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A k-colouring of a graph G is called acyclic if for every two distinct colours i and j, the subgraph induced in G by
all the edges linking a vertex coloured with i and a vertex coloured with j is acyclic. In other words, there are no
bichromatic alternating cycles.

In 1999 Boiron et al. conjectured that a graph G with maximum degree at most 3 has an acyclic 2-colouring such
that the set of vertices in each colour induces a subgraph with maximum degree at most 2. In this paper we prove this
conjecture and show that such a colouring of a cubic graph can be determined in polynomial time. We also prove that
it is an NP-complete problem to decide if a graph with maximum degree 4 has the above mentioned colouring.
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1 Introduction and notation
All graphs, which we consider, are finite and simple. For a graph G we denote its vertex set by V (G)
and its edge set by E(G). The set of neighbours of a vertex v ∈ V (G) is denoted by NG(v), or briefly
by N(v). Let ∆(G) denote maximum degree of G. Let W ⊆ E(G). We denote by G[W ] the subgraph
of G induced by the set W .

For any k ≥ 0, we denote by Sk the class of all graphs of maximum degree at most k. Furthermore, we
say that a graph G is subcubic if G ∈ S3. Let D1 denote the class of all acyclic graphs.

A k-colouring of a graphG is a mapping c from the set of vertices ofG to the set {1, . . . , k} of colours.
We can also regard a k-colouring of G as a partition of the set V (G) into colour classes V1, . . . , Vk such
that each Vi is the set of vertices coloured with i.

Let P1,P2, . . . ,Pk be nonempty classes of graphs. A k-colouring of a graphG is called a (P1,P2, . . . ,
Pk)-colouring ofG if for every colour 1 ≤ i ≤ k the subgraph induced inG by the colour class Vi belongs
to Pi. Such a colouring is called an acyclic (P1,P2, . . . , Pk)-colouring, if for every two distinct colours i
and j, the subgraph induced by all the edges linking a vertex coloured with colour i and a vertex coloured
with colour j is acyclic. In other words, every bichromatic cycle inG contains at least one monochromatic
edge. A bichromatic cycle (path) having no monochromatic edge will be called an alternating cycle (path).
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The acyclic (P1,P2, . . . , Pk)-colouring is called an acyclic k-colouring if for each i, 1 ≤ i ≤ k, the
class Pi is the set of all edgeless graphs. The minimum k such that G has an acyclic k-colouring is called
the acyclic chromatic number of G, denoted by χa(G).

The acyclic chromatic number and acyclic k-colouring have been investigated by many authors. In
[7] Grünbaum showed that the acyclic chromatic number of any subcubic graph is at most 4. In [9] a
linear time algorithm that uses at most 4 colours to acyclically colour vertices of such graph is presented.
Burstein [4] proved that the acyclic chromatic number of graphs of maximum degree 4 is at most 5. In
1978 Kostochka [8] proved that it is an NP-complete problem to decide for a given graphG if χa(G) ≤ 3.
Acyclic colourings of planar graphs, outerplanar graphs and graphs of maximum degree 5 were consid-
ered, see [2], [3], [5].

Boiron et al. studied the problem of acyclic (P1, . . . ,Pk)-colourings of graphs. In [1] they proved that
a subcubic graph G has an acyclic (D1,S2)-colouring as well as an acyclic (S1,S1,S1)-colouring. They
also proved that any such G has an acyclic (D1,D1)-colouring, provided G is neither K3,3 nor K4. In the
same paper it was conjectured that any subcubic graph has an acyclic (S2,S2)-colouring. In Section 2 we
verify this conjecture to be true. Moreover, this conjecture cannot be generalized for an arbitrary k, what
shows the following theorem:

Theorem 1 Let k ≥ 4. Then there exists a graph with maximum degree k which has no acyclic
(Sk−1,Sk−1)-colouring.

Proof: Let us consider a graph G = Ck +Dk−2, where Dn denotes a graph without edges of order n and
’+’ stands for the join operation. Obviously, G ∈ Sk.

Let us assume, to the contrary, that c is an acyclic (Sk−1,Sk−1)-colouring of G.
First observe, that if there is a pair of vertices x, y ∈ V (Ck) such that x and y have the same colour,

say colour 1, then at most one vertex a ∈ V (Dk−2) can have colour 2, since c is acyclic. Similarly, if
for a pair of vertices x′, y′ ∈ V (Dk−2) we have c(x′) = c(y′), then at most one vertex from V (Ck) can
have the colour different from c(x′). Therefore, if k > 4 then all vertices of Ck, except at most one, say
z, must have the same colour, for example colour 1, and all vertices of Dk−2, except at most one, say z′,
also must have colour 1. One can observe that at least one of the vertices z, z′ also must have colour 1, to
avoid alternating cycles of length four. But in this case there is a vertex v such that v and its k neighbours
have the same colour, a contradiction.

In the case k = 4 it is easy to verify that if two vertices of C4 have colour 1 and another two have
colour 2, then one vertex of D2 must have colour 1 and another one colour 2, to avoid alternating cycles
of length four, but then we obtain an alternating cycle of length six, a contradiction.

On the other hand, if all the vertices of C4, except exactly one, have colour 1, then all the vertices of
D2 must have colour 1, to avoid alternating cycles, but then there is a vertex z ∈ V (C4) which has colour
1 and all of its four neighbours also have colour 1, a contradiction.

In the remaining case, if all vertices of C4 have colour 1, then at least one vertex of D2 also must have
colour 1, to avoid an alternating cycle, but this vertex has four neighbours in colour 1, a contradiction. 2

The remainder of this paper is organised as follows. In the next section we show that any subcubic graph
has an acyclic (S2,S2)-colouring. In Section 3 we present a polynomial-time algorithm which produces
an acyclic (S2,S2)-colouring of any cubic graph. In Section 4 we prove that it is an NP-complete problem
to decide if a given graph G ∈ S4 has an acyclic (S2,S2)-colouring.
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2 Acyclic (S2,S2)-colourings of subcubic graphs
In this section we prove the following theorem:

Theorem 2 For any subcubic graph there is an acyclic (S2,S2)-colouring.

We start with the following straightforward Lemma:

Lemma 1 If G ∈ S3 then G has an (S2,S2)-colouring.

Remark 1 Every subcubic graph has also an (S1,S1)-colouring. Any 2-colouring of G with the maxi-
mum number of bichromatic edges is an (S1,S1)-colouring of G.

First we prove that any cubic graph has an acyclic (S2,S2)-colouring. Let us consider a cubic graph G
and its (S2,S2)-colouring. If this colouring is not an acyclic (S2,S2)-colouring, then there are vertices
coloured such that they form an alternating cycle. We describe an algorithm which for a given alternating
cycle C recolours vertices of G such that we obtain an (S2,S2)-colouring in which vertices of C do not
form any alternating cycle and no new alternating cycle appears.

Let G be an (S2,S2)-coloured cubic graph and let C be an alternating cycle. Let v ∈ V (C). If we
change the colour of v, then C is not alternating. Now the graph G has fewer alternating cycles, because
v has two vertices coloured with the same colour as it has, then there is no new alternating cycle, but we
could create a monochromatic K1,3. If we change the colour of its centre, then no new monochromatic
K1,3 appears, but in this case an alternating cycle could be formed. In our algorithm we destroy one
forbidden structure and if our recolouring causes a creation of a new forbidden structure, then it will be
destroyed in the next step.

First we describe the structures which can appear if we recolour vertices. Every forbidden structure is
a coloured subgraph of cubic graph with two distinguished vertices: a root and a pre-root. The pre-root is
the vertex whose colour will be changed.

Forbidden Structures

Structure (1) A monochromatic K1,3 with the centre y which satisfies the following: let N(y) =
{x1, x2, z}, the vertices x1 and x2 are connected by an alternating path and the vertex z has at least
one neighbour coloured with colour other than c(z). The root of the structure is the vertex y and the
pre-root is the vertex x1 or x2.

Structure (2) A monochromatic K1,3 with the centre x which satisfies the following: there is a vertex
y ∈ N(x) such that y has exactly one neighbour z coloured with a colour other than c(y). Moreover, z
has two neighbours coloured with colour c(z). The root of the structure is the vertex y and the pre-root is
the vertex x.

Structure (3) Two monochromatic subgraphs K1,3 one with the centre x the other with the centre y such
that x 6= y and the vertices x and y are adjacent. Moreover, there are two vertices z1, z2 ∈ N(y) \ {x}
which are connected by an alternating path. The root of the structure is the vertex y and the pre-root is the
vertex x.

Structure (4) The set of alternating cycles C1, C2, . . . , Ck such that {x1, y, x2} ⊆ V (C1) ∩ V (C2) ∩
· · ·∩V (Ck) and x1, y, x2 are three successive vertices of the cycles. The root of the structure is the vertex
y and the pre-root is the vertex x1 if it has a neighbour coloured with c(x1) outside the cycle, otherwise
the pre-root is the vertex x2.
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x2x1

y

z

z

y

x

y

z1

x

z2

x1 x2

y

(1) (2) (4)(3)

t
t

tt tt
t
t

tt

t

t
t

t

tt t
t
t

t
t

Fig. 1: Forbidden structures

Observation 1 Let G be a cubic graph whose vertices are coloured with two colours.

1. Suppose that the 2-colouring of G satisfies the following:

(i) there is exactly one vertex y which has all neighbours coloured with the same colour as y and
there is no other monochromatic K1,3 and

(ii) the vertex y is a root of Structure (1).

Let x be the pre-root of Structure (1) which has the root at y. Then after recolouring x either there
is no alternating cycle containing x and there is no monochromatic K1,3 in G or there is exactly one
monochromatic K1,3, which has the centre at x and forms Structure (2) with the root at the vertex x.

2. Suppose that the 2-colouring of G satisfies the following:

(i) there is exactly one vertex x which has all neighbours coloured with the same colour and there is
no other monochromatic K1,3 and

(ii) the vertex x is a pre-root of Structure (2).

Let y be the root of Structure (2) which has the pre-root at x. Then after recolouring x there is no
monochromatic K1,3 in G. Moreover, if new alternating cycles appear, then they form Structure (4)
with the root at the vertex x and the vertex y is not contained in any of them.

3. Suppose that the 2-colouring of G satisfies the following:

(i) there are exactly two monochromatic K1,3, one with the centre in the vertex x and the other with
the centre at the vertex y and

(ii) the vertex x is a pre-root and the vertex y is a root of Structure (3).

Then after recolouring the pre-root x of this Structure (3) there is no monochromaticK1,3 inG. Moreover,
if new alternating cycles appear, then they form Structure (4) with the root at the vertex x and none of
them contains the vertex y.
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Observation 2 Let G be a cubic graph whose vertices are (S2,S2)-coloured. Let C be an alternating
cycle of G and y ∈ V (C).

1. Let x ∈ N(y) \ V (C) and c(x) = c(y). If we change the colour of y then no monochromatic K1,3

appears.

2. Let x ∈ N(y) \ V (C) and c(x) 6= c(y). If we change the colour of y then either

(i) there is exactly one monochromatic K1,3, which has the centre at the vertex y and it forms Struc-
ture (1) or

(ii) there are exactly two monochromatic K1,3: one with the centre at the vertex y, the other with the
centre at the vertex x and they form Structure (3) with a pre-root at x and a root at y.

Moreover, vertices of C do not form any alternating cycle and no new alternating cycle appears in any of
these cases.

Now we present an algorithm which recolours vertices of an (S2,S2)-coloured cubic graph in such a
way that the number of alternating cycles is decreased and the graph is still (S2,S2)-coloured. We input
a cubic graph G which is (S2,S2)-coloured and a vertex v which is contained in an alternating cycle C.
The algorithm returns an (S2,S2)-colouring in which the vertices of C do not form any alternating cycle
and no new alternating cycle appears. An ordering X contains the vertices which are recoloured during
the execution of the algorithm, initially X := ∅. Every vertex in X is recoloured only once.

Reduction Algorithm
Input: a cubic graph G with an (S2,S2)-colouring, a vertex v which is contained in an alternating cycle.
Output: a new (S2,S2)-colouring of G.

1. x := v.

2. Change the colour of x.

3. Append x to X .

4. If there is a structure which has the root at the vertex x then

4.1. if there is a structure in which the root is at the vertex x and the pre-root r is not in X then
x := r and go to 2;

4.2. else find one vertex or two vertices such that after recolouring these vertices the structure is
destroyed and no new structure appears.

To prove that the Reduction Algorithm is correct and decreases the number of alternating cycles we
need the following properties of the ordering X:

Proposition 1 Let X = {v1, v2, . . . , vt}.

a) v1 = v.

b) If vi was a root of Structure (1), then vi+1 was a root of Structure (2).
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c) If vi was a root of Structure (2), then vi+1 was a root of Structure (4).

d) If vi was a root of Structure (3), then vi+1 was a root of Structure (4).

e) If vi was a root of Structure (4), then vi+1 was a root of Structure (1) or (3).

Proposition 2 Let X = (v1, v2, . . . , vt). Then vivi+1 ∈ E(G) for i = 1, . . . , t− 1.

Proposition 3 No three successive vertices of the ordering X are coloured with the same colour.

Proposition 4 Let X = (v1, v2, . . . , vt). If c(vi−1) 6= c(vi) and c(vi+1) 6= c(vi), then c(vi−2) =
c(vi−1) = c(vi+1) = c(vi+2) for i = 3, . . . , t− 2.

Proposition 5 Let X = (v1, v2, . . . , vt).

a) If c(vi) = c(vi−1) and w ∈ N(vi) \X , then c(w) = c(vi) for i = 2, . . . , t.

b) If c(vi) = c(vi+1) and w ∈ N(vi) \X , then c(w) 6= c(vi) for i = 1, . . . , t− 1.

c) If c(vi−1) 6= c(vi) and c(vi+1) 6= c(vi) and w ∈ N(vi) \X , then c(w) = c(vi) for i = 2, . . . , t− 1.

qqq t t t t t t tt t t t t t t
vi−1 vi vi+1 vi+2

q q q
Fig. 2: Properties of the ordering X

Figure 2 illustrates the properties of the ordering X which are described in Propositions 4 and 5.

Proposition 6 Let X = (v1, v2, . . . , vt). Then one of the following conditions holds:

a) c(v1) = c(v3) = c(v4), c(v2) 6= c(v1) and the vertices in N(v1) \X are coloured with c(v1) and the
vertices in N(v2) \X are coloured with c(v2);

b) c(v1) = c(v4), c(v2) = c(v3), c(v2) 6= c(v1) and the vertices in N(v1) \X are coloured with c(v1)
and the vertices in N(v2) \X are coloured with a colour other than c(v2).

Lemma 2 Let G be a cubic graph whose vertices are (S2,S2)-coloured. Let C be an alternating cycle
of G and v ∈ V (C). Then after execution of the Reduction Algorithm with the starting point in v we
obtain an (S2,S2)-colouring of G in which the vertex v is not contained in any alternating cycle and this
colouring does not contain any new alternating cycle.
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Proof: By Observation 2 we have that if we change the colour of the vertex v, then either we obtain
an (S2,S2)-colouring of G in which C is not alternating and no new alternating cycle appears or exactly
one of Structures (1), (2) appears. From Observations 1 and 2 it follows that if we change the colour of
a pre-root of any forbidden structure, then we destroy this structure and we obtain an (S2,S2)-colouring
ofGwhich does not contain any new alternating cycle, or we obtain a monochromaticK1,3, or alternating
cycles which are contained in Structure (4). Thus to complete the proof it is sufficient to show that in step
4.2 there exist appropriate vertices, i.e., the vertices such that after changing their colours the forbidden
structure is destroyed and no new forbidden structure appears.

Let (v1, v2, ..., vt) be vertices of the ordering X such that vt is a root of the forbidden structure which
has the pre-root x belonging to X . Note that v1 = v and every vertex of X was recoloured only once. Let
S be the forbidden structure which appears after recolouring the vertex vt. Then vt is a root of S and x is
a pre-root of S. By Proposition 2 we have that vt and x are adjacent. If x 6= v1 then two neighbours of
x are in X . By Proposition 3, in X there are no three successive vertices with the same colour, so that S
is isomorphic neither to Structure (2) nor to Structure (3). By Proposition 6, c(v1) 6= c(v2), so if x = v1,
then also S is isomorphic neither to Structure (2) nor to (3). Thus we will consider two cases: when S is
isomorphic to Structure (1) and when S is isomorphic to Structure (4). Since x ∈ X , assume that x = vi
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Fig. 3: Recolouring in Case 1

Case 1 S is isomorphic to Structure (1).
First note that i 6= 1, because by Proposition 6, the neighbours of v1 which are not in X have the

same colour as v1. Before vt was recoloured it had a colour different from c(v1) and it was not in X , so
the vertices v1 and vt cannot be adjacent.

Assume that i 6= t− 1.
In Structure (1) the root is a centre of the monochromatic K1,3 and the pre-root is a leaf of K1,3, hence

vertices vt and vi have the same colour. Thus before the vertex vt was recoloured, it had a colour other
than vi. Therefore, before vertex vt was recoloured, the vertex vi had a neighbour outside the ordering
X (the vertex vt) coloured with a colour other than c(vi). Thus from the properties of the ordering X it
follows that c(vi) = c(vi+1) (Proposition 5b) and c(vi−1) 6= c(vi) (Proposition 3).



66 M. Borowiecki, A. Fiedorowicz, K. Jesse-Józefczyk, and E. Sidorowicz

In Structure (1) the pre-root is connected by an alternating path with the neighbour of the root, therefore
there is an alternating path which starts at the vertex vi and goes through the vertex vi−1. Hence if we
change the colour of vi no new forbidden structure appears and the algorithm stops (Fig. 3).

Suppose now that i = t − 1. Since in Structure (1) there are two vertices x1 and x2 which can be a
pre-root and the algorithm chooses as a pre-root the vertex vt−1, it follows that both x1 an x2 are in X .
Thus we can choose a vertex to recolouring similarly as in the case described above.
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Fig. 4: Recolourings in Subcase 2.1

Case 2 S is isomorphic to Structure (4).
The pre-root of Structure (4) is contained in alternating cycles which also go through the vertex vt. By

Proposition 1 the vertex vt was the pre-root of Structure (2) or (3) in which the root was vt−1, hence there
are no alternating cycles going through vt−1. Therefore i 6= t− 1.

We first consider the case i 6= 1.
In Structure (4) the root and the pre-root are two successive vertices of an alternating cycle, therefore

c(vt) 6= c(vi). Thus before we recoloured the vertex vt, it had the same colour as vi. By Proposition 5
we have to distinguish two cases: one when c(vi) 6= c(vi+1) and c(vi) 6= c(vi−1) and the other when
c(vi) 6= c(vi+1) and c(vi) = c(vi−1).

Subcase 2.1 c(vi) 6= c(vi+1) and c(vi) 6= c(vi−1).
From Proposition 4 it follows that c(vi−2) = c(vi−1) = c(vi+2). Every alternating cycle of the

structure S contains the root vt and the pre-root vi. Therefore, all these cycles contain the vertex vi−1 or
vi+1.

First suppose that both vi−1 and vi+1 have at most one neighbour coloured with their colour. Then
at least one of the vertices vi−1, vi+1, say vi−1, is contained in one of the alternating cycles of S. If
we change the colour of vi and vi−1, then we destroy the structure S and no new structure appears, so
the algorithm stops (Fig.4 (a)).

Assume now that only one of the vertices vi−1, vi+1 has exactly one neighbour coloured with the same
colour, say vi−1 has exactly one neighbour coloured with c(vi−1) and vi+1 has two neighbours coloured
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with c(vi+1). Note that every alternating cycle of the structure S contains the vertex vi−1. If we recolour
the vertex vi−1 then we destroy S and no new structure appears, so the algorithm stops (Fig.4 (b)).
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Fig. 5: Recolouring in Subcase 2.2

Subcase 2.2 c(vi) 6= c(vi+1) and c(vi) = c(vi−1).
Note that every alternating cycle of S contains the vertex vi+1. If we recolour the vertex vi then we

destroy S and no new structure appears because now the vertex vi−1 has a colour other than c(vi). Thus
the algorithm stops (Fig. 5).

Suppose now that i = 1. Since in Structure (4) there are two vertices x1 and x2 which can be a pre-root
and the algorithm chooses as a pre-root the vertex v1, it follows that both x1 an x2 are in X . Thus we can
choose vertices to recolouring similarly as in the previous case. 2

Lemma 3 For any cubic graph there is an acyclic (S2,S2)-colouring.

Proof: LetG be a cubic graph. By Lemma 1, there is an (S2,S2)-colouring ofG. Suppose that there is no
acyclic (S2,S2)-colouring of G. Let c be an (S2,S2)-colouring of G in which the number of alternating
cycles is minimum. Let C be an alternating cycle and v ∈ V (C). By Lemma 2, after execution of
the Reduction Algorithm with the starting point in v we obtain an (S2,S2)-colouring of G which has
fewer alternating cycles than c, a contradiction. 2

Proof of Theorem 2: LetG ∈ S3. IfG is a cubic graph then, by Lemma 3, the Theorem holds. Otherwise
there is a cubic graph F such that G ⊆ F . Clearly, an acyclic (S2,S2)-colouring of F is also an acyclic
(S2,S2)-colouring of G. 2
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3 The complexity of acyclic (S2,S2)-colourings of cubic graphs
In this section we present a polynomial algorithm which produces an acyclic (S2,S2)-colouring of a cubic
graph G of order n. In the algorithm we first find an (S2,S2)-colouring of G. Then we find an alternating
cycle and using the Reduction Algorithm we recolour the vertices of G to destroy this alternating cycle in
such a way that the graph G is still (S2,S2)-coloured. To find an alternating cycle we use the following
function:

Function Cycle(v)
Input: a cubic graph G with a 2-colouring, a vertex v.
Output: an alternating cycle C containing v or a message that such a cycle does not exist.

1. G′ := G[W ], where W ⊆ E(G) is the subset of bichromatic edges.

2. T := the BFS tree of the graph G′ with the root in v.

3. Let v1, v2, v3 be the neighbours of v.

4. Vl := the set of descendants of vl in T , for l = 1, 2, 3.

5. If there is an edge xy ∈ E(G′) such that x ∈ Vl, y ∈ Vl′ and l 6= l′ then

5.1. C:= the cycle of the graph T + xy;

5.2. output the cycle C.

6. else output the message that there are no alternating cycles containing v.

We can also use Function Cycle in step 4.1 of the Reduction Algorithm to determine whether the graph
contains Structure (4). The algorithm works as follows:

Colour Acyclic Algorithm
Input: a cubic graph G of order n.
Output: an acyclic (S2,S2)-colouring of G.

I Find an (S2,S2)-colouring of G.

II Mark each vertex of G as not visited.

III For each vertex v which is not visited do

A. use Function Cycle(v) to decide whether there is an alternating cycle C containing v;

B. if there is an alternating cycle C containing v then apply the Reduction Algorithm with the
starting point in v to obtain an (S2,S2)-colouring of G such that the vertices of C do not form
an alternating cycle and no new alternating cycle appears;

C. mark v as visited.
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Theorem 3 There is a polynomial algorithm which produces an acyclic (S2,S2)-colouring of a cubic
graph.

Proof: We discuss the running time of the Colour Acyclic Algorithm and we show that it is O(n3), where
n is the order of the input graph. Step I can be done due to Lemma 1. Moreover, it is easy to observe that
a simple, iterative algorithm produces such a colouring in O(n) time. Clearly, Function Cycle(v) takes
O(n) time. By Lemma 2, we have that after visiting each vertex v of G at most once and executing the
Reduction Algorithm with the starting point in v, we obtain an acyclic (S2,S2)-colouring of G.

We now estimate the time complexity of the Reduction Algorithm. Finding a forbidden structure in
step 4 takes O(n) time (we use Function Cycle to find Structure (4), Structures (1)–(3) can be found in
O(1) time). The loop is iterated at most n times. From the proof of Lemma 2, it follows that step 2 can be
implemented to run in O(1) time. Thus, on the whole, the Colour Acyclic Algorithm takes O(n3) time.
2

4 Acyclic (S2,S2)-colourings of graphs from S4

By Theorem 1 we have that there are graphs with maximum degree 4 which do not have any acyclic
(S2,S2)-colouring. We show that it is an NP-complete problem to decide if a graph with maximum
degree 4 has an acyclic (S2,S2)-colouring, i.e., we prove the following:

Theorem 4 The recognition of graphs having an acyclic (S2,S2)-colouring for graphs with maximum
degree 4 is NP-complete.

Before we present the proof, let us consider several graphs. First of all the graph B. It is easy to see
that B has an acyclic (S2,S2)-colouring.

a

b c

d e f

t
t

t
ttt

Fig. 6: The graph B

Lemma 4 For every acyclic (S2,S2)-colouring of the graph B, one colour class induces the graph K3

and the second induces the graph P3.

Proof: Suppose first that b, c, e are coloured with the same colour. Then all the other vertices must be
coloured with the other one. But then there is an alternating cycle induced by the vertices a, b, c, d, e, f .
Suppose now, without loss of generality, that e is coloured with colour 1 and b, c are coloured with colour
2. Then amust be coloured with colour 2 since otherwise the vertices a, b, c, ewould induce an alternating



70 M. Borowiecki, A. Fiedorowicz, K. Jesse-Józefczyk, and E. Sidorowicz

cycle. That implies that the vertices d and f are coloured with colour 1 (because the vertices b, c have
now two neighbours coloured with colour 2). Obviously we obtained an acyclic (S2,S2)-colouring of
the graph and the set of vertices coloured with colour 1 induces P3 and the set of vertices coloured with
colour 2 induces K3. 2

Let us now take a quick look on the graph G(Cj), which includes the graph B as an induced subgraph.

a t
t

t
ttt

b

ct
vj1 vj2

vj3

d

Fig. 7: The graph G(Cj)

Observation 3 The graph G(Cj) has an acyclic (S2,S2)-colouring and the maximum degree of G(Cj)
is 4.

From Lemma 4 the next one follows.

Lemma 5 There does not exist an acyclic (S2,S2)-colouring of the graph G(Cj) such that vj1, vj2, vj3

are in the same colour class.

Lemma 6 Any non-monochromatic 2-colouring of the vertices vj1, vj2, vj3 can be extended to an acyclic
(S2,S2)-colouring of the graph G(Cj).

Proof: The graph B is an induced subgraph of the graph G(Cj), the non-monochromatic 2-colouring
of the vertices vj1, vj2, vj3 must be consistent with Lemma 4. By symmetry of G(Cj) it is enough to
consider only the case when vj3 is coloured with colour 1 and vj1, vj2 are coloured with colour 2. Then
the vertices a, b must be coloured with colour 1 and the vertices c, d must be coloured with colour 2 and
we obtain the acyclic (S2,S2)-colouring of the graph G(Cj). 2

From the above proof Lemma 7 follows.

Lemma 7 In any acyclic (S2,S2)-colouring of the graph G(Cj) for every vertex vji, where i = 1, 2, 3,
the colour class which contains the vertex vji contains also exactly two neighbours of vji.

Now let us consider the graph H .

Lemma 8 In every acyclic (S2,S2)-colouring of the graph H , either the vertices {a, b, c, j, k, n, o, p, r}
or the vertices {a, b, c, j, l, n, o, r, s} belong to the same colour class.
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Fig. 8: The graph H

Proof: First, let us consider an induced subgraphH
′

of the graphH where V (H
′
) = {a, b, c, d, e, f, g, h}.

The graph B is an induced subgraph of H
′
, so the vertices a, b, c, e, f, g must be coloured in accordance

with Lemma 4. Thus suppose that the vertices e, b, f (f, g, c) are coloured with colour 1 and the vertices
a, c, g (a, b, e) are coloured with colour 2. That implies that the vertex d (h) must be coloured with colour
2. Now the vertex a has two neighbours coloured with colour 2, so the vertex h (d) must be coloured
with colour 1. But now the vertices a, b, c, f, g, h (a, b, c, d, e, f ) induce an alternating cycle. It is easy to
see that if we colour the vertices a, b, c with colour 1, we must colour all the other vertices with colour 2.
Furthermore this colouring defines the only acyclic (S2,S2)-colouring of the graph H

′
.

It is obvious that the colouring of the graph H
′

determines the colouring of the graph H . One can see
that because the vertex e has two neighbours coloured with colour 2 then the vertex o must be coloured
with colour 1. Furthermore from the fact that the vertex d is coloured with colour 2 and the vertex o is
coloured with colour 1 from Lemma 4 it follows that the vertices j, n must be coloured with colour 1 and
the vertices i,m must be coloured with colour 2. The remaining part of the graph can be coloured in both
ways. Either we colour the vertices k, p, r with colour 1 and the vertices l, s with colour 2 or we colour
the vertices r, l, s with colour 1 and the vertices k, p with colour 2. In this way we obtain the acyclic
(S2,S2)-colouring of the graph H . 2

On the basis of the graph H we create the graph F (see Fig. 9).

Lemma 9 The graph F has an acyclic (S2,S2)-colouring and maximum degree of F is 4.

Lemma 10 In all acyclic (S2,S2)-colourings of F the vertices x and x
′

are coloured differently from the
vertex a.

The proof of the above lemma follows directly from Lemma 8.
Finally, let us consider the graph G(xi) which we create as it is shown in Figure 10. From Lemma 10

the next one follows.

Lemma 11 In every acyclic (S2,S2)-colouring of the graph G(xi) for i = 1, ..., n, k = 1, ...,m the
vertices xik belong to the same colour class.
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Fig. 9: The graph F
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Fig. 10: The graph G(xi)
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To determine the complexity of the problem to decide if a given graph G ∈ S4 has an acyclic (S2,S2)-
colouring we will use the 3NN-SAT problem. The NP-completeness of 3NN-SAT was proved in [6]

Proof of Theorem 4: Clearly our problem is in NP. In our proof we will make a polynomial-time reduction
from the 3NN-SAT problem, which belongs to the class NP-c, to our problem. Let C = {C1, .., Cm} be
a set of clauses and let V = {x1, ..., x1} be a set of Boolean variables. Furthermore, Cj ⊆ V and for
j = 1, 2, ...,m Cj = (cj1, cj2, cj3). In 3NN-SAT we ask if there is a truth assignment such that in each
clause there exist at least one true variable and at least one false variable. Note that there are no negative
variables. Given an instance of 3NN-SAT we create an instance of our problem, i.e., the graph G in
the following way. For each clause we create the graph G(Cj) and for each variable xi ∈ V we create
the graph G(xi). To obtain the whole graph G we have to connect the graphs G(Cj) and G(xi). To
do that for i = 1, ..., n, k = 1, ...,m, p = 1, 2, 3 we add an edge xikvkp, where xik ∈ V (G(xi)) and
vkp ∈ V (G(Cj)), if and only if the variable xi is ckp. From Lemma 7 and the construction of the graph
G a further Lemma follows.

Lemma 12 In every acyclic (S2,S2)-colouring of the graph G for j = 1, ...,m and p = 1, 2, 3 the
vertex vjp ∈ V (G(Cj)) has exactly one neighbour xij in exactly one graph G(xi) where 1 ≤ i ≤ n and
moreover xij belongs to a different colour class than vjp.

Let us suppose that the 3NN-SAT problem has a solution. We obtain an acyclic (S2,S2)-colouring of
the graph G in the following way. For each true variable xi we colour every vertex xik ∈ V (G(xi))
with colour 1 and for each false variable xi we colour every vertex xik ∈ V (G(xi)) with colour 2 where
i = 1, ..., n, k = 1, ...,m. We colour the neighbours of the vertices xik ∈ V (G(xi)) in the graph G(Cj)
differently from xik. From Lemmas 5, 6, 8, 11 and 12 we have that such 2-colouring can be extended to
an acyclic (S2, S2)-colouring of the graph G.

Now suppose that the graph G has an acyclic (S2,S2)-colouring. To obtain a solution of the 3NN-SAT
problem we assign true value to every variable xi ∈ V for which the corresponding vertex xik ∈ V (G(xi))
is coloured with colour 1 where i = 1, ..., n, k = 1, ...,m. Furthermore we assign false value to every
variable xi ∈ V for which the corresponding vertex xik ∈ V (G(xi)) is coloured with colour 2 where
i = 1, ..., n, k = 1, ...,m. The correctness of this assignment follows from Lemmas 5, 11 and 12. 2



74 M. Borowiecki, A. Fiedorowicz, K. Jesse-Józefczyk, and E. Sidorowicz
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