossible since ay is not an edge in G. If d(a, x) = 3 then {y} =
N(a)∪N(x) but a and x have no common neighbour and at least one neighbour each in Y . This is also a

contradiction. Now suppose that FX intersects F ′
Y . Then there are three vertices x in X \ {a} and y and

y′ in NY (a) such that ax = yy′. This line must contain the whole set Z . Since a is not complete to Z ,

N(a)∩N(x) cannot contain Z . From this and statement (LX), we derive that a and x must be at distance

3. But then {y, y′} must be the union of NY (a) and NY (x). Since both y and y′ are neighbours of a
and as x must have a neighbour in Y (by our initial hypothesis), a and x must have a common neighbour

which is a contradiction.

Let us now prove that FY does not intersect FZ . For a contradiction, assume that there are two vertices

y in Y ∩N(a) and z in Z ∩N(a) such that ay = az. By looking at the intersection with Z , this would

mean that z is in N(a) which is a contradiction. We keep going and prove that FY does not intersect F ′
Z .

Lines in F ′
Z contain the whole set Y but lines in FY contain only non-neighbour of a. Since a has at least

a neighbour in Y these lines cannot be equal.

Finally, let us prove that F ′
Y does not intersect F ′

Z . Once again, if two such lines were equal, they

would contain the whole sets Y and Z which should be of cardinality 2 but then a would be complete to

both of them which is impossible.

In the end, we may sum all those lines together. We obtain at least

|X | − 1 + |Y | − 1 + |Z| − 1

distinct lines. They all contains vertex a.

Reaching for the last three lines. If X has cardinality 4 or more, we may consider all the lines gener-

ated by a pair of vertices in X \ {a}. Those line do not contain a and are distinct from each other. There

are at least three such lines.

If X has cardinality at most 3, any line generated by a pair of vertices in X contains a or b (recall that

b is a vertex at distance 3 from a). We shall distinguish two extra lines. Vertex b must have a neighbour

yb in Y and a neighbour zb in Z by our hypothesis. Similarly, vertex a has a neighbour ya in Y and za in

Z . Since a and b are at distance 3, those four vertices must be distinct.

Now if X has cardinality 2, the line yazb is universal. And if X has cardinality 3, the third vertex and b
generate one line that does not go through a. Moreover we may consider lines yayb and zazb. These lines

do not contain neither a nor b. Thus they are different from all the lines described above. The only issue

comes if they are equal. In that case, Y and Z must have cardinality 2 and we know almost everything

about the graph. Let c be the third vertex in X . It must have at least one neighbour in Y . Without loss of
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generality, we may assume it is ya. Then for yazb not to be universal, c must be a neighbour of zb. For

the same reason, c is either adjacent to both yb and za or to none of them. This leads to two graphs (see

Figure 3).

c

za

zb

a b

ya

yb

c

za

zb

a b

ya

yb

Fig. 3: The last two suspects.

It is then straightforward to check that these two graphs have more than seven lines. This concludes our

proof of Proposition 5.

2.2 When XY or XZ is non-empty

In Proposition 5, we proved that when XY and XZ are empty, the graph satisfies the de Bruijn-Erdős

property. For the other cases, we may assume without loss of generality that

XY is not empty. (5)

As a direct consequence of (5), we may assume that

Y1 has cardinality at least 2 (6)

because otherwise, the graph is not connected (if Y1 is empty) or has a bridge (if Y1 is a singleton) which

generates a universal line. Moreover, if Y has cardinality exactly 2, since every vertex in XY has degree

at least 2, it is complete to Y which contradicts (3). Therefore, we may consider that

Y has cardinality at least 3. (7)

The remainder of our proof relies on a careful choice of families of distinct lines. For any two sets A
and B of vertices, we define FAB to be the set of lines generated by any two vertices a in A and b in B.

Fact A. The set FX′X′ is made of
(

|X′|
2

)

distinct lines each of which intersect X ′ on exactly two vertices.

Moreover, those lines do not intersect neither XY nor XZ .

Proof: Fact A is obtained by checking the possible distances in the graph (see Figure 1).

Fact B. The set FY1Y is made of
(

|Y1|
2

)

+ |Y1||Y2| distinct lines each of which intersects Y on exactly two

vertices (the generators). Moreover, those lines do intersect XY while they do not intersect XZ .

Proof: Fact B is also obtained through a straightforward analysis of Figure 1. Moreover, by looking at

the intersection with XY , we may derive from Facts A and B that FX′X′ and FY1Y are disjoint.
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Fact C. The set FXY Z contains at least |Z| lines which intersect Z on a singleton (the generator) and

which contain the whole set Y . Moreover the intersection of such lines with XY is not empty.

Proof: Fact C is obtained by pinning one vertex x in XY and studying lines xz for every vertex z in Z .

The intersection of these lines with XY guarantees that they are distinct from lines in FX′X′ . By (7) and

Fact B, they are also distinct from lines in FY1Y .

Fact D. If G has no universal line, and XY is not empty, then FY Z has cardinality at least 2. Moreover,

every line in FY Z contains all XY , Y and Z .

Proof: Let z be a vertex in Z (it is not empty otherwise G is bipartite). For any vertex y in Y , the

line yz includes all vertices in XY , Y and Z . Moreover, in X ′ it includes all vertices that are at distinct

distances from y and z. These are exactly the vertices in the symmetric difference of N(y) and N(z) in

X ′. Suppose that FY Z has cardinality 1, then the symmetric difference between N(y) and N(z) is the

same for all y in Y . This implies that all vertices of Y have the same neighbourhood in X ′. In other

words, every vertex of X ′ is adjacent to all vertices of Y or to none of them. But our definition of X ′

states that all its vertices have at least one neighbour in Y . We may conclude that Y is complete to X ′.

Now consider a vertex x in XY . It has at least one neighbour y in Y1 and the line xy is universal which is

a contradiction.

2.2.1 When both XY and XZ are non-empty.

Let us now suppose that XY and XZ are non-empty. We prove that we find many lines.

Proposition 6. Given a bisplit graph G such that XY and XZ are non-empty, the metric space induced

by G satisfies the de Bruijn-Erdős property.

Proof: In addition to the three families of lines described in facts A, B and C, we shall find three more

families, namely FYXZ
, FZ1Z and FXY XZ

. First notice that since XZ is non-empty, in the same manner

as (5) leads to (6) and (7), we may assume that

Z1 has cardinality at least 2 and Z has cardinality at least 3. (8)

Moreover, using the same arguments as for facts B and C, the set FZ1Z defines
(

|Z1|
2

)

+ |Z1||Z2| lines

which are distinct from lines in FX′X′ and the set FXZY contains at least |Y | lines which are distinct

from lines in FX′X′ or in FZ1Z . We may observe additionally that any line in these new families has a

non-empty intersection with XZ . Then they are all distinct from lines in FY1Y . They cannot be equal to a

line in FXY Z since they either intersect Y on a singleton, or Z on exactly two vertices.

In the end, we also add the lines in FXY XZ
. Such lines intersect both XY and XZ on singletons (the

generators) and have at least two elements in Y1 and in Z . They are all distinct so they define |XY ||XZ |
lines. All of them are distinct from the lines described above. Table 1 gives a quick overview of the

considered families and the reason why they are distinguished from one another.

Now we can sum all those lines. Since Y1 and Z1 have cardinality at least 2, families FY1Y and FZ1Z

each provides at least one line. Moreover,
(

|X′|
2

)

is lower bounded by |X ′| − 1 and |XY ||XZ | is lower

bounded by |XY |+ |XZ | − 1. In the end we have at least

|X ′|+ |XY |+ |XZ |+ |Y |+ |Z| lines,

which is the order of the graph. This concludes the proof of Proposition 6.
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Intersection of ab with

Family Generators X′ XY Y1 ∪ Y2 Z1 ∪ Z2 XZ Number of lines

F
X′X′ a ∈ X′, b ∈ X′ {a, b} ∅ ∅

(|X′|

2

)

FY1Y a ∈ Y1, b ∈ Y ≥ 1 {a, b} Z1 ∪ Z2 ∅
(|Y1|

2

)

+ |Y1||Y2|

FXY Z a ∈ XY , b ∈ Z ≥ 1 Y1 ∪ Y2 {b} ≥ |Z|

FZ1Z a ∈ Z1, b ∈ Z ∅ Y1 ∪ Y2 {a, b} ≥ 1

(|Z1|

2

)

+ |Z1||Z2|

FXZY a ∈ XZ , b ∈ Y {b} Z1 ∪ Z2 ≥ 1 ≥ |Y |

FXY XZ
a ∈ XY , b ∈ XZ {a} ≥ 2 ≥ 2 {b} ≥ |XY ||XZ |

Tab. 1: Families of lines and their intersections

2.2.2 When XY is non-empty and XZ is empty.

We now consider the case when XZ is empty. In this situation, the set Z1 is also empty. Thus, the last

three families of lines in Table 1 cannot be used anymore. We introduce a new family FXY Y2
and through

a straightforward analysis of distances (see Figure 1) we obtain Table 2.

Intersection of ab with

Family Generators X′ XY Y1 Y2 Z Number of lines

F
X′X′ a ∈ X′, b ∈ X′ {a, b} ∅

(|X′|

2

)

FY1Y a ∈ Y1, b ∈ Y ≥ 1 {a, b} Z
(|Y1|

2

)

+ |Y1||Y2|

FXY Z a ∈ XY , b ∈ Z ≥ 1 Y1 ∪ Y2 {b} ≥ |Z|

FXY Y2
a ∈ XY , b ∈ Y2 {a} ≥ 2 {b} Z |XY ||Y2|

Tab. 2: Families of lines when XZ is empty

The first three families are distinguished by facts A, B and C. Lines in FXY Y2
are also different from

lines in FX′X′ and FY1Y . Moreover, such a line could be equal to a line in FXY Z in a very specific case

only. Indeed, suppose that a, b, c, d are vertices in XY , Y2, XY and Z respectively, such that ab = cd.

First note that a must equal c (consider intersection with XY ) so ab = ad. Moreover, in Y1, the line ab
contains only the neighbours of a. Since line ad contains the whole set Y, vertex a must be complete to

Y1; and Y2 must be a singleton. Thus, Y2 is exactly {b}. Observing the intersections of these lines with

Z , we need Z to be the singleton {d}. All vertices of X ′ have a neighbour in Z so d is complete to X ′.

As a consequence ad contains all vertices of X ′ that are at distance 3 from a. But since ab intersects X ′

only on vertices at distance 2 from a, this implies that no element of X ′ is at distance 3 from a. Since b
has degree at least 2 (or the graph has a bridge and thus a universal line), there must be a vertex x in X ′

that is a neighbour of b. In return, vertex x is in ab but it cannot be in ac since it is at distance 2 from a.

This yields a contradiction. Thus all four families of lines are disjoint.

If Y2 has two or more elements. Then we may sum all lines described in Table 2. We get at least
(

|X ′|

2

)

+

(

|Y1|

2

)

+ |Y1||Y2|+ |Z|+ |XY ||Y2| lines.
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Note that
(

x
2

)

is always bounded below by x− 1 and xy is bounded below by x+ y − 1 when both x and

y are positive integers and by x + y if both are at least 2 (recall that |Y1| is at least 2). By applying these

common properties (stated in Section 1), we bound the number of lines by

|X ′|+ |Y1|+ |Y2|+ |XY |+ |Z|+ (|Y1|+ |Y2| − 3).

And by (7), we may conclude that graph G has sufficiently many lines.

If Y2 is a singleton. In that case, our four families bring at least

|X ′|+ |Y1|+ |Y2|+ |XY |+ |Z|+ (|Y1|+ |Y2| − 4) lines.

By (7), we only miss one line to reach our goal.

• If Z is a singleton {z}, then every vertex in X ′ is adjacent to z. Thus, they are all at distance 2 from

one another and all the lines in FX′X′ contain z. Then z is an element in all our lines but there must be a

line that does not go trough z (or there is a universal line). Then G satisfies the de Bruijn-Erdős property.

• If Z and XY both have size at least 2, then no line of our families contains XY , Y and Z . But we

may easily consider the line generated by the end vertices of any edge between Y and Z and see that it

contains all XY , Y and Z . It is then different from all considered lines and we have sufficiently many

lines.

• If Z has size at least 2 and XY is a singleton, we consider only the three families of lines FX′X′ ,

FY1Y and FXY Z . By usual inequalities they provide at least

|X ′|+ |Y1|+ |Z|+ (|Y1| − 2) lines.

Since Y1 has cardinality at least 2, we only need two more lines to reach the order of G. Note that in our

three families, no line contains all XY , Y and Z . By Fact D we may add two lines from FY Z .

If Y2 is empty. In this last case, we shall exhibit one last family of lines. For this, let y0 be a vertex in

Y with maximum degree in XY . Since every vertex in XY has degree at least 2 and all neighbours must

be in Y , we know that y0 has at least ⌈ 2|XY |
|Y | ⌉ neighbours in XY .

Now let X0 denote a largest set of vertices in XY which are at distance 2 from each other. The set

X0 has size at least ⌈ 2|XY |
|Y | ⌉. Now, lines in FX0X0

intersect X0 in exactly two vertices (the generators).

Moreover, they do not intersect Z . The families of lines considered are shown in Table 3. Those lines are

all distinct except for the two last rows if Z is a singleton.

Note that since |Y | is at least 3 and |X0| ≥ ⌈ 2|XY |
|Y | ⌉, Lemma 4 tells us that whenever |XY | or |Y | is not

3, we have:
(

|X0|

2

)

+

(

|Y |

2

)

≥ |XY |+ |Y | − 1. (9)

Moreover, if XY and Y both have size exactly 3, all vertices of XY are at distance 2 from each other.

Indeed, either a vertex of Y has degree 3 in XY , or all of them must have degree 2 (they must be incident

to at least six edges coming from XY ) and as a consequence all vertices of XY have degree 2 (XY and Y
induce a cycle of length 6). In both cases, we deduce that all vertices of XY are at distance 2 from each

other. Thus, we may always consider that |X0| has value 3. Therefore (9) remains true.
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Intersection of ab with

Family Generators X′ X0 XY Y Z Number of lines

F
X′X′ a ∈ X′, b ∈ X′ {a, b} ∅ ∅

(|X′|

2

)

FY Y a ∈ Y, b ∈ Y ≥ 1 {a, b} Z
(|Y |

2

)

FX0Y0
a ∈ X0, b ∈ Y0 {a, b} ≥ 1 ∅

(|X0|

2

)

FY Z a ∈ Y, b ∈ Z XY Y Z ≥ 2

FXY Z a ∈ XY , b ∈ Z ≥ 1 Y {b} ≥ |Z|

Tab. 3: Families of lines when XZ and Y2 are empty

When Z is not a singleton. If Z is not a singleton, we may sum all rows of Table 3. By (9) we have

a lower bound of

|X ′|+ |Z|+ |XY |+ |Y | lines.

Thus G satisfies the de Bruijn-Erdős property.

When Z is a singleton. If Z has size 1, we do not count the last row of Table 3. Then we miss only

one line. To find it, just observe that there must be a vertex x′ in X ′ by (4). This vertex has a neighbour y
in Y which is equal to Y1 since Y2 is empty. This guarantees that there is a vertex x in XY at distance 2

from x′. Analyzing the distances in G, we derive that line xx′ intersects X ′ exactly on x′, X0 on at most

one vertex, and does not intersect Z . Thus, this line is different from the first four rows in Table 3. This

completes the number of lines to reach the order of G.
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