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We study the biased (1 : b) Maker–Breaker positional games, played on the edge set of the complete graph on n

vertices, Kn. Given Breaker’s bias b, possibly depending on n, we determine the bounds for the minimal number of
moves, depending on b, in which Maker can win in each of the two standard graph games, the Perfect Matching game
and the Hamilton Cycle game.
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1 Introduction
In a Maker–Breaker positional game, a finite set X and a family E of subsets of X are given, and two
players, Maker and Breaker, alternate in claiming unclaimed elements of X until all the elements are
claimed, with Breaker going first. Maker wins if she claims all elements of a set from E , and Breaker
wins otherwise. The set X is referred to as the board, and the elements of E as the winning sets. As
Maker–Breaker positional games are finite games of perfect information and no chance moves, we know
that in every game one of the players has a winning strategy. More on various aspects of positional game
theory can be found in the monograph of Beck (2008) and in the recent monograph of Hefetz et al. (2014).

We are interested in positional games on graphs, where the board X is the edge set of a graph, and
we will mostly deal with games played on the edge set of the complete graph E(Kn). Probably three
most standard positional games are the Connectivity game, where Maker wants to claim a spanning tree,
the Perfect Matching game, where the winning sets are all perfect matchings of the base graph, and the
Hamilton Cycle game, where Maker’s goal is to claim a Hamilton cycle.

Once the order n of the base graph gets large, it turns out that Maker can win in each of the three
mentioned games in a straightforward fashion. But our curiosity does not end there, as there are several
standard approaches to make the setting more interesting to study. One of them is the so-called biased
games, where Breaker is given more power by being allowed to claim more than one edge per move. The
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other approach we focus on is the fast win of Maker, where the question we want to answer is not just if
Maker can win, but also how fast can she win.

Given a positive integer b, in the (1 : b) biased game Breaker claims b edges in each move, while Maker
claims a single edge. The parameter b is called the bias. Due to the “bias monotonicity” of Maker–Breaker
games, it is straightforward to conclude that for any positional game there is some value b0 = b0(n) such
that Maker wins the game for all b < b0(n), while Breaker wins for b ≥ b0(n) (see Hefetz et al. (2014)
for details). We call b0(n) the threshold bias for that game.

The biased games were first introduced and studied by Chvátal and Erdős (1978), and some thirty years
later the papers of Gebauer and Szabó (2009) and Krivelevich (2011) finally located the leading term of
the thresholds for the games of Connectivity, Perfect Matching and Hamilton Cycle, which turned out to
be n/ lnn for all three games.

Moving on to the concept of fast winning, when we know that Maker can win an unbiased game, a
natural question that we can ask is – what is the minimum number of moves for Maker to win? Questions
of this type appeared frequently, often as subproblems, in classical papers on positional games, and the
concept of fast Maker’s win was further formalized by Hefetz et al. (2009a). It is not hard to see that
Maker can win the unbiased Connectivity game as fast as the size of the winning set allows, in n − 1
moves. For the other two games it takes her a bit longer (one move longer, to be more precise) – she
can win the unbiased Perfect Matching game in n/2 + 1 moves (for n even) as shown by Hefetz et al.
(2009a), and the unbiased Hamilton Cycle game in n+ 1 moves, shown by Hefetz and Stich (2009), and
in both cases that is the best she can do. We note that some research has also been done on fast Maker’s
win in the unbiased k-Connectivity, Perfect Matching and Hamilton Cycle games played on the edge set
of a random graph, see Clemens et al. (2012).

Knowing how fast Maker can win, and how to win fast, is important, as this often helps us when looking
at other positional games. Indeed, there are numerous examples where a player’s winning strategy may
call for building a certain structure quickly before proceeding to another task. Also, one of very few tools
that proved to be useful when tackling the so-called strong positional games are the fast Maker’s winning
strategies, see Clemens and Mikalački (2018); Ferber and Hefetz (2014, 2011).

Our goal in this paper is to combine the two presented concepts – the biased games and the fast winning,
looking into the possibilities for Maker to win fast in biased games. In other words, given a game G and
a bias b such that Maker can win the (1 : b) biased game, we want to know in how many moves he can
win the game. One obvious lower bound for the duration of the game is the size of the smallest winning
set, and that is n− 1 for the Connectivity game, n2 for the Perfect Matching game, and n for the Hamilton
Cycle game.

It is not hard to see that in the Connectivity game Maker does not ever need to close a cycle, and
therefore, even in the biased game, whenever she can win she can do so in exactly n − 1 moves. As for
the Perfect Matching game, the following theorem gives fast Maker’s win for most of the range of biases
for which Maker can win, up to the (order of the) threshold for Maker’s win in the game.

Theorem 1.1 There exist α > 0 and C > 0 such that for every 2 ≤ b ≤ αn
lnn , Maker can win the (1 : b)

Perfect Matching game played on E(Kn) within n
2 + Cb ln b moves, for large enough n.

Moving on to the Hamilton Cycle game, we can prove the following two results for fast Maker’s win.
The first one is more powerful, but it applies only for small values of bias, while the second one covers a
wider range of bias.
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Theorem 1.2 There exists C > 0 such that for b ≥ 2 and b = o
(

lnn
ln lnn

)
, Maker can win the (1 : b)

Hamilton Cycle game played on E(Kn) within n+ Cb2 ln b moves, for large enough n.

Theorem 1.3 There exist δ > 0 and C > 0, such that for b ≤ δ
√

n
ln5 n

Maker can win the (1 : b)

Hamilton Cycle game played on E(Kn) within n+ Cb2 ln5 n moves, for large enough n.

Finally, when the bias is large, we can apply the following result of Krivelevich (2011), as it provides
Maker with a win within 14n moves in the Hamilton Cycle game, and thus also in the Perfect Matching
game.

Theorem 1.4 (Krivelevich (2011), Theorem 1) Maker can win the (1 : b) Hamilton Cycle game played

on E(Kn) in at most 14n moves, for every b ≤
(

1− 30
ln1/4 n

)
n

lnn , for large enough n.

On the other hand, looking at the prospects of Breaker to postpone Maker’s win, we can move away
from the obvious lower bound in both Perfect Matching game and Hamilton Cycle game.

Theorem 1.5 In (1 : b) Maker–Breaker game, for every bias b and n large enough, Breaker can postpone
Maker’s win

(i) in the Perfect Matching game for at least n2 + b
4 moves,

(ii) in the Hamilton Cycle game for at least n+ b
2 moves.

To sum up, if the number of moves Maker needs to play in order to win in the Perfect Matching
game is denoted by p(b), on the whole range of biases between 1 and (1 − o(1))n/ lnn we have that
b
4 ≤ p(b)−

n
2 ≤ O(b ln b), as given by Theorem 1.1, Theorem 1.4 and Theorem 1.5 (i).

In the Hamilton Cycle game, if we denote the number of moves Maker needs to play in order to win
by h(b), then Theorem 1.2, Theorem 1.3, Theorem 1.4 and Theorem 1.5 (ii) provide non-trivial upper
and lower bounds for the whole range of biases between 1 and (1− o(1))n/ lnn. If we look at the value
h(b) − n and express both the upper and lower bounds as functions of b, the lower bound on the whole
range is b

2 , while the upper bound varies between b1+ε and b7+ε, for any ε > 0. In particular, for b a
constant, both upper and lower bounds are a constant.

Finding the right order of magnitude of both p(b)− n
2 and h(b)− n remains an open problem, and we

are particularly curious if they are linear in b.
The rest of the paper is organized as follows. After we list the notation we use, in Section 2 we collect

some preliminaries. Then, in Section 3 we prove Theorem 1.1, in Section 4 we prove Theorem 1.2, in
Section 5 we prove Theorem 1.3 and in Section 6 we prove Theorem 1.5.

1.1 Notation
Our graph-theoretic notation is standard and follows that of West (2001). In particular, we use the follow-
ing.

For a graph G, let V (G) and E(G) denote its sets of vertices and edges respectively, and let v(G) =
|V (G)| and e(G) = |E(G)|. For a set S ⊆ V (G), let G[S] denote the subgraph of G which is induced on
the set S. For disjoint sets S, T ⊆ V (G), let NG(S, T ) = {u ∈ T : ∃v ∈ S, {u, v} ∈ E(G)} denote the
set of neighbors of the vertices of S in T . For a set T ⊆ V (G) and a vertex w ∈ V (G) \ T we abbreviate
NG({w}, T ) to NG(w, T ), and let dG(w, T ) = |NG(w, T )| denote the degree of w into T . For a set
S ⊆ V (G) and a vertex w ∈ V (G) we abbreviate NG(S, V (G) \ S) to NG(S) and NG(w, V (G) \ {w})
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to NG(w). We let dG(w) = |NG(w)| denote the degree of w in G. The minimum and maximum degrees
of a graph G are denoted by δ(G) and ∆(G) respectively. Often, when there is no risk of confusion, we
omit the subscript G from the notation above. Given a path P , let v1

P and v2
P denote its endpoints (in

arbitrary order). A Hamilton path in a given graph G is a path containing all the vertices of G. A graph G
is called Hamilton-connected if for every p, q ∈ V (G) there exists a Hamilton path in G between p and q.

Assume that some Maker–Breaker game, played on the edge set of some graph G, is in progress. At
any given moment during this game, we denote the graph spanned by Maker’s edges by M and the graph
spanned by Breaker’s edges by B; the edges of G \ (M ∪B) are called free.

In the rest of our paper ln stands for the natural logarithm. For the clarity of presentation we omit floor
and ceiling signs whenever they are not crucial.

2 Preliminaries
We need the results about the so-called Box game, introduced by Chvátal and Erdős (1978). The game
is played on k disjoint winning sets, whose sizes differ by at most 1, that contain altogether t elements.
BoxMaker claims a elements per move, while BoxBreaker claims 1 element per move. The game is
denoted by B(k, t, a, 1). In order to give a criterion for winning in B(k, t, a, 1), the following recursive
function was defined in Chvátal and Erdős (1978)

f(k, a) :=

{
0, k = 1

bk(f(k−1,a)+a)
k−1 c, k ≥ 2.

The value of f(k, a) can be approximated as

(a− 1)k

k∑
i=1

1

i
≤ f(k, a) ≤ ak

k∑
i=1

1

i
. (2.1)

Theorem 2.1 (Chvátal and Erdős (1978), the Box game criterion) Let a, k and t be positive integers.
BoxMaker has a winning strategy in B(k, t, a, 1) if and only if t ≤ f(k, a).

The following theorem deals with the (1 : b) Maker–Breaker game played on the edge set of a graphG.
Roughly speaking, it claims that if the minimum degree of G is not too small, Maker can build a spanning
subgraph with large minimum degree fast, while making sure that throughout the game, as long as a vertex
v is not of large degree in Maker’s graph, the proportion between the number of Maker’s and Breaker’s
edges touching v is “good”. The proof is similar (in fact, almost identical) to the proof of Theorem 1.2
by Gebauer and Szabó (2009). For completeness, we provide the proof in Appendix A.

Theorem 2.2 For every sufficiently large integer n the following holds. Suppose that:

(i) G is a graph with v(G) = n, and

(ii) b ≤ δ(G)
4 lnn , and

(iii) c is an integer such that c(2b+ 1) ≤ δ(G)
3 ,

then, in the (1 : b) Maker–Breaker game played on E(G), Maker has a strategy to build a graph with
minimum degree c. Moreover, Maker can do so within cn moves and in such a way that for every v ∈
V (G), as long as dM (v) ≤ c, we have dB(v)− 2b · dM (v) ≤ b(2 lnn+ 1) for each v ∈ V (G).
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The following theorem gives a sufficient condition for making a Hamilton-connected subgraph, which
is in the basis of Maker’s strategy in the fast Hamilton Cycle game in the proof of Theorem 1.3.

Theorem 2.3 (Ferber et al. (2012), Proposition 2.9) Let n be a sufficiently large integer and let b ≤
n

ln2 n
. If G is a graph with n vertices whose minimum degree δ is at least n − g(n), where g(n) =

o(n/ lnn), then Maker can build a Hamilton-connected graph playing (1 : b) game on E(G) in
O(n ln2 n) moves.

In the proof of Theorem 1.3 we use Hajnal-Szemerédi Theorem.

Theorem 2.4 (Hajnal and Szemerédi (1970), Hajnal-Szemerédi Theorem) If G is a graph with n ver-
tices and maximum degree ∆, then G can be colored with ∆ + 1 colors and moreover, each color class is
of size either

⌊
n

∆+1

⌋
or
⌈

n
∆+1

⌉
.

We also need the following adaptation of Theorem 1.4. As its proof is closely following the lines of the
proof of (Krivelevich, 2011, Theorem 1), we give it in Appendix B.

Theorem 2.5 (the Hamilton Cycle game) For every ε > 0 there exists δ > 0 and an integer n0 :=
n0(δ, ε) such that the following holds. Suppose that:

(i) H is a graph with v(H) = n ≥ n0, and

(ii) ∆(H) ≤ δn, and

(iii) e(H) ≤ n2

lnn ,

then for every b ≤ (1− ε) n
lnn , in the (1 : b) Maker–Breaker game played on E(Kn \ H), Maker can

build a Hamilton cycle in O(n) moves.

Finally, the following lemma is used to prove Theorem 1.2.

Lemma 2.6 Let G be a graph on n vertices whose average degree is D < n − 1. Then, there exist two
nonadjacent vertices {x, y} ∈ V (G) s.t. d(x) + d(y) ≥ D.

Proof: Let m = e(G). We know that m = Dn
2 . As D < n − 1, a pair of non-adjacent vertices exists.

Suppose for a contradiction that for all pairs of nonadjacent vertices {p, q} ∈
(
V (G)

2

)
\ E(G) we have

d(p) + d(q) < D. Then ∑
{p,q}∈(V (G)

2 )\E(G)

d(p) + d(q) <

((
n

2

)
−m

)
D. (2.2)

The left side of the inequality (2.2) can be written as∑
{p,q}∈(V (G)

2 )\E(G)

d(p) + d(q) =
∑

p∈V (G)

d(p) · (n− 1− d(p))

= (n− 1)
∑

p∈V (G)

d(p)−
∑

p∈V (G)

d(p)2. (2.3)
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Combining (2.3) and (2.2), applying the bound
∑
p∈V (G) d(p)2 ≤ m

(
2m
n−1 + n− 2

)
given by de Caen

(1998), as well as the fact that
∑
p∈V (G) d(p) = 2m, we get

(n− 1)2m−m
(

2m

n− 1
+ n− 2

)
<

((
n

2

)
−m

)
D.

After expansion and rearrangement, using 2m = Dn, we get that the above inequality is equivalent to
n− 1 < D, which is obviously in contradiction with D < n− 1. 2

3 Proof of Theorem 1.1
For the proof of Theorem 1.1, we impose several restrictions on b. Eventually, our result in Theorem 1.1
holds for b as large as the threshold bias n/ lnn multiplied with a small constant. As we cannot get this
constant close to 1, we make no particular effort to calculate its value or optimize it.

Let 0 < δ < 1/2 be a small positive constant and let n0 := n0(δ) be a positive integer as obtained
by Theorem 2.5, applied with ε = 99/100. Let b ≤ δn

100 lnn and let n1 be such that b = n1

100 lnn1
. Set

m := n0+n1

δ .
First we describe a strategy for Maker, that we denote by SM , and then prove it is a winning strategy.

At any point throughout the game, if Maker is unable to follow the proposed strategy SM , then she forfeits
the game.

Maker’s strategy SM is divided into the following two stages.
Stage 1. In this stage, Maker will build a matching M ′ ⊆ E(Kn) of size ` := n−m

2 in |M ′| moves.
For each 1 ≤ i ≤ `, after Maker’s ith move his graph consists of a partial matching Mi ⊆ E(Kn) (with
M ′ = M`) and a set of isolated vertices Ui ⊆ V (Kn), where Ui = {V (Kn)\V (Mi)}. Initially, M0 := ∅
and U0 := V (Kn). Now, for each 1 ≤ i ≤ `, in her ith move Maker will claim an arbitrary free edge
{vi, wi} ∈ E(Kn[Ui−1]) such that:

(i) dB(vi, Ui−1) = max{dB(v, Ui−1) : v ∈ Ui−1}, and

(ii) dB(wi, Ui−1) = max{dB(w,Ui−1) : w ∈ Ui−1 and {w, vi} is free}.

As soon as stage 1 ends, Maker proceeds to stage 2.
Stage 2. In this stage, Maker claims a Hamilton cycle on E ((Kn \B)[U`]), in the way provided by

Theorem 2.5. Moreover, Maker does so in O(b ln b) moves.
The following lemma guarantees that, for each 1 ≤ i ≤ `, Maker can always make her ith move

according to the strategy proposed in stage 1 of SM .
For 0 ≤ i ≤ `, let Si =

∑
v∈Ui

dB(v, Ui) and Di = Si

|Ui| denote the sum and the average of the degrees of

vertices in B[Ui] before Breaker’s (i+ 1)st move, respectively, and let ∆i = ∆(B[Ui]). In order to show
that Maker can indeed play as proposed by SM in stage 1, it is enough to prove that ∆i ≤ δ|Ui| holds for
each such i. This follows from the following lemma, which is central in proving Theorem 1.1.

Lemma 3.1 If Maker can follow strategy SM , then the following holds for each 1 ≤ i ≤ `:

(i) Di ≤ 2b, and
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(ii) ∆i ≤ δ|Ui|.

Proof:

(i) We prove by induction on i that Di ≤ 2b for each 0 ≤ i ≤ `.
For i = 0 we trivially have that Di = 0 ≤ 2b. Assume that Maker could follow her strategy for the
first i moves, and that Di ≤ 2b holds. We want to show that Di+1 ≤ 2b holds as well.

Notice that since Breaker’s bias is b, it follows that for each i, in his (i + 1)st move Breaker can
increase Si by at most 2b. Moreover, playing according to the proposed strategy for stage 1, by
claiming the edge {vi+1, wi+1}, Maker decreases Si by

2dB(vi+1, Ui) + 2dB(wi+1, Ui) = 2∆i + 2dB(wi+1, Ui).

Therefore, we have that

Di+1 ≤
Di|Ui|+ 2b− 2∆i − 2dB(wi+1, Ui)

|Ui+1|

= Di + 2 · Di + b−∆i − dB(wi+1, Ui)

|Ui| − 2
. (3.1)

To prove that Di+1 ≤ 2b holds, we distinguish between the following two cases.

Case 1: Di ≤ 3b/2. In this case, using the estimate (3.1) and the fact that |Ui| ≥ 12 we have that
Di+1 ≤ 3b/2 + 5b

12−2 = 2b as desired.

Case 2: Di > 3b/2. Notice that from (3.1) it is enough to show that

∆i + dB(wi+1, Ui) ≥ Di + b. (3.2)

Indeed, if it is true then we obtain that Di+1 ≤ Di which by the induction hypothesis is bounded
by 2b.

If ∆i ≥ 3b, then (3.2) trivially holds, as ∆i + dB(wi+1, Ui) ≥ ∆i ≥ 2b+ b ≥ Di + b. Otherwise,
we have that 3b/2 < Di ≤ ∆i < 3b. Let x be the number of vertices in Ui with degree at least b
in Breaker’s graph. Notice that since 3b/2 < Di ≤ 3bx+(|Ui|−x)b

|Ui| , it follows that x > |Ui|
4 . Now,

since |Ui|
4 > 3b, it follows that there exists a vertex w ∈ Ui for which the edge {vi+1, w} is free and

dB(w,Ui) ≥ b. Therefore, dB(wi+1, Ui) ≥ b. Finally, combining it with the fact that ∆i ≥ Di,
we conclude that (3.2) holds.

(ii) Notice first that while δ|Ui| ≥ 2b(1 + 2 lnn), the claim is true as a consequence of Theorem 2.2,
as the strategies of Maker in both games are the same: to touch the vertex of the largest degree.
The conditions of Theorem 2.2 are satisfied as c = 1 which satisfies condition (iii), and δ|Ui| ≥
2b(1 + 2 lnn) implies that b ≤ δ|Ui|

2(1+2 lnn) ≤
|Ui|(1−δ)
4 ln |Ui| , which satisfies (ii). Therefore, it is enough

to prove the lemma for i’s such that |Ui| < 2b(1+2 lnn)
δ ≤ n

10 .

Now, let us look at the case when δ|Ui| < 2b(1 + 2 lnn). Let s = n− b(1+2 lnn)
δ . Assume towards

a contradiction that for some s ≤ i0 ≤ `, after Maker’s i0th move, there exists a vertex v ∈ Ui0 for
which d∗ := dB(v, Ui0) > δ|Ui0 |. Now, for each k ≥ 1 we will recursively construct a set Rk for
which the following holds:
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(a) Rk ⊆ Ui0−k,

(b) |Rk| = k + 1, and

(c) for each k ≥ 1, after (i0 − k)th round,

∑
u∈Rk

dB(u, Ui0−k) ≥ (k + 1)

d∗ − 2b ·
k+1∑
j=2

1

j

 . (3.3)

For k = 1, let R1 := {v, vi0} ⊆ Ui0−1, where v is a vertex with dB(v, Ui0) = d∗ and vi0 ∈ Ui0−1

is the vertex that Maker has touched in her i0th move. Since dB(vi0 , Ui0−1) = di0 ≥ d∗ and
Breaker, claiming b edges per move, could not increase the degrees of these two vertices by more
than 2b in his i0th move, inequality (3.3) trivially holds.

Assume we built Rk, satisfying (a), (b) and (c), we want to build Rk+1. Let vi0−k ∈ Ui0−k−1 be
the vertex that Maker has touched in her (i0 − k)th move. Notice that vi0−k /∈ Rk (otherwise Rk
cannot be a subset of Ui0−k) and Ui0−k ⊆ Ui0−k−1.

Hence, we conclude that before Maker’s (i0 − k)th move

dB(vi0−k, Ui0−k−1) ≥ 1

|Rk|
∑
u∈Rk

dB(u, Ui0−k) =
1

k + 1

∑
u∈Rk

dB(u, Ui0−k). (3.4)

Define Rk+1 := Rk ∪ {vi0−k}. We have that Rk ⊆ Ui0−k ⊆ Ui0−k−1 and vi0−k ∈ Ui0−k−1,
which together imply that Rk+1 ⊆ Ui0−k−1, satisfying (a). Also, |Rk+1| = |Rk| + 1 = k + 2
satisfies (b). Combining (3.3), (3.4) and the fact that Breaker can increase the sum of all degrees in
Ui0−k−1 by at most 2b in one move we obtain that

∑
u∈Rk+1

dB(u, Ui0−k−1) ≥
∑
u∈Rk

dB(u, Ui0−k) +
1

k + 1

∑
u∈Rk

dB(u, Ui0−k)− 2b

=
k + 2

k + 1
·
∑
u∈Rk

dB(u, Ui0−k)− 2b

≥ (k + 2) ·

 1

k + 1
· (k + 1)

d∗ − 2b ·
k+1∑
j=2

1

j

− 2b

k + 2


= (k + 2)

d∗ − 2b ·
k+2∑
j=2

1

j

 ,

and so the property (c) is also satisfied for Rk+1. This completes the inductive step. Now, for
k = |Ui0 | − 1 we obtain that

Di0−k =

∑
u∈Ui0−k

dB(u, Ui0−k)

|Ui0−k|
≥

∑
u∈Rk

dB(u, Ui0−k)

|Ui0−k|
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≥

(k + 1)

d∗ − 2b ·
k+1∑
j=2

1

j


3k + 1

≥ d∗ − 2b ln |Ui0 |
3

≥ δ|Ui0 | − 2b ln |Ui0 |
3

> 2b,

which is clearly in contradiction with (i). This completes the proof of Lemma 3.1.

2

Proof:
If Maker can follow stages 1 and 2 of the proposed strategy SM without forfeiting the game then she

wins, since a Hamilton cycle on E ((Kn \B)[U`]) obviously contains a perfect matching. It thus suffices
to show that indeed Maker can follow the proposed strategy without forfeiting the game. We consider
each stage separately.

Maker can follow stage 1 of the proposed strategy SM , as shown by Lemma 3.1.
Moving on to stage 2, let H = B[U`]. When stage 1 is over, Lemma 3.1 gives that ∆(H) ≤ δ|U`| and

e(H) = D`|U`|
2 ≤ |U`|2

ln |U`| . This satisfies the conditions of Theorem 2.5, so Maker can claim a Hamilton
cycle on V (Kn \B)[U`] in O(|U`|) = O(b ln b) moves.

Note that the constant α in the statement of Theorem 1.1 is obtained by taking α := δ
100 . 2

4 Proof of Theorem 1.2

Proof: In this section we give Maker’s strategy to win the Hamilton Cycle game when bias b is not too
large, namely b = o

(
lnn

ln lnn

)
. Throughout the game, Maker will maintain a collection of paths P in her

graph. Maker’s strategy is divided into five stages.
At the beginning of the game, all vertices are isolated, and P consists of n paths of length 0, with 2n

endpoints altogether (as each of n vertices is seen as both the first and the last vertex of a path). By Endi
we denote the multiset of endpoints of P after Maker’s ith move (omitting index i when it is not crucial).
During the first two stages, Maker will claim only edges between the endpoints of the paths in P (thus
connecting two paths into one), so in each of those moves |P| will be reduced by one and |End| will be
reduced by two.

Stage 1. We fix δ := 999/1000. This stage lasts for ` := n − 30b ln b moves, so at the end of the
stage we will have |End`| = 60b ln b. We will later show that for every vertex v ∈ End` it holds that
dB(v,End`) < δ|End`|+ b.

In this stage, Maker plays two games in parallel.

(1) In every odd move i, Maker considers the Breaker’s graph induced on Endi−1, claiming an arbitrary
free edge {vi, wi} ∈ E(Kn[Endi−1]), such that:

(i) dB(vi, Endi−1) = max {dB(v,Endi−1) : v ∈ Endi−1}, and

(ii) dB(wi, Endi−1) = max {dB(w,Endi−1) : w ∈ End and {w, vi} is free}.
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(2) In every even move i, Maker considers the total Breaker’s degree on vertices in Endi−1, claiming an
arbitrary free edge {vi, wi} ∈ E(Kn[Endi−1]), such that:

(i) dB(vi) = max {dB(v) : v ∈ Endi−1}, and

(ii) dB(wi, Endi−1) = max {dB(w,Endi−1) : w ∈ Endi−1 and {w, vi} is free}.

Stage 2. In every move of this stage, Maker claims an arbitrary free edge {vi, wi} ∈ E(Kn[Endi−1]),
such that

dB(vi, Endi−1) + dB(wi, Endi−1) =

= max {dB(v,Endi−1) + dB(w,Endi−1) : {v, w} ⊆ Endi−1 and {v, w} is free} .

She plays like this until there are no free edges within Kn[End]. We will later prove that this stage lasts
for at least 23b ln b moves.

Stage 3. During the course of this stage, Maker makes sure that all paths in P are of length greater
than n3/4. In this stage, the number of paths in P remains the same, while some of Maker’s edges will be
“forgotten”. Given a path, we say that its near-middle vertices are the 1% of its vertices that are the closest
to its middle (breaking ties arbitrarily).

For each path P ∈ P of length at most n3/4, Maker will spot the longest path Q in P , and claim an
edge connecting one of the endpoints of P to a near-middle vertex x ofQ which is such that for one of the
neighbors y of x on Q we have dB(y) < 18b lnn. (We later show that such an edge will be available for
Maker.) Maker then “forgets” about the edge {x, y}, splitting Q into two parts – Q1, with an endpoint x,
andQ2, with an endpoint y, now seeing paths P andQ1 joined into one path, whileQ2 remains a separate
path, see Figure 1.

P

Q

Q

x y

P

Q

x y

1 2

Fig. 1: Paths P and Q before Maker’s move, and the newly obtained pair of paths

Note that both of the newly obtained paths are longer than n3/4, as b = o
(

lnn
ln lnn

)
. This stage obviously

lasts for less than 7b ln b moves, as there are 7b ln b paths at the beginning of stage 3.
Stage 4. In this stage Maker will repeatedly select two arbitrary paths from P , using the method of Pósa

rotations (see Pósa (1976)) on each of them to eventually be able to connect them into one (longer) path.
She will repeat the procedure until only one, Hamilton, path remains in P . This stage will be subdivided
into phases, where a new phase begins whenever Maker selects two paths, and ends when Maker connects
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them into a path. The inner vertices of any path P ∈ P that have at least n1/2 Breaker’s edges whose
other endpoint is in V (P \ {P}) will be called saturated.

Let us now describe in more detail the process of connecting two paths into one. We denote the paths
by P1 and P2, with endpoints v1

P1
, v2
P1

and v1
P2

, v2
P2

. Maker alternately makes Pósa rotations on P1 and
P2 by doing the following.

In her mth move of the phase, where 1 ≤ m ≤ 2b + 1, if m = 2i − 1 is odd, Maker spots a pair
of consecutive vertices (xi, x

′
i) on P1 such that xi is between v1

P1
and x′i and satisfying conditions that

we will describe below, and she claims the edge {v1
P1
, x′i}. If m = 2i is even, Maker spots a pair of

consecutive vertices (yi, y
′
i) on P2 such that yi is between v1

P2
and y′i and satisfying conditions that we

will describe below, and she claims the edge {v1
P2
, y′i}.

When spotting (xi, x
′
i) on P1 in odd moves, Maker makes sure that xi is not saturated, the edges

{v1
P1
, x′i} and {v1

P2
, xi} are free, and also, for all yj ∈ V (P2), 1 ≤ j < i, the edges {xi, yj} are free.

Note that by claiming the edge {v1
P1
, x′i}, Maker has created a new path (a Pósa rotation of P1) that has

an endpoint xi.
When spotting (yi, y

′
i) on P2 in even moves, Maker makes sure that yi is not saturated, the edges

{v1
P2
, y′i} and {v1

P1
, yi} are free, and also, for all xj ∈ V (P1), 1 ≤ j ≤ i, the edges {xj , yi} are free.

Note that by claiming the edge {v1
P2
, y′i}Maker has created a new path (a Pósa rotation of P2) that has an

endpoint yi.
Before each of the odd moves m = 2i + 1, Maker checks whether any of the vertices

v1
P1
, x1, . . . , xi can be connected to any of the vertices v1

P2
, y1, . . . , yi. As soon as this is possible, Maker

connects them, thus connecting the two paths (actually, their Pósa rotations) and finishes the phase.
A phase can last for up to 2b + 1 moves, as in her mth move, for m even, Maker creates m/2 + 1

new threats which Breaker needs to claim immediately if she wants to prevent the phase from ending.
Thus, knowing that there are 7b ln b paths at the beginning of stage 4, the whole stage lasts for less than
14b ln b · (b+ 1) moves.

Stage 5. Maker completes the Hamilton cycle by repeatedly making Pósa rotations, in a similar way
as she did in each phase of stage 4. The only difference is that Maker, in her mind, halves the path into
two halves – left and right, and the Pósa rotations are alternately performed – in odd moves from the left
endpoint to the left half, and in even moves from the right endpoint to the right half. The whole process
then continues in analogous fashion, and this stage lasts for at most 2b + 1 moves, until the point when
Maker closes her paths into Hamilton cycle.

If Maker can follow the given five-stage strategy, she obviously wins the game within the required
number of moves. We will show that Maker can follow the proposed strategy, and that the move count for
each stage matches the desired one. We perform the analysis for each stage separately.

For 0 ≤ i ≤ `, we let Si =
∑

v∈Endi
dB(v,Endi) andDi = Si

|Endi| denote the sum and the average of the

degrees of vertices in B[Endi] before Breaker’s (i+ 1)st move respectively, and let ∆i = ∆(B[Endi]).

Stage 1. We will first look at the game (2) that Maker plays in every even move of hers. This part of
the strategy can be analyzed as playing an auxiliary Box game, where Maker takes the role of BoxBreaker
– each v ∈ End corresponds to one box whose elements are all edges incident to v.

With every edge {p, q} that Breaker claims, we imagine that BoxMaker claims an element from box p
and an element from box q (two elements in total). Note that the same vertex can account for two boxes
if it is the double endpoint of a path of length 0, so for each edge claimed by Breaker we have up to
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four moves that BoxMaker plays in the Box game. As Maker plays this game in every second move, and
Breaker claims 2b edges in two moves, there are up to 8b elements claimed by BoxMaker in each move.

Hence, to show that Maker (alias BoxBreaker) has an upper hand in this game, having in mind that
Maker–Breaker games are bias-monotone (see Hefetz et al. (2014)) we will look at the game
B(2n, 2n2, 8b, 1).

Now, we want to estimate the size of the largest box that BoxMaker could fill until the end of the game.
Note that this gives us the maximum degree in Breaker’s graph at every v ∈ End, at any point of stage 1.
The size of the largest box is

s =
8b

2n
+

8b

2n− 1
+ · · ·+ 8b

1
= 8b

2n∑
j=1

1

j
≤ 8b ln(2n) < 16b lnn. (4.1)

This implies that when stage 1 is over, every vertex v ∈ End it holds that dB(v) < 16b lnn.
Before we show that Maker can play according to (1), we need the following claim.

Claim 4.1 Let e = {v, w} be the edge that Maker selects while playing according to (2) in his (i + 1)st
move, where i is an odd integer. It holds that dB(v,Endi) + dB(w,Endi) ≥ Di.

Proof: Since v is chosen so that dB(v) is maximal we do not right away have that dB(v,Endi) > Di

holds. If dB(v,Endi) ≥ Di, we have nothing to prove. So, suppose x := dB(v,Endi) < Di and let
y := |{w ∈ Endi : dB(w,Endi) ≥ Di − x}|. It holds that

Di <
∆i · y + (|Endi| − y) · (Di − x)

|Endi|

and Di ≤ ∆i. By expanding, we get

Di|Endi| < ∆i · y +Di · |Endi| − x|Endi| − y ·Di + xy, (4.2)

and we can easily obtain

y >
x|Endi|

∆i −Di + x
> x. (4.3)

Thus, there are more than x vertices in Endi of degree at least Di − x. So, playing according to her
strategy in game (2), Maker can find a vertex w that is not adjacent to v in Breaker’s graph such that
dB(w,Endi) ≥ Di − x is maximal, and claim the edge {v, w}, thus making sure that dB(v,Endi) +
dB(w,Endi) ≥ Di. This proves the claim. 2

Now, we look at part (1). Maker plays this game in her odd moves, so between the two odd Maker’s
moves Breaker adds b′ = 2b edges. In order to show that Maker can play according to the given strategy,
we need to show the following claim.

Claim 4.2 The following two properties hold for each i = 2m+ 1, m ≥ 0:

(i) Di ≤ 2b′, and

(ii) ∆i < δ|Endi|.
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Proof: The proof of this claim is very similar to the proof of Lemma 3.1, so we will omit some details.

(i) Note that between moves i and i + 2, Breaker can increase the value of Si by at most 2b′, so
Si+2 ≤ Si + 2b′. On the other hand, playing on End according to the proposed strategy, after
claiming the edge {vi+2, wi+2}, Maker decreases Si by

2dB(vi+2, Endi+1) + 2dB(wi+2, Endi+1) ≥ 2∆i + 2dB(wi+2, Endi+1).

Also, according to Claim 4.1, Maker in her even move i + 1 claims the edge {p, q} such that
dB(p,Endi) + dB(q, Endi) ≥ Di, thus decreasing Si by at least 2Di.
Therefore, we have that

Di+2 ≤
Di(|Endi|) + 2b′ − 2Di − 2∆i − 2dB(wi+2, Endi+1)

|Endi+2|

≤ Di(|Endi| − 4 + 4) + 2b′ − 2Di − 2∆i − 2dB(wi+2, Endi+1)

|Endi+2|

= Di + 2
Di + b′ −∆i − dB(wi+2, Endi+1)

|Endi| − 4
. (4.4)

Note that the equality (4.4) has the same structure as (3.1), so we can follow the rest of the proof of
Lemma 3.1 (i) line by line and show by induction on i that for all odd moves after Maker’s move it
holds that Di ≤ 2b′. Here, instead of Ui, we use Endi to denote the multiset of endpoints, we have
|End| > 14, and Breaker’s bias is b′.

(ii) Just like in the proof of (i), we also rely on the proof of Lemma 3.1 (ii), and omit some of the
details. While |Endi| > n/10, it holds that δ|Endi| > 2b′(1 + 2 ln 2n) and b′ < (1−δ)|Endi|

4 ln |Endi| , so
the claim is true as a consequence of Theorem 2.2. Therefore, we need to prove the claim for the
values of i such that |Endi| ≤ n

10 .

Analogously to the proof of Lemma 3.1, we let s = n − n
20 . Towards a contradiction, we assume

that for some s ≤ i0 ≤ ` and i0 = 2m + 1, m ≥ 0, after Maker’s i0th move there exists a vertex
v ∈ Endi0 such that d∗ := dB(v,Endi0) ≥ δ|Endi0 |. We also inductively construct sets Rk, for
k ≥ 1, exactly the same as in the proof of Lemma 3.1, with the following properties:

(a) Rk ⊆ Endi0−2k,

(b) |Rk| = k + 1, and

(c) for each k ≥ 1, after (i0 − 2k)th round,

∑
u∈Rk

dB(u,Endi0−2k) ≥ (k + 1)

d∗ − 2b′ ·
k+1∑
j=2

1

j

 .
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To finish the proof, suppose that k = |Endi0 | − 1. We obtain

Di0−2k =

∑
u∈Endi0−2k

dB(u,Endi0−2k)

|Endi0−2k|
≥

∑
u∈Rk

dB(u,Endi0−2k)

|Endi0−2k|

≥

(k + 1)

d∗ − 2b′ ·
k+1∑
j=2

1

j


5k + 1

≥ d∗ − 2b′ ln |Endi0 |
5

≥ δ|Endi0 | − 2b′ ln |Endi0 |
5

> 2b′,

contradicting (i). This completes the proof of Claim 4.2.

2

To complete the proof that Maker can play according to the proposed strategy for stage 1, we can use
Claim 4.2 (ii), and observe that if ` is odd, then for every v ∈ End we have dB(v,End) < δ|End| <
δ|End| + b. Otherwise, after Maker’s (l − 1)st move for every v ∈ End it holds that dB(v,End) <
δ|End|. In the consequent move, Breaker can add at most b edges to some vertex, and so, after Maker’s
lth move played according to strategy in (2), dB(v,End) < δ|End|+ b.

Stage 2. Before the first move, that we denote by m, of Breaker in this stage, using Claim 4.2 and
knowing that Breaker possibly played one move after the last odd move of Maker in stage 1, we have
Dm−1 ≤ 4b+ 1 and ∆m−1 < δ|Endm−1|+ b.

To show that Maker can play as proposed, let us observe that this stage will certainly be played while
D < |End| − 1 − 2b

|End| (as in that case there are free edges among the endpoints of the paths). In
every move i in this stage, Breaker adds at most b edges to B[End], and thus increases Si−1 by at most
2b. On the other hand, Maker playing as proposed and claiming the edge {vi, wi} decreases Si−1 by
dB(vi, Endi−1) + dB(wi, Endi−1). Thus, in a way similar to (4.4) we obtain that

Di ≤ Di−1 + 2
Di−1 + b− dB(vi, Endi−1)− dB(wi, Endi−1)

|Endi−1| − 2
. (4.5)

If dB(vi, Endi−1)+dB(wi, Endi−1) ≥ Di−1 +b, then average Breaker’s degree does not increase. Oth-
erwise, as a consequence of Lemma 2.6, where G = B[End], we get that dB(vi, Endi−1) +
dB(wi, Endi−1) ≥ Di−1, as long as there are still free edges among vertices in End. So, the aver-
age Breaker’s degree can increase by at most 2b

|End|−2 .
Let y := |End| = 60b ln b at the beginning of stage 2, and t be the number of moves played in this

stage. During t moves the average degree increases by at most

t∑
j=1

2b

y − 2j
= 2b

t∑
j=1

1

y − 2j
≤ 2b ln

y

y − 2t
. (4.6)
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Altogether, the average degree after t moves is at most 4b+ 1 + 2b ln y
y−2t . Having this in mind, and that

the stage will last as long as D < |End| − 1− 2b
|End| , as well as that |End| = y − 2t holds at the end of

stage 2, we get that t ≥ 23b ln b holds.
Note that after this stage is over, the overall maximal degree in Breaker’s graph could have increased

by at most 23b2 ln b < b lnn, knowing that b = o
(

lnn
ln lnn

)
. So, for all x ∈ End it holds that dB(x) <

17b lnn, which will come handy in the analysis of stage 3.

Stage 3. Maker’s graph so far consists of disjoint paths. If Maker can follow the proposed strategy,
stage 3 lasts for less than 7b ln b moves and thus Breaker claims less than 7b2 ln b edges. So, for all
x ∈ End after this stage is over, we will have

dB(x) < 17b lnn+ 7b2 ln b < 18b lnn. (4.7)

Now, we show that it is indeed possible for Maker to complete this stage. As the average length of a
path in Maker’s graph is 2n/|End| = Θ

(
n

b ln b

)
� n3/4, the set of near-middle vertices of the longest

path is of size Θ
(

n
b ln b

)
. This, together with the fact that dB(x) < 18b lnn for all x ∈ End, gives

that it is always possible to find a free edge between one endpoint u of P and some vertex from the
set of near-middle vertices, as there are at least n

100|End| − 18b lnn ≥ Cn
b ln b vertices nonadjacent to u,

for some positive constant C. For a contradiction, suppose that for each vertex v of them it holds that
dB(v) ≥ 18b lnn. But then we obtain that Breaker had to claim so far at least Cn

b ln b · 18b lnn > C1n lnn
ln b

edges. This is in contradiction with the estimated number of edges that Breaker could claim till the end of
this stage.

Stage 4. If Maker can follow the proposed strategy in this stage, the number of edges that Breaker claims
during stage 4 is less than

14b2 ln b(b+ 1) < 28b3 ln b. (4.8)

All paths in Maker’s graph are longer than n3/4. The number of saturated vertices is o(v(P )), as otherwise
Breaker must have claimed at least c · n1/2 · (n3/4 − 1) = Θ(n5/4), for some positive constant c, which
is in contradiction with the number of edges that Breaker could claim in the whole game.

Each phase of stage 4 ends after at most 2b+1 moves of Maker. Indeed, at latest when the pair of vertices
(yb, y

′
b) is chosen, yb has no neighbors among vertices v1

P1
, x1, x2, . . . , xb, and so after Breaker’s move,

there has to be at least one free edge among the pairs of vertices
{(yb, v1

P1
), (yb, x1), (yb, x2), . . . , (yb, xb)}, and therefore in her consequent move, Maker completes the

phase.
Now, we need to show that in each phase in this stage, Maker can choose the pairs of vertices as

described above.
When each of the 7b ln b− 1 phases begins, using (4.7) and (4.8), we get that for each of the endpoints

v of the two selected paths it holds that dB(v) < 18b lnn + 28b3 ln b < 30b2 lnn = o(n3/4). The
number of saturated vertices on each path P is o(v(P )) when stage 4 begins and after adding at most
28b3 ln b = o

(
ln3 n

)
additional edges it is still o(v(P )), as v(P ) ≥ n3/4. Also, for each xi and yi, we

know that dB(xi, P2) = O(n1/2) and dB(yi, P1) = O(n1/2). So, for each move m, 1 ≤ m ≤ 2b + 1,
if m = 2i − 1 is odd, the number of choices for the pairs (xi, x

′
i) is v(P ) − 3 − dB(v1

P1
) − dB(v1

P2
) −

o(v(P ))−
∑i−1
j=1 dB(yj , P1) > n3/4−3−2 ·30b2 lnn−o(n3/4) > (1−o(1))n3/4. The same calculation

applies in the move m = 2i, for the pairs of vertices (yi, y
′
i), 1 ≤ m ≤ 2b. So, there are enough pairs
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to choose from. Note that when this stage ends, there is a Hamilton path whose endpoints have degree
dB(v) < 18b lnn+ 28b3 ln b < 30b2 lnn.

Stage 5. We know that after stage 4 it holds that dB(v1
P ) < 30b2 lnn and dB(v2

P ) < 30b2 lnn. In
this stage, provided that Maker can follow it, Breaker can claim at most 2b2 + 2b edges in total, and
so by the end of this stage it holds that dB(v1

P ) < 30b2 lnn + 2b2 + 2b < 32b2 lnn and dB(v2
P ) <

30b2 lnn+ 2b2 + 2b < 32b2 lnn. With reasoning and calculation similar to the one for a phase in stage 4,
we get that Maker can have more than (1/2− o(1))n choices for each pair (xi, x

′
i), respectively (yi, y

′
i),

and so she can complete this stage in the proposed time and finish the game. 2

5 Proof of Theorem 1.3

Proof: Maker’s strategy in the Hamilton Cycle game is divided into three main stages.
Stage 1. Maker splits the vertices of the board into two sets, X and I , such that at the beginning X = ∅
and I = V . Throughout stage 1, the set X will contain the vertices of vertex disjoint Hamilton-connected
subgraphs in Maker’s graph. Maker will build each such subgraph one after another, and at any point only
one such subgraph is being built, while the others are completed. Maker’s graph on I will be a collection
of paths, each of length ≥ 0, denoted by P , with the set of endpoints denoted by End(P). Note that
isolated vertices in P (viewed as paths of length 0) appear twice in End(P). Both P and End(P) are
updated dynamically. At the beginning, every v ∈ I is considered as a path of length 0.

During this stage, Maker plays the following two games in parallel.

(1) In her odd moves, Maker builds L = L(b, n) := 13b lnn Hamilton-connected subgraphs of order
t = t(b, n) := 1

2b ln2 n that are vertex disjoint. She builds them one by one, repeatedly choosing new
t isolated vertices from I that are independent in Breaker’s graph and moving them to X , whenever
the previous Hamilton-connected subgraph is completed.

(2) In each of her even moves, Maker chooses a vertex v ∈ End(P), v = v1
P s.t. dB(v) =

max
w∈End(P)

dB(w) (ties broken arbitrarily) and claims a free edge between v and some other vertex

u ∈ End(P) \ {v}, u 6= v2
P .

By Theorem 2.3, Maker needs O(t ln2 t) moves to build one Hamilton-connected subgraph of order
t, thus for L such subgraph she needs O(Lt ln2 t) = O(b2 ln5 n) moves. So, this stage lasts Cb2 ln5 n,
C > 0 moves.
Stage 2. In this stage, with each of her edges, Maker plays in the same way as in part (2) of stage 1.
In each move, she chooses a vertex v ∈ End(P), v = v1

P s.t. dB(v) = max
w∈End(P)

dB(w) (ties broken

arbitrarily) and claims a free edge between v and some other vertex u ∈ End(P) \ {v}, u 6= v2
P . She

plays like this until |P| = L. This stage lasts n − |X| − L − C
2 b

2 ln5 n = n − Lt − L − C
2 b

2 ln5 n =

n− 13b lnn
(

1
2b ln2 n+ 1

)
− C

2 b
2 ln5 n moves.

Stage 3. At the beginning of this stage there are L Hamilton-connected subgraphs,
G1
H , G

2
H , . . . , G

L
H , and L paths, P1, P2, . . . , PL, see Figure 2. Before this stage begins, Maker fixes

which paths (through which exact endpoints) will be joined to specific Hamilton-connected subgraphs.
She uses the following rule: for each i, 1 ≤ i ≤ L, v1

Pi
and v2

P(i mod L)+1
will be connected to two
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Fig. 2: Maker’s graph at the end of stage 2

Fig. 3: Maker’s strategy in stage 3

arbitrary different vertices in GiH , see Figure 3. In each move, Maker chooses a vertex v ∈ End(P)
such that dB(v) ≥ max

w∈End(P)
dB(w) (ties broken arbitrarily), connects it to the Hamilton-connected sub-

graph according to the aforementioned rule, and removes v from End(P). In order to do so, Maker plays
an auxiliary Box game, pretending to be BoxBreaker. Since Maker has to connect two endpoints to the
distinct vertices of some Hamilton-connected subgraph, we can split the vertices of each such subgraph
arbitrarily into two sets of equal size. The endpoints of the paths represent the boxes in this game, so there
are 2|L| boxes, and each box consists of all free edges between one endpoint of the path and half of the
vertices in one Hamilton-connected subgraph. This stage will last 2L = 26b lnn moves.

It is straightforward to conclude that following the described strategy Maker can build a Hamilton
cycle. Indeed, since each subgraph is Hamilton-connected, there exists a Hamilton path between any pair
of vertices within one subgraph. These paths circularly connect to paths from P to form a Hamilton cycle.

Now we will show that Maker can follow this strategy. We perform the analysis for each stage sepa-
rately.
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Stage 1. At the beginning of the game, I = V and X = ∅. For each Hamilton-connected subgraph that
she builds, Maker chooses t vertices {v1, v2, . . . , vt} ∈ I that are isolated in her graph and independent in
Breaker’s graph. Then, I = I \{v1, v2, . . . , vt} and X = X ∪{v1, v2, . . . , vt}. Since she plays on the set
X in every second move, this game can be treated as (1 : 2b) Hamilton-connected subgraph game. In her
first move, Maker selects the first t vertices {v1, v2, . . . , vt} ∈ I that are independent in Breaker’s graph,
which are easy to find, as there are only b edges claimed on the board in total. After that, |I| = |V |− t and
X = X ∪ {v1, v2, . . . , vt}, implying |End(P)| = 2(n− t), since each vertex is treated as two endpoints
of a path of length 0. We will first take a closer look at (2).
The proof exactly the same as the one for stage 1, part (2), in the proof of Theorem 1.2 (see page 11),
gives that when stage 1 is over, every vertex in End(P) has Breaker’s degree less than 16b lnn.

Now, we look at part (1). We need to prove two things: first, that Maker can build a Hamilton-connected
subgraph on t = 1

2b ln2 n vertices, among which no edge is claimed by either of players, and second, that
Maker can find such t vertices that induce no edge, whenever she decides to build each of her L subgraphs.
In order to show that Maker can build a subgraph on t vertices when playing the (1 : 2b) game, we need to
verify the conditions of Theorem 2.3. The graph Maker plays the game on is Kt, so the degree condition
is fulfilled. Also, t

ln2 t
> 2b ln2 n

ln2 n
= 2b for values of b that we consider. This gives that Maker can build a

Hamilton-connected subgraph on V (Kt) in at most 1 + e(Kt)
t/ ln2 t

≤ cb ln4 n moves, for 0 < c < 1
2 .

We will show that Maker can find t vertices that induce no edge for each subgraph. As building each
subgraph requires cb ln4 n moves and Maker should build L = 13b lnn of them, this gives in total at
most 13cb2 ln5 n moves. During this number of moves, playing according to (2), Maker could touch at
most 2 · 13cb2 ln5 n vertices in I . Also, before selecting the t vertices for her last Hamilton-connected
subgraph, Maker has already removed (L − 1) · t = 13

2 b
2 ln3 n − 1

2b ln2 n vertices from I . So, before
choosing vertices for each subgraph, there are at least n′ = n− 26cb2 ln5 n− 13

2 b
2 ln3 n+ 1

2b ln2 n > n
2

vertices in I that are isolated in Maker’s graph. According to Maker’s strategy in part (2), every vertex in
End(P) has Breaker’s degree less than 16b lnn. Applying Theorem 2.4, we can partition n′ vertices into
at least 16b lnn independent sets, each of size at least n′

16b lnn = Ω
(√

n ln3 n
)
> t.

Stage 2. When this stage begins, |End(P)| = 2n− 26cb2 ln5 n− 13b2 ln3 n. Here again we look at the
Box game, with Maker taking the role of BoxBreaker. The boxes in this game are vertices in End(P),
which have at least |End(P)| − 16b lnn elements each. The difference here is that BoxMaker claims
4b elements of the board in each move, since Maker responds to b edges of Breaker in the real game.
Formally, Maker plays the game B(|End(P)|, |End(P)| · |End(P)| − 16b lnn, 4b, 1), pretending to be
BoxBreaker. Here again, a calculation similar to the one in (4.1) gives that playing on the board of order
|End(P)| until the end, BoxMaker cannot claim more than 8b lnn elements in one box. This means that
when stage 2 is over, there are L paths in P whose endpoints have degree in Breaker’s graph less than
16b lnn+ 8b lnn = 24b lnn.

Stage 3. Maker connects L paths through L Hamilton-connected subgraphs into a Hamilton cycle, by
playing the Box game as BoxBreaker. Now there are 2L boxes in the game, representing each of the
endpoints of L paths in P . After stage 2 is over, there are less than 24b lnn Breaker’s edges incident
to each v ∈ End(P). Each box consists of all free edges between one endpoint of the path and half
of the vertices in one subgraph, and so, each box is of size more than s = t

2 − 24b lnn = 1
4b ln2 n −

24b lnn. Each Breaker’s edge is counted as claiming one element of the board, so the game played is
B(2L, 2Ls, b, 1). The size of the largest box that BoxMaker could fully claim until the end of the game



Fast strategies in biased Maker–Breaker games 19

playing with bias b is at most

l =
b

2L
+

b

2L− 1
+ · · ·+ b

1
= b

2L∑
i=1

1

i
≤ b(1 + ln 2L) < s.

This means that BoxMaker is unable to fully claim any box in this game before BoxBreaker claims
an element in it. So, this stage ends in 2L moves and at its end, Maker’s graph contains a Hamilton
cycle. The total number of moves in this stage is 2L = 26b lnn, so the game lasts altogether at most
n+ 13

2 cb
2 ln5 n− 13

2 b
2 ln3 n+ 13b lnn = n+O(b2 ln5 n) moves. 2

6 Proof of Theorem 1.5

Proof:

(i) Breaker’s strategy consists of claiming all the edges of some clique C on b
2 vertices such that no

vertex of C is touched by Maker and maintaining this clique. Let Ci be the clique of Breaker before
his ith move. Let ui be the largest integer such that bi ≤ b, where bi :=

(
ui+1

2

)
+ (ui + 1)|Ci|.

In his ith move, Breaker chooses ui + 1 vertices {v1, v2, . . . , vui+1} ∈ V (Kn)\V (Ci) such that
dM (vj) = 0, for 1 ≤ j ≤ ui+1 and claims the edges {{vj , vk} : 1 ≤ j < k ≤ ui+1}∪{{vj , v} :
1 ≤ j ≤ ui + 1, v ∈ V (Ci)}. He also claims b − bi arbitrary edges which we will disregard
in our analysis. Maker, on the other hand, can touch at most one vertex from Ci in his following
move, so right before Breaker’s (i+ 1)st move, |Ci+1| ≥ |Ci|+ ui. It is easy to verify that ui ≥ 1
while |Ci| < b

2 , and after that |Ci+1| ≥ |Ci|, provided there is at least one vertex in V (Kn)\V (Ci)
isolated in Maker’s graph. What we need to show is that there are enough vertices for Breaker
to create a clique with b

2 vertices. By the definition of ui, until |Ci| ≤ b
4 − 2, ui ≥ 3. While

|Ci| ≤ b
3 − 1, ui ≥ 2 and if |Ci| ≤ b

2 − 1, then ui ≥ 1. It takes at most

b
4 − 2

3
+

b
3 − 1− b

4 + 1

2
+

b
2 − 1− b

3

1
=

7b− 40

24

moves to create a clique. Note that in any of his moves, Breaker can enlarge his clique by more
than stated number of vertices. Consequently, the number of rounds will decrease. In any case, the
number of vertices touched by any of the players is upper bounded by

6
b
4 − 2

3
+ 5

b
3 − 1− b

4 + 1

2
+ 4

b
2 − 1− b

3

1
=

33b− 192

24
< n

knowing that b = o(n). When it is no longer possible for Breaker to add new vertices, isolated
in Maker’s graph, to his clique, Maker needs at least one move to connect each vertex w ∈ V (C)
to some vertex v ∈ V (Kn) \ V (C), which has degree at least one in Maker’s graph. When this
happens, dM (v) increases by one. Maker has to claim at least b

2 edges to touch all vertices in
Breaker’s clique. In the smallest graph that contains a perfect matching all vertices have degree
one. The double number of extra edges that Maker claims is thus

∑
v∈V (Kn)(dM (v) − 1) ≥ b

2 ,
by the aforementioned analysis. The number of extra edges Maker has claimed in this game is thus∑

v∈V (Kn)(dM (v)−1)

2 ≥ b
4 .
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(ii) The proof is similar to the one for (i). Let i be the smallest integer such that Ci is the clique in
Breaker’s graph of order b

2 , created in the same way as in (i) and for every w ∈ V (Ci) it holds
dM (w) = 0. In the Hamilton Cycle game, Breaker considers a vertex w ∈ Ci to be removed from
his clique only if dM (w) = 2. So, when |Ci| = b

2 and for every w ∈ V (Ci), dM (w) = 0 holds,
Maker needs two moves to remove a vertex from C. This means that in kth move, k > i, Breaker
chooses one untouched vertex v ∈ V (Kn)\V (Ck) and enlarges his clique by one. So, after each
two moves, at most one vertex can be removed, and |Ck+2| ≥ |Ck| + 1 holds. This is clearly
possible while |C| ≤ b. What remains to be proved is that there are enough untouched vertices until
Breaker creates a clique of order b. From (i) we know that at most 33b−192

24 vertices are touched
until the clique of order b2 is created in Breaker’s graph. After that in at most b more moves Breaker
enlarges his clique to order b, and at that point the total of at most 57b−192

24 < n vertices are touched.
When dM (v) ≥ 1 for every v ∈ V (Kn)\V (C), Breaker still enlarges his clique by adding to it a
vertex of degree 1 in Maker’s graph. However, from that point on, Maker needs one move to remove
such a vertex of degree one from Ck+1 and |Ck+1| ≥ |Ck|. This implies that Breaker can maintain
a clique in his graph of order b until for all vertices v ∈ V (Kn)\V (C) it holds that dM (v) ≥ 2.
For every vertex w ∈ V (C), dM (w) ≤ 1. In order to connect a vertex w ∈ V (C) to some
v ∈ V (Kn)\V (C) Maker needs at least one move. In a graph that contains a Hamilton cycle all
the vertices have degree at least 2. So, the number of extra moves that Maker has made when the
game is over is

∑
v∈V (Kn)(dM (v)−2)

2 . By the given strategy, the sum
∑
v∈V (Kn)(dM (v)− 2) grows

by one for every w ∈ V (C), and thus the number of extra moves is
∑

v∈V (Kn)(dM (v)−2)

2 ≥ b
2 .
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A Proof of Theorem 2.2

Proof: The proof is very similar (in fact, almost identical) to the proof of (Gebauer and Szabó, 2009,
Theorem 1.2), so we omit some of the calculations. At any point of the game, for every vertex v ∈
V (G), let dang(v) := dB(v) − 2b · dM (v) be the danger value of v. For a subset X ⊆ V (G), define
dang(X) =

∑
v∈X dang(v)

|X| , the average danger of vertices in X . A vertex v ∈ V (G) is called dangerous if
dM (v) ≤ c− 1.

The game ends when either all the vertices have degree at least c in Maker’s graph (and Maker won)
or there exists a dangerous vertex v ∈ V (G) for which dang(v) > b(2 lnn + 1) (and Maker failed the
degree condition) or dB(v) ≥ dG(v)− c+ 1 (and Breaker won). Note that since

dG(v)− c+ 1− 2b · (c− 1) ≥ dG(v)− c− 2bc > b(2 lnn+ 1), (A.1)

it is enough to say that Maker fails if dang(v) > b(2 lnn+ 1) for some vertex v ∈ V (G) with dM (v) ≤
c− 1.
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Maker’s strategy SM : Before her ith move Maker identifies a dangerous vertex vi with

dang(vi) = max{dang(v) : v ∈ V (G) and v is dangerous},

and claims an arbitrary free edge {vi, ui}, where ties are broken arbitrarily.
Suppose towards a contradiction that Breaker has a strategy SB by which Maker, who plays according

to the strategy SM as suggested above, fails. That is, playing according SB , Breaker can ensure that at
some point during the game, there exists a dangerous vertex v ∈ V (G) for which dang(v) > b(2 lnn+1).

Let s be the length of this game and letA = {v1, v2, . . . , vs} be the set of active vertices which contains
all the vertices in Maker’s graph of degree less than c that Maker selected as the most dangerous. Note
here that vertices v1, v2, . . . , vs do not have to be distinct vertices from V (Kn), since it takes c moves to
remove a vertex from the set of active vertices. So, A can have less than s elements. By strategy SM , in
her ith move, Maker claims an edge incident with vi (for all i except for i = s, as the game is considered
to be over before her sth move). For 0 ≤ i ≤ s− 1, let Ai = {vs−i, vs−i+1, . . . , vs}.

Following the notation of Gebauer and Szabó (2009), let dangMi
(v) and dangBi

(v) denote danger
values of vertex v ∈ V (Kn) immediately before ith move of Maker, respectively Breaker.

Analogously to the proof of Theorem 1.2 by Gebauer and Szabó (2009), we state the following lemmas.
Next lemma is useful for estimating the change in average danger value after Maker’s move.

Lemma A.1 (Gebauer and Szabó (2009), Lemma 3.3) Let i be an integer, 1 ≤ i ≤ s− 1.

(i) If Ai 6= Ai−1, then dangMs−i
(Ai)− dangBs−i+1

(Ai−1) ≥ 0.

(ii) If Ai = Ai−1, then dangMs−i
(Ai)− dangBs−i+1

(Ai−1) ≥ 2b
|Ai| .

To estimate the change in average danger value after Breaker’s move, we use the following lemma.

Lemma A.2 (Gebauer and Szabó (2009), Lemma 3.4(i)) Let i be an integer, 1 ≤ i ≤ s− 1. Then

dangMs−i
(Ai)− dangBs−i

(Ai) ≤
2b

|Ai|
.

Combining Lemmas A.1 and A.2 we obtain the following corollary which estimates the change in
average danger value after a whole round is played.

Corollary A.3 (Gebauer and Szabó (2009), Corollary 3.5) Let i be an integer, 1 ≤ i ≤ s− 1.

(i) If Ai = Ai−1, then dangBs−i
(Ai)− dangBs−i+1

(Ai−1) ≥ 0.

(ii) If Ai 6= Ai−1, then dangBs−i
(Ai)− dangBs−i+1

(Ai−1) ≥ − 2b
|Ai| ,

To complete the proof, we want to show that before Breaker’s first move dangB1
(As−1) > 0, thus

obtaining a contradiction.
Let r denote the number of distinct vertices in A1 and let i1 < i2 < · · · < ir−1 be the indices for which
Aij 6= Aij−1 holds, for 1 ≤ j ≤ r − 1. Then |Aij | = j + 1.

Recall that since Maker fails in her sth move, the danger value of vs immediately before Bs is

dangBs
(vs) > 2b lnn. (A.2)
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We have that

dangB1
(As−1) = dangBs

(A0) +

s−1∑
i=1

(
dangBs−i

(Ai)− dangBs−i+1
(Ai−1)

)
≥ dangBs

(A0) +

r−1∑
j=1

(
dangBs−ij

(Aij )− dangBs−ij+1
(Aij−1)

)
[by Corollary A.3 (i)]

≥ dangBs
(A0)−

r−1∑
j=1

2b

j + 1

[by Corollary A.3(ii)]
≥ dangBs

(A0)− 2b lnn

> 0. (A.3)

2

B Proof of Theorem 2.5

Proof: The proof of this theorem is almost identical to the proof of (Krivelevich, 2011, Theorem 1), so we
omit most of the details. Throughout the proof we assume that the edges of H were claimed by Breaker.

For given ε, we take δ = δ(ε) ≤ ε/4, and n0 := n0(δ, ε) = e(10/δ)5 .
Similarly to the proof of (Krivelevich, 2011, Theorem 1), we also need to set

γ0 = γ0(n) =
1

ln0.49 n
and k0 = k0(n) = γ0n =

n

ln0.49 n
.

Given a graph G, an edge e 6∈ E(G) is called a booster if its addition to G creates either a Hamiltonian
graph, or a graph whose maximum path is longer than the one in G.

Maker’s strategy consists of the following three main stages.
Stage 1. In this stage, Maker creates a k0-expander, in at most 12n moves, that is, after this stage,

Maker’s graph M satisfies the following property:

|NM (X) \X| ≥ 2|X|, for every X ⊂ V (Kn) of size |X| ≤ k0.

Stage 2. Maker turns her expander into a connected graph within at most n moves.
Stage 3. Maker turns the connected expander into a Hamiltonian graph within at most n moves.
Following the proof of (Krivelevich, 2011, Theorem 1), we can prove that Maker can complete all the

stages.
Stage 1. In order to describe the strategy of Maker in this stage, for every vertex v ∈ V (Kn) let us

define the function dang(v) := dB(v) − 2b · dM (v). The strategy of Maker is the modified strategy
from (Gebauer and Szabó, 2009, Theorem 1.2), already used in the proof of (Krivelevich, 2011, Theo-
rem 1). Maker’s goal is to achieve minimum degree 12 in his graph in 12n moves. The strategy S is the
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following: While there exists a vertex in Maker’s graph of degree less than 12, Maker chooses a vertex
v of degree less than 12 with the largest value of dang(v) and claims a random free edge e incident to
it. Similarly as it is done in (Krivelevich, 2011, Lemma 3), the argument of (Gebauer and Szabó, 2009,
Theorem 1.2) can be used to obtain that using strategy S for every vertex v ∈ V (Kn) Maker can claim
at least 12 edges incident to it before Breaker has claimed (1 − 2δ)n edges incident to v (for details, we
refer the reader to Gebauer and Szabó (2009); Krivelevich (2011)). Note now, that we consider that all
the edges of H were claimed by Breaker. This gives that for every vertex v ∈ V (Kn) at the end of this
stage in Breaker’s graph it holds:

dB(v) ≤ (1− δ)n. (B.1)

Now, we show that after this stage, the Maker’s graph M is indeed a k0-expander. Following the
argument of (Krivelevich, 2011, Lemma 4), we will suppose that M is not a k0-expander. Then, there
exists a subset A of size |A| = i ≤ k0 in M at the end of this stage such that NM (A) is contained in a set
B of size at most 2i − 1. As the minimum degree in M is 12, we can take that i ≥ 5. Also, there are at
least 6i edges in M incident to A. Let e = {p, q} be an edge that Maker has chosen with p ∈ A ∪ B. As
dB(v) ≤ (1− δ)n holds for every vertex v ∈ V (Kn) (by B.1), and Maker’s degree was at most 11 at the
time he chose e, there were at least δn− 12 free edges incident with p. When choosing e, the probability
that q ∈ A ∪ B is at most |A∪B|−1

δn−12 , independently of the previous course of the game. Consequently,

the probability that all 6i edges belong to A ∪ B is at most
(

3i−2
δn−12

)6i

. Taking the sum over all relevant
values of i, in the same way as in (Krivelevich, 2011, Theorem 1), we obtain that the probability that the
graph M is not a k0-expander is at most

∑
5≤i≤k0

(
n

i

)(
n− i
2i− 1

)(
3i− 2

δn− 12

)6i

≤
∑

5≤i≤k0

[
45e3

(
i

n

)3
1

δ6

]i
.

Let g(i) denote the ith term of the above sum (same as in Krivelevich (2011)). Similar calculations as

in Krivelevich (2011) give us that for 5 ≤ i ≤
√
n, g(i) <

(
O(1)(ln6/5 n)n−3/2

)6

= o(1/n). Also,

for
√
n < i ≤ k0, g(i) ≤

(
45e3γ3

0

δ6

)√n
= o(1/n). Thus, almost surely, Maker’s graph satisfies the

required property after stage 1. Notice that after stage 1, we consider that Breaker has claimed at most
12nb+ e(H) < 13n2

lnn edges.
Stage 2. Using (Krivelevich, 2011, Lemma 2), every connected component of Maker’s graph is of

size at least c = 3n
ln0.49 n

, thus there are Ω
(

n2

ln0.98 n

)
edges between any two connected components in the

complete graph. Maker needs at most n/c−1 moves to connect all the components into one, during which
time Breaker can additionally claim at most bn/c edges. In total, after these two stages, Breaker claimed
less than 14n2

lnn edges, thus we conclude that most of the edges between any two Maker’s components are
still free and Maker can merge all the components into one component and complete stage 2 in her next
n/c < n moves.

Stage 3. When stage 2 ends, Maker’s graph M is connected and either it is already Hamiltonian or,
by (Krivelevich, 2011, Lemma 1), it has at least k2

0/2 = n2

2 ln0.98 n
boosters (as the expansion property

does not vanish when adding additional edges). From the definition of a booster, we conclude that Maker
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needs to add at most n boosters to make her graph M Hamiltonian. After three stages, which last for at
most 14n moves, Breaker could have claimed less than 15n2

lnn < k0
2 edges in total (including the edges

of H). So, in each of the following at most n moves, Maker can claim a booster and make her graph
Hamiltonian. 2
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