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In this paper, we study a parameter that is squeezed between arguably the two important domination parameters, namely

the domination number, γ(G), and the total domination number, γt(G). A set S of vertices in G is a semitotal dom-

inating set of G if it is a dominating set of G and every vertex in S is within distance 2 of another vertex of S. The

semitotal domination number, γt2(G), is the minimum cardinality of a semitotal dominating set of G. We observe that

γ(G) ≤ γt2(G) ≤ γt(G). In this paper, we give a lower bound for the semitotal domination number of trees and

we characterize the extremal trees. In addition, we characterize trees with equal domination and semitotal domination

numbers.
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1 Introduction
Let G = (V,E) be a graph without isolated vertices with vertex set V of order n(G) = |V | and edge set E
of size m(G) = |E|, and let v be a vertex in V . The open neighborhood of v is N(v) = {u ∈ V |uv ∈ E}
and the closed neighborhood of v is N [v] = N(v) ∪ {v}. The degree of a vertex v is d(v) = |N(v)|. For
two vertices u and v in a connected graph G, the distance d(u, v) between u and v is the length of a shortest
(u, v)-path in G. The maximum distance among all pairs of vertices of G is the diameter of a graph G
which is denoted by diam(G). A leaf of G is a vertex of degree 1 and a support vertex of G is a vertex
adjacent to a leaf. Denote the sets of leaves and support vertices of G by L(T ) and S(T ), respectively. Let
l(T ) = |L(T )| and s(T ) = |S(T )|. A double star is a tree that contains exactly two vertices that are not
leaves.

A dominating set in a graph G is a set S of vertices of G such that every vertex in V (G) \ S is adjacent
to at least one vertex in S. The domination number of G, denoted by γ(G), is the minimum cardinality of
a dominating set of G. A total dominating set of a graph G with no isolated vertex is a set D of vertices
of G such that every vertex in V (G) is adjacent to at least one vertex in D. The total domination number
of G, denoted by γt(G), is the minimum cardinality of a total dominating set of G. A dominating (total
dominating) set of G of cardinality γ(G) (γt(G)) is called a γ(G)-set (γt(G)-set).
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The concept of semitotal domination in graphs was introduced and studied by Goddard, Henning and
McPillan [3]. A set S of vertices in a graph G with no isolated vertices is a semitotal dominating set of G if
it is a dominating set of G and every vertex in S is within distance 2 of another vertex of S. The semitotal
domination number, denoted by γt2(G), is the minimum cardinality of a semitotal dominating set of G. A
semitotal dominating set of G of cardinality γt2(G) is called a γt2(G)-set. Clearly, for every graph G with
no isolated vertex, γ(G) ≤ γt2(G) ≤ γt(G). If the graph G is clear from the context, we simply write γ-set
and γt2-set rather than γ(G)-set and γt2(G)-set, respectively.

An area of research in domination of graphs that has received considerable attention is the study of
classes of graphs with equal domination parameters. For any two graph theoretic parameters λ and µ, G is
called a (λ, µ)-graph if λ(G) = µ(G). The class of (γ, γt)-trees, that is trees with equal domination and total
domination numbers, was characterized in [6]. In [4], the authors provided a constructive characterizations
of trees with equal domination and paired domination numbers. More results in this area were investigated
in [7, 9, 8, 1] and elsewhere. Motivated by these results, we aim to characterize trees with equal domination
and semitotal domination numbers. In addition, we give a lower bound for the semitotal domination number
of trees and we characterize the extremal trees.

2 A lower bound for semitotal domination number of trees
In this section we give a lower bound for the semitotal domination number of trees and we characterize the
extremal trees. First, we shall need the following two observations.

Observation 2.1. Let G be a connected graph that is not a star. Then,
(i) there is a γ-set of G that contains no leaf, and
(ii)[5] there is a γt2-set of G that contains no leaf.

Theorem 2.2. If T is a tree of order n(T ) ≥ 2 with l(T ) leaves, then γt2(T ) ≥ 2[n(T )−l(T )+2]
5 .

Proof: We use induction on n(T ). It is easy to see that the result holds for a tree of order n ≤ 8. Let T be
a tree of order n > 8 and assume that γt2(T ′) ≥ 2[n(T ′)−l(T ′)+2]

5 for each tree T ′ with order at most n− 1.
We consider the case that diam(T ) ≥ 4. Otherwise, T is a star or double-star, then γt2(T ) has the desired
property in theorem. By Observation 2.1(ii), we can obtain a γt2-set of T , say D, which contains no leaf.

Claim 1. For any vertex v ∈ V (T ) \ L(T ), v has only one leaf-neighbor when |N(v) \ L(T )| = 1, and v
is not a support vertex when |N(v) \ L(T )| ≥ 2.

Proof: If v is a vertex that has at least two leaf-neighbors and |N(v) \ L(T )| = 1. We remove one
of those leaves and denote the resulting tree by T ′. It is easy to observe that γt2(T ′) = γt2(T ). By
induction, γt2(T ′) ≥ 2[n(T ′)−l(T ′)+2]

5 . And consequently γt2(T ) ≥ 2[n(T )−l(T )+2]
5 as l(T ′) = l(T ) − 1,

n(T ′) = n(T )− 1.
If v is a support vertex and |N(v) \ L(T )| ≥ 2, we remove a leaf-neighbor of v and the semitotal

domination number of the resulting tree is no greater than that of T . Analogously to the previous case,
γt2(T ) has the desired property in theorem.

In other words, each support vertex of T has degree two. Let P = v0v1v2 · · · vt be a longest path in T
such that
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(i) d(v3) as large as possible, and subject to this condition
(ii) d(v2) as large as possible.
By Claim 1, d(v1)=2 and v2 is not a support vertex.

Claim 2. d(v2) = 2.

Proof: If d(v2) > 2, it follows from the choice of P and Claim 1 that all neighbors of v2 are support vertices
of degree two, except possibly the vertex v3.

Let u1 be a neighbor of v2 outside P , u2 be the leaf that adjacent to u1, and T ′ = T − {v0, u2}. By
induction, γt2(T ′) ≥ 2[n(T ′)−l(T ′)+2]

5 . In addition, replacing the vertices u1 and v1 in D with v2(If v2 ∈ D,
take D \ {v1} instead), we can obtain a semitotal dominating set of T ′. That is, γt2(T ′) ≤ γt2(T )− 1. Note
that l(T ′) = l(T ), n(T ′) = n(T )− 2. Therefore, γt2(T ) ≥ 2[n(T )−l(T )+2]

5 .

We know that v1 ∈ D and exactly one of v2 and v3 belongs to D. Without loss of generality, v3 ∈ D
(Otherwise, we replace the vertex v2 in D with v3, and the resulting set is also a γt2-set of T ).

Claim 3. d(v3) = 2.

Proof: By Claim 1 and the assumption that n > 8, v3 is not a support vertex. If d(v3) > 2, it follows from
the choice of P and Claim 1 that v3 has a neighbor of degree two outside P , say v′2, which is either a support
vertex or adjacent to a support vertex outside P , say v′1.

In the former case, we have that {v1, v3, v′2} ⊆ D. And in the latter case, we have that {v1, v3, v′1} ⊆ D.
Let T ′ = T −{v0, v1}. By induction, γt2(T ′) ≥ 2[n(T ′)−l(T ′)+2]

5 . In either case, we have that l(T ′) = l(T ),
n(T ′) = n(T )−2 and it is easy to see that γt2(T ′) ≤ γt2(T )−1. Therefore, γt2(T ) ≥ 2[n(T )−l(T )+2]

5 .

Claim 4. d(v4) = 2.

Proof: By Claim 1 and the assumption that n > 8, v4 is not a support vertex. If d(v4) > 2, from the
choice of P and Claim 1, we only need to consider the case as follows: v4 has a neighbor outside P ,
say v′3, which is adjacent to t support vertices u1, u2, · · · , ut, where t ≥ 2. (In other cases, we always
have that γt2(T ′) ≤ γt2(T ) − 1, l(T ′) = l(T ) and n(T ′) = n(T ) − 2, where T ′ = T − {v0, v1}. And
similar to the proof of Claim 3, γt2(T ) has the desired property in theorem.) Let u′i be the leaf-neighbor
of ui, where i = 1, 2, · · · , t. Let T ′ = T − {u′1, u′2, · · · , u′t}. By induction, γt2(T ′) ≥ 2[n(T ′)−l(T ′)+2]

5 .
Note that {u1, u2, · · · , ut} ⊆ D. Then (D \ {u1, u2, · · · , ut}) ∪ {v′3} is a semitotal dominating set of
T ′. That is, γt2(T ′) ≤ γt2(T ) − t + 1. In addition, l(T ′) = l(T ), n(T ′) = n(T ) − t. Hence, γt2(T ) ≥
2[n(T ′)−l(T ′)+2]

5 + t− 1 = 2[n(T )−t−l(T )+2]
5 + t− 1 > 2[n(T )−l(T )+2]

5 .

Note v1, v3 ∈ D. Then, one of the two cases as following holds: (1) Each vertex of D \ {v1, v3} is at
distance at least 3 from v3; (2) There is a vertex of D \ {v1, v3} which is within distance 2 of v3.

In the former case, let T ′ = T − {v0, v1, v2, v3, v4}. By induction, γt2(T ′) ≥ 2[n(T ′)−l(T ′)+2]
5 . In

addition, note that D \ {v1, v3} is a semitotal dominating set of T ′, n(T ) = n(T ′) + 5, l(T ) ≥ l(T ′).
Hence, γt2(T ) ≥ 2[n(T )−l(T )+2]

5 .
In the latter case, let T ′ = T − {v0, v1}. By induction, γt2(T ′) ≥ 2[n(T ′)−l(T ′)+2]

5 . Since D \ {v1} is a
semitotal dominating set of T ′, n(T ) = n(T ′) + 2, l(T ) = l(T ′). Hence, γt2(T ) ≥ 2[n(T )−l(T )+2]

5 .
The proof is completed.
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Next, we are ready to provide a constructive characterization of the trees achieving equality in the bound
of Theorem 2.2. For our purposes we define a labeling of a tree T as a partition S = (SA, SB , SC) of V (T )

(This idea of labeling the vertices is introduced in [2]). We will refer to the pair (T, S) as a labeled tree. The
label or status of a vertex v, denoted sta(v), is the letter x ∈ {A,B,C} such that v ∈ Sx.

Let T be the family of labeled trees that: (i) contains (P5, S
′) where S′ is the labeling that assigns to

the two support vertices of the path P5 status A, to the two leaves status C and to the center vertex status B
(see Fig.1(a)); and (ii) is closed under the two operations O1 and O2 that are listed below, which extend the
tree T ′ to a tree T by attaching a tree to the vertex v ∈ V (T ′).

Operation O1: Let v be a vertex with sta(v) = A. Add a vertex u and the edge uv. Let sta(u) = C.
Operation O2: Let v be a vertex with sta(v) = C that has degree one. Add a path u1u2u3u4u5 and the

edge u1v. Let sta(u1) =sta(u5) = C, sta(u2) =sta(u4) = A, sta(u3) = B.
The two operations O1 and O2 are illustrated in Fig.1(b), (c).

A C

C C A B A C

C A B A C

( )a

( )b

d v =1( )

( )c

Fig. 1

Let (T, S) ∈ T be a labeled tree for some labeling S. Then there is a sequence of labeled trees (T0, S0),
(T1, S1), · · · , (Tk−1, Sk−1), (Tk, Sk) such that (T0, S0) = (P5, S

′), (Tk, Sk) = (T, S). The labeled tree
(Ti, Si) can be obtained from (Ti−1, Si−1) by one of the operations O1 and O2, where i ∈ {1, 2, · · · , k}.
We call the number of terms in such a sequence of labeled trees that is used to construct (T, S), the length
of the sequence. Clearly, the above sequence has length k. We remark that a sequence of labeled trees used
to construct (T, S) is not necessarily unique.

We take an example to make it easier for reader to understand the family T . In Fig.2, (P5, S
′) ∈

T , (H1, S1) is obtained from (P5, S
′) by operation O2, (H2, S2) is obtained from (H1, S1) by repeated

applications of operation O1, and (H3, S) is obtained from (H2, S2) by operation O2. Thus, (H1, S1),
(H2, S2), (H3, S) ∈ T . For T ∈ {P5, H1, H2, H3}, it is easy to see that the set, say D, consisting of the
vertices labeled A in T is a γt2-set of T . In particular, |D| = 2[n(T )−l(T )+2]

5 .
Before presenting our main result, we present a few preliminary results and observations.

Observation 2.3. Let T be a tree and let S be a labeling of T such that (T, S) ∈ T . Then, T has the
following properties:
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C A B A C C A B A C C A B A C

C A B A C C A B A C

C C C

C A B A C C A B A C

C C
C

C

A

B

A

C

(P S5 , ') (H S )1 1,

(H S2 2, )

(H S)3,

v1v2
v3

v4 v5v1
v2

v3
v4 v5

v2
v3

v4 v5v1

v2
v3

v4 v5v1

Fig. 2

(a) Every support vertex is labeled A and every leaf is labeled C.
(b) |SA| = 2|SB |.
(c) The set SA is a semitotal dominating set of T .
(d) The set SA and SB are independent sets.
(e) Every vertex labeled B has degree two and its neighbors labeled A.

Lemma 2.4. Let T be a tree and let S be a labeling of T such that (T, S) ∈ T . Then, γt2(T ) =
2[n(T )−l(T )+2]

5 .

Proof: First, we are ready to show that |SA| = 2[n(T )−l(T )+2]
5 . We proceed by induction on the length k of

a sequence required to construct the labeled tree (T, S).
When k = 0, (T, S) = (P5, S

′), and so |SA| = 2. This establishes the base case. Let k ≥ 1 and
assume that if the length of sequence used to construct a labeled tree (T ∗, S∗) ∈ T is less than k, then
|S∗A| =

2[n(T∗)−l(T∗)+2]
5 . Now, (T, S) ∈ T and let (T0, S0), (T1, S1), · · · , (Tk−1, Sk−1), (Tk, Sk) be a

sequence of length k used to construct (T, S), where (T0, S0) = (P5, S
′), (Tk, Sk) = (T, S), (Ti, Si) can

be obtained from (Ti−1, Si−1) by one of the operations O1 and O2, i ∈ {1, 2, · · · , k}. Let T ∗ = Tk−1 and
S∗ = Sk−1. Note that (Tk−1, Sk−1) ∈ T . By the inductive hypothesis, |S∗A| =

2[n(T∗)−l(T∗)+2]
5 . (T, S)

can be obtained from (T ∗, S∗) by operation O1 or O2.
In the former case, we have that n(T ) = n(T ∗) + 1, l(T ) = l(T ∗) + 1, and |SA| = |S∗A|. Thus,

|SA| = 2[n(T∗)−l(T∗)+2]
5 = 2[n(T )−1−l(T )+1+2]

5 = 2[n(T )−l(T )+2]
5 .

In the latter case, we have that n(T ) = n(T ∗) + 5, l(T ) = l(T ∗) and |SA| = |S∗A| + 2. Thus,
|SA| = 2[n(T∗)−l(T∗)+2]

5 + 2 = 2[n(T )−5−l(T )+2]
5 + 2 = 2[n(T )−l(T )+2]

5 .
By Observation 2.3(c), we have that γt2(T ) ≤ 2[n(T )−l(T )+2]

5 . Combining Theorem 2.2, we conclude
that γt2(T ) =

2[n(T )−l(T )+2]
5 . Moreover, SA is a γt2-set of T .

Theorem 2.5. Let T be a nontrivial tree, then γt2(T ) =
2[n(T )−l(T )+2]

5 if and only if (T, S) ∈ T for some
labeling S.
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Proof: The sufficiency follows immediately from Lemma 2.4. So we prove the necessity only. The proof
is by induction on the order of T . The result is immediate for n ≤ 5. For the inductive hypothesis,
let n ≥ 6 and moreover, diam(T ) ≥ 4 (If diam(T ) ≤ 3, T is a star or a double star, and then γt2(T ) >
2[n(T )−l(T )+2]

5 , a contradiction). Assume that for every nontrivial tree T ′ of order less than nwith γt2(T ′) =
2[n(T ′)−l(T ′)+2]

5 , we have that (T ′, S∗) ∈ T for some labeling S∗. Let T be a tree of order n satisfying
γt2(T ) =

2[n(T )−l(T )+2]
5 . Let P = v1v2 · · · vt be a longest path in T such that

(i) d(v4) as large as possible, and subject to this condition
(ii) d(v3) as large as possible.
Let D be a γt2-set of T which contains no leaf.

Claim 1. Each support vertex has exactly one leaf-neighbor.

Proof: If not, assume that there is a support vertex u which is adjacent to at least two leaves. Deleting one
of its leaf-neighbors, say u1, and denote the resulting tree by T ′. D is still a semitotal dominating set of
T ′. That is, γt2(T ′) ≤ γt2(T ) = 2[n(T )−l(T )+2]

5 = 2[n(T ′)+1−l(T ′)−1+2]
5 = 2[n(T ′)−l(T ′)+2]

5 . Combining
Theorem 2.2, we have that γt2(T ′) =

2[n(T ′)−l(T ′)+2]
5 . By the inductive hypothesis, (T ′, S∗) ∈ T for some

labeling S∗. Since u is still a support vertex in T ′, by Observation 2.3(a), the vertex u has label A in S∗.
Let S be obtained from the labeling S∗ by labeling the vertex u1 with label C. Then, (T, S) can be obtained
from (T ′, S∗) by operation O1. Thus, (T, S) ∈ T .

By Claim 1, we can assume that d(v2) = 2. Now, we consider the vertex v3. If v3 is a support vertex,
then v2, v3 ∈ D. Let T ′ be the tree which is obtained from T by subdividing the edge v2v3. It is easy to
see that D is still a semitotal dominating set of T ′, and it means that 2[n(T )−l(T )+2]

5 = γt2(T ) ≥ γt2(T ′) ≥
2[n(T ′)−l(T ′)+2]

5 = 2[n(T )+1−l(T )+2]
5 = 2[n(T )−l(T )+3]

5 , a contradiction. So, v3 is not a support vertex.
Assume that d(v3) ≥ 3. Then, it follows from the choice of P that v3 is adjacent to a support vertex,

say u, which does not belong to P . Clearly, u, v2 ∈ D. Moreover, v3 6∈ D. Otherwise, we subdivide the
edges v2v3 and uv3, and yield a similar contradiction as above.

If u is within distance two from a vertex in D \{u, v2}, we have that 2[n(T )−2−(l(T )−1)+2]
5 ≤ γt2(T ′) ≤

γt2(T ) − 1 = 2[n(T )−l(T )+2]
5 − 1, where T ′ = T − {v1, v2}. It is impossible. It follows that v4 6∈ D,

but in this case, let T ′′ be the component of T − v3v4 containing the vertex v4, and 2[n(T )−l(T )+2]
5 =

γt2(T ) ≥ γt2(T
′′) + γt2(T − T ′′) ≥ 2[n(T ′′)−l(T ′′)+2]

5 + 2[n(T−T ′′)−l(T−T ′′)+2]
5 ≥ 2[n(T )−(l(T )+1)+4]

5 =
2[n(T )−l(T )+3]

5 , a contradiction. Therefore, d(v3) = 2.
From the choice of D, v2 ∈ D, and without loss of generality, v4 ∈ D (If v4 6∈ D, then v3 ∈ D,

replacing v3 in D with v4, and we obtain a new γt2-set of T ).
Assume that d(v4) ≥ 3. We have that the following conclusion.

Claim 2. N(v4) \ {v3, v5} ⊂ L(T ).

Proof: Assume that there exists a vertex v′3 ∈ N(v4) \ {v3, v5} which is not a leaf, it follows from the
choice of P and Claim 1 that v′3 is either a support vertex or adjacent to a support vertex outside P , say
v′2. In particular, d(v′3) = 2 (From the choice of P ). In either case, let T ′ = T − {v1, v2}. Observe that
n(T ) = n(T ′) + 2, l(T ) = l(T ′), γt2(T ′) ≤ γt2(T ) − 1. Then, we have that γt2(T ′) ≤ γt2(T ) − 1 =
2[n(T )−l(T )+2]

5 − 1 = 2[n(T ′)+2−l(T ′)+2]
5 − 1 = 2[n(T ′)−l(T ′)+2]

5 − 1
5 < 2[n(T ′)−l(T ′)+2]

5 , contradicting
Theorem 2.2. It concludes that ∅ 6= N(v4) \ {v3, v5} ⊂ L(T ).
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So d(v4) = 2 or N(v4) \ {v3, v5} ⊂ L(T ). Moreover, all vertices in D \ {v2, v4} are distance at
least three from v4 (If not, let T ′ = T − {v1, v2}. Observe that n(T ) = n(T ′) + 2, l(T ) = l(T ′),
γt2(T

′) ≤ γt2(T )− 1. We can obtain a contradiction by an argument similar to the proof of Claim 2).

If d(v5) = 1, by Claim 1 and the choice of P , T = P5, contradicting the assumption that n ≥ 6. So
assume that d(v5) ≥ 3, since all vertices in D \ {v2, v4} are distance at least three from v4, each neighbor
of v5 is neither a leaf nor a support vertex. From the choice of P and Claim 1, we only need to consider the
case as follows: v5 has a neighbor outside P , say v′4, which is adjacent to t support vertices u1, u2, · · · , ut,
where t ≥ 2. (In other cases, let T ′ = T − {v1, v2}. Observe that n(T ) = n(T ′) + 2, l(T ) = l(T ′),
γt2(T

′) ≤ γt2(T )−1. We can always obtain contradictions by an argument similar to the proof of Claim 2).
Let u′i be the leaf-neighbor of ui, where i = 1, 2, · · · , t, and T ′ = T − {u′1, u′2, · · · , u′t}. Note that
{u1, u2, · · · , ut} ⊆ D. Then (D \ {u1, u2, · · · , ut}) ∪ {v′4} is a semitotal dominating set of T ′. That is,
γt2(T

′) ≤ γt2(T )− t+1. In addition, l(T ′) = l(T ), n(T ′) = n(T )− t. Hence, γt2(T ′) ≤ γt2(T )− t+1 =
2[n(T )−l(T )+2]

5 − t + 1 = 2[n(T ′)+t−l(T ′)+2]
5 − t + 1 = 2[n(T ′)−l(T ′)+2]

5 + 2t
5 − t + 1 < 2[n(T ′)−l(T ′)+2]

5 ,
contradicting Theorem 2.2. Therefore, d(v5) = 2.

Let T ′ be the component of T −v5v6 containing v6. If v6 is not a leaf in T ′, then n(T ) = n(T ′)+5+s,
l(T ) = l(T ′) + 1 + s, where s is the number of the leaf-neighbors of v4. Since all vertices in D \ {v2, v4}
are distance at least three from v4, γt2(T ′) ≤ γt2(T ) − 2. It follows that γt2(T ′) ≤ 2[n(T )−l(T )+2]

5 − 2 =
2[n(T ′)+5+s−l(T ′)−1−s+2]

5 − 2 = 2[n(T ′)−l(T ′)+2]
5 − 2

5 < 2[n(T ′)−l(T ′)+2]
5 , contradicting Theorem 2.2. It

means that v6 is a leaf in T ′, and γt2(T ′) ≤ γt2(T )−2 = 2[n(T )−l(T )+2]
5 −2 = 2[n(T ′)+5+s−l(T ′)−s+2]

5 −2 =
2[n(T ′)−l(T ′)+2]

5 . Combining Theorem 2.2, we have that γt2(T ′) = 2[n(T ′)−l(T ′)+2]
5 . By the inductive

hypothesis, (T ′, S∗) ∈ T for some labeling S∗. Since v6 is a leaf in T ′, by Observation 2.3(a), the vertex
v6 has label C in S∗.

If d(v4) = 2, let S be obtained from the labeling S∗ by labeling the vertices v1 and v5 with label C, the
vertices v2 and v4 with label A, the vertex v3 with label B. Then, (T, S) can be obtained from (T ′, S∗) by
operation O2. Thus, (T, S) ∈ T .

If ∅ 6= N(v4) \ {v3, v5} ⊂ L(T ), by Claim 1, v4 has exactly one leaf-neighbor. Let S∗1 be obtained
from the labeling S∗ by labeling the vertices v1 and v5 with label C, the vertices v2 and v4 with label A, the
vertex v3 with label B. S be obtained from the labeling S∗1 by labeling the leaf-neighbor of v4 with label C.
Then, (T ′′, S∗1 ) can be obtained from (T ′, S∗) by operation O2, and (T, S) can be obtained from (T ′′, S∗1 )

by operation O1, where T ′′ is obtained from T by deleting the leaf-neighbor of v4. Thus, (T, S) ∈ T .

3 A characterization of (γ, γt2)-trees
Before presenting a characterization of (γ, γt2)-trees, we shall need some additional notation.

Take a star with the center vertex x. A subdivided star, denoted by X , is obtained from the star by
subdividing all edges once. And the tree obtained from the star by subdividing exactly one of the edges once
is denoted by Y .

An almost dominating set (ADS) of G relative to a vertex v is a set of vertices of G that dominates all
vertices of G, except possibly for v. The almost domination number of G relative to v, denoted γ(G; v), is
the minimum cardinality of an ADS of G relative to v. An ADS of G relative to v of cardinality γ(G; v) we
call a γ(G; v)-set.
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In order to state the characterization of trees with equal domination and semitotal domination numbers,
we introduce the four types of operations as follows.

Operation O1: Add a path P1 and join it to a vertex of T , which is in some γt2-set of T .
Operation O2: Add a path P2 or P5 and join one of its leaves to a vertex v of T , where γ(T ; v) = γ(T ).
Operation O3: Add a subdivided star X with at least two leaves and join the center vertex x to a vertex

of T .
Operation O4: Add Y with three leaves and join a leaf-neighbor of the center vertex x to a vertex of T .
We define the family O as:
O = {T |T is obtained from P4 by a finite sequence of operations Oi, i = 1, 2, 3, 4}. We show first that

every tree in the family O has equal domination and semitotal domination numbers.

Lemma 3.1. If T ∈ O , then T is a (γ, γt2)-tree.

Proof: The proof is by induction on the number h(T ) of operations required to construct the tree T . Observe
that T = P4 when h(T ) = 0, and clearly γ(T ) = γt2(T ). This establishes the base case. Assume that k ≥ 1

and each tree T ′ ∈ O with h(T ′) < k is a (γ, γt2)-tree. Let T ∈ O be a tree with h(T ) = k. Then T can be
obtained from a tree T ′ ∈ O with h(T ′) < k by one of the operations Oi, i = 1, 2, 3, 4. By induction, T ′ is
a (γ, γt2)-tree. By Observation 2.1(i), we can obtain a γ-set of T , say S, which contains no leaf. Now we
can distinguish four cases as follows:

Case 1. T is obtained from T ′ by operation O1.
In this case, T is obtained from T ′ by adding a path P1 and joining it to a vertex of T ′, which is in some

γt2-set of T ′, say D′. Note that D′ is also a semitotal dominating set of T . That is, γt2(T ′) ≥ γt2(T ). On
the other hand, we have that γ(T ′) = γt2(T

′). Moreover, since the set S contains no leaf of T , we have that
S is a dominating set of T ′, and then γ(T ′) ≤ γ(T ). Hence, γ(T ) ≤ γt2(T ) ≤ γt2(T

′) = γ(T ′) ≤ γ(T ).
Consequently we must have equality throughout this inequality chain. In particular, γ(T ) = γt2(T ).

Case 2. T is obtained from T ′ by operation O2.
First, suppose that T is obtained from T ′ by adding a path P2 and joining one of its vertices, say u,

to a vertex v of T ′, where γ(T ′; v) = γ(T ′). Let D′ be a γt2-set of T ′. Clearly, D′ ∪ {u} is a semitotal
dominating set of T . That is, γt2(T ) ≤ γt2(T ′) + 1. On the other hand, because u ∈ S, the set S \ {u} can
dominate all vertices of T ′, except possibly the vertex v. It follows from the condition γ(T ′; v) = γ(T ′)

that γ(T ) − 1 ≥ γ(T ′). Therefore, γ(T ) ≤ γt2(T ) ≤ γt2(T
′) + 1 = γ(T ′) + 1 ≤ γ(T ). It means that

γ(T ) = γt2(T ).
Next, suppose that T is obtained from T ′ by adding a path P5 and joining one of its leaves to a vertex v

of T , where γ(T ; v) = γ(T ). Analogously to the previous arguments, we can deduce that γ(T ) = γt2(T ).

Case 3. T is obtained from T ′ by operation O3.
In this case, T is obtained from T ′ by adding a subdivided star X with at least two leaves and joining

the center vertex x to a vertex of T ′. The set D1 consists of a γt2-set of T ′ together with all support
vertices of X . Clearly, D1 is a semitotal dominating set of T . Assume that X contains t leaves (t ≥ 2).
Then, γt2(T ) ≤ γt2(T

′) + t. Moreover, it is easy to see that γ(T ) − t ≥ γ(T ′). So, γ(T ) ≤ γt2(T ) ≤
γt2(T

′) + t = γ(T ′) + t ≤ γ(T ). Consequently we must have equality throughout this inequality chain. In
particular, γ(T ) = γt2(T ).
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Case 4. T is obtained from T ′ by operation O4.
In this case, we can prove γ(T ) = γt2(T ) similar to the proof of Case 3.

Lemma 3.2. If T is a (γ, γt2)-tree, then T ∈ O .

Proof: We only need to consider the case that n(T ) ≥ 6 and diam(T ) ≥ 4. Otherwise, T = P4 or T
can be obtained from P4 by repeated applications of operation O1. We proceed by induction on the order
n(T ) of a (γ, γt2)-tree T . Assume that the result is true for all (γ, γt2)-tree T ′ of order n(T ′) < n(T ). By
Observation 2.1(ii), we can obtain a γt2-set of T , say D, which contains no leaf. Let P = v0v1v2 · · · vs be
a longest path of T such that

(i) d(v3) as large as possible, and subject to this condition
(ii) d(v2) as large as possible.
Let z be a support vertex of T which has at least two leaf-neighbors. We remove one of these leaves

and denote the resulting tree by T ′. Note that D is still a semitotal dominating set of T ′. That is, γt2(T ′) ≤
γt2(T ). By Observation 2.1(i), there is a γ-set of T ′, say S′, which contains no leaf. Clearly, z ∈ S′ and then
S′ is also a dominating set of T . Therefore, γ(T ′) ≤ γt2(T ′) ≤ γt2(T ) = γ(T ) ≤ γ(T ′). Consequently we
must have equality throughout this inequality chain. In particular, γ(T ′) = γt2(T

′) and z is in a γt2(T ′)-set.
By induction, T ′ ∈ O . And then, T is obtained from T ′ by operation O1. So, we assume that each support
vertex of T is adjacent to exactly one leaf, for otherwise, we are done. For this reason, d(v1) = 2.

We can distinguish two cases as follows.

Case 1. v2 is a support vertex of T .
In this case, v1, v2 ∈ D. Because of diam(T ) ≥ 4, |D| ≥ 3. And then, one of the two cases as

following holds: (1) Each vertex of D \ {v1, v2} is at distance at least 3 from v2; (2) There is a vertex of
D \ {v1, v2} which is within distance 2 of v2.

In the former case, if d(v3) ≥ 3, let v′2 be a neighbor of v3 outside P . From the choice of P and
D, it is not difficult to verify that the component of T − v′2v3 containing the vertex v′2 is a subdivided
star with at least two leaves, say X . Suppose that X contains t leaves. The set obtained by deleting
all support vertices of X from D is denoted by D′, is still a semitotal dominating set of T − X . So,
γt2(T − X) ≤ γt2(T ) − t. On the other hand, the set consists of a γ-set of T − X together with all
support vertices of X is a dominating set of T . For this reason, γ(T ) ≤ γ(T − X) + t. Therefore,
γ(T−X) ≤ γt2(T−X) ≤ γt2(T )−t = γ(T )−t ≤ γ(T−X). It concludes that γ(T−X) = γt2(T−X). By
induction, T −X ∈ O . Then, T is obtained from T −X by operation O3. If d(v3) = 2, then the component
of T − v3v4 containing v3 is a tree Y with three leaves. With a similar discussion as above, one can prove
that T is obtained from T − Y by operation O4.

In the latter case, let T ′ = T −{v0, v1}. Clearly, the inequality chain γ(T ′) ≤ γt2(T ′) ≤ γt2(T )− 1 =

γ(T ) − 1 ≤ γ(T ′) holds. And then, γ(T ′) = γt2(T
′). By induction, T ′ ∈ O . Further, we have that

γ(T ) = γ(T ′) + 1 ≥ γ(T ′; v2) + 1 ≥ γ(T ). That is, γ(T ′) = γ(T ′; v2). Hence, T is obtained from T ′ by
operation O2.

Case 2. v2 is not a support vertex of T .
In this case, if d(v2) ≥ 3, then all neighbors of v2 outside P are support vertices, each of which has

exactly one leaf-neighbor. Clearly, the component of T − v2v3 containing the vertex v2 is a subdivided star
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with at least two leaves. Let D′ be the set which is obtained from D by deleting all support vertices of the
subdivided star. Next, one of the two cases as following holds: (1) Each vertex of D′ is at distance at least 3
from v1; (2) There is a vertex of D′ which is within distance 2 of v1. In both cases, the same arguments as
Case 1 shows that T ∈ O .

We may assume that d(v2) = 2 by means of the above discussion. Without loss of generality, v2 6∈ D
(Otherwise, replacing v2 in D with v3, and the resulting set is also a γt2-set of T ), and then v3 ∈ D. We
may assume that |D| ≥ 3, for otherwise, we are done.

If there exists a vertex of D \ {v1, v3} is within distance 2 of v3. Analogously to Case 1, T is obtained
from T ′ by operation O2, where T ′ = T − {v0, v1}, and T ∈ O .

Thus, each vertex of D \ {v1, v3} is at distance at least 3 from v3. From the choice of P and D, v3 has
only one neighbor outside P which is a leaf or d(v3) = 2.

In the former case, we consider T ′ = T − v0 and it is easy to show that T ∈ O . In the latter case,
suppose that d(v4) ≥ 3 and let v′3 be a neighbor of v4 outside P . From the choice of v2 , v3 and D, the
component of T − v′3v4 containing v′3 is either a subdivided star or a P4. We only need to consider the
second case. Let v′2 be the neighbor of v′3 on the P4, and v′1 be the remaining neighbor of v′2 on the P4.
Clearly, v′1 ∈ D. Since each vertex of D \ {v1, v3} is at distance at least 3 from v3, v′2 ∈ D. Replacing v′2
in D with v′3, and the resulting set is also a γt2-set of T . Take T ′ = T −{v0, v1}, and it can be deduced that
T ′ ∈ O and T is obtained from T ′ by operation O2.

Hence, we may assume that d(v4) = 2. We know that v1, v3 ∈ D. Because each vertex of D \ {v1, v3}
is at distance at least 3 from v3. Then, let T ′ = T − {v0, v1, v2, v3, v4}. Observe that D \ {v1, v3} is a
semitotal dominating set of T ′. Moreover, we have that γ(T ′) ≤ γt2(T

′) ≤ γt2(T ) − 2 = γ(T ) − 2 ≤
γ(T ′). Thus, γ(T ′) = γt2(T

′). By induction, T ′ ∈ O . In addition, let D′ be a γ(T ′; v5)-set of T ′ and
D′′ = D′ ∪ {v1, v4}. We can see that D′′ dominates all vertices of T . That is, γ(T ′; v5) + 2 ≥ γ(T ). It
follows from γ(T ) = γ(T ′) + 2 ≥ γ(T ′; v5) + 2 ≥ γ(T ) that γ(T ′; v5) = γ(T ′). Hence, T is obtained
from T ′ by operation O2.

The proof is completed.

As an immediate consequence of Lemmas 3.1 and 3.2 we have the following characterization of (γ, γt2)-
trees.

Theorem 3.3. A tree T is a (γ, γt2)-tree if and only if T ∈ O .
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