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2 Universitat Politècnica de Catalunya (UPC), Spain

received 26th Feb. 2018, revised 4th Oct. 2018, accepted 9th Oct. 2018.

Rectangulations are partitions of a square into axis-aligned rectangles. A number of results provide bijections between
combinatorial equivalence classes of rectangulations and families of pattern-avoiding permutations. Other results
deal with local changes involving a single edge of a rectangulation, referred to as flips, edge rotations, or edge
pivoting. Such operations induce a graph on equivalence classes of rectangulations, related to so-called flip graphs
on triangulations and other families of geometric partitions. In this note, we consider a family of flip operations on
the equivalence classes of diagonal rectangulations, and their interpretation as transpositions in the associated Baxter
permutations, avoiding the vincular patterns t3142, 2413u. This complements results from Law and Reading (JCTA,
2012) and provides a complete characterization of flip operations on diagonal rectangulations, in both geometric and
combinatorial terms.
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1 Introduction
1.1 Flip graphs
The analysis of geometric partitions of space, such as triangle meshes, binary space partitions, and floor-
plans for integrated circuits plays a major role in discrete and computational geometry and its applications.
In order to understand the underlying combinatorial structure of these partitions, it is often useful to de-
fine elementary operations that modify this structure locally. We can then connect distinct partitions using
sequences of such operations.

In triangulations, such a notion is known under the term of flip. A flip in a triangulation is typically
defined as the replacement of an edge shared by two triangles forming a convex quadrilateral by the
other diagonal of the quadrilateral. This allows the definition of a flip graph, the vertices of which are
triangulations, and in which two triangulations are adjacent whenever one can be obtained from the other
by a single flip. This is a special case of the more general notion of reconfiguration graph.

Flip graphs have applications in enumeration and random generation of geometric partitions, as well
as optimization. The notion of flip graph has been studied for many distinct families of triangulations
(maximal planar graphs and triangulations of a point set [7, 8], triangulations of a topological surface [19],
see also [16] and references therein), and generalized to other families of geometric partitions, such as
domino tilings [24], quadrangulations [18], and rectangulations, the topic of the present contribution. Flip
graphs have been shown to have intimate links with many important structures in combinatorics, such
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as the Catalan objects [27], the Tamari lattice and the associahedra [17], cyclohedra [25], and partial
cubes [11].

1.2 Geometric partitions and pattern-avoiding permutations

There exists a collection of results establishing bijections between families of geometric space partitions
and pattern-avoiding permutations. We will use the word notation for permutations, in which a permuta-
tion σ is denoted by the word σp1qσp2q . . . σpnq. A permutation σ is said to contain the pattern π, where π
is another permutation, whenever there exists a subsequence of σ whose elements are in the same relative
order as the elements of π. Hence for instance the permutation 45213 contains the pattern 213, and also
the pattern 3412 in the form of the subsequence 4513. Pattern-avoiding permutation classes are families
of permutations that do not contain any occurence of one or more given patterns.

It is well known, for instance, that triangulations of a convex pn ` 2q-gon are in one-to-one corre-
spondence with 312-avoiding permutations on n elements, and those are counted by the Catalan numbers
(OEIS(i) A000108). Similarly, guillotine partitions of a rectangle into n rectangles, obtained by recur-
sive splitting with a horizontal or vertical cut, can easily be seen to be in one-to-one correspondence
with t3142, 2413u-avoiding permutations, called separable permutations [6], which are counted by the
Schröder numbers (OEIS A006318). This has recently been generalized to separable d-permutations and
higher-dimensional guillotine partitions [5].

We will use the underline notation for more complex forbidden patterns in permutations, known as
vincular patterns. In this notation, an underlined block of elements indicates that they need to occur
consecutively in the permutation. For instance, forbidding the pattern 3142 amounts to forbidding all
occurrences of the pattern 3142 with the added condition that 1 and 4 must occur consecutively. See
Kitaev [14] for precise definitions and further terminology.

The objects of interest in this paper are rectangulations, defined as partitions of a square into axis-
aligned rectangles. Several combinatorial equivalence classes of such rectangulations have been defined,
which are known to be in one-to-one correspondence with families of permutations avoiding certain vin-
cular patterns. Mosaic floorplans, for instance, have been shown to be in correspondence with Baxter
permutations, avoiding the patterns 3142 and 2413. This bijection seems to go back to the work of Du-
lucq and Guibert on Baxter permutations involving twin binary trees [10]. A complete description in
terms of twin binary trees is given in Section 6 of Felsner et al. [12]. A simple description of a bijection
for mosaic floorplans is given by Ackerman et al. [2]. Mosaic floorplans are also in bijection with twisted
Baxter permutations avoiding the patterns 3412 and 2413 [15]. These two families are therefore in one-
to-one correspondence, together with the family of t3142, 2143u-avoiding permutations. They will be
instrumental in what follows. Interestingly, the t3412, 2143u-avoiding permutations are not in one-to-one
correspondence with (twisted) Baxter permutations. These were actually shown by Asinowski et al. to
count other equivalence classes of rectangulations [4], namely those preserving the neighborhood relation
between the segments of the rectangulation. Generic rectangulations, also known as rectangular draw-
ings, are combinatorial rectangulations in which we take into account the adjacency relation between the
rectangles. Generic rectangulations have been shown to be in one-to-one correspondence with 2-clumped
permutations, avoiding the vincular patterns t35124, 35142, 24513, 42513u [22]. Table 1 lists the known
bijections between families of pattern-avoiding permutations and rectangulations.

(i) Online Encyclopedia of Integer Sequences: https://oeis.org/

https://oeis.org/
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Permutations Rectangulations
Separable: t3142, 2413u-avoiding Slicing floorplans,

or guillotine partitions
Baxter: t3142, 2413u-avoiding Mosaic floorplans,

Twisted Baxter: t3412, 2413u-avoiding or diagonal rectangulations,
t3142, 2143u-avoiding or R-equivalent rectangulations [28, 2, 15]
t3412, 2143u-avoiding S-equivalent rectangulations [4]

2-clumped: generic rectangulations,
t35124, 35142, 24513, 42513u-avoiding or rectangular drawings [22]

Separable d-permutations Guillotine partitions
of 2d´1-dimensional boxes [5]

Tab. 1: Known bijections between families of pattern-avoiding permutations and rectangulations.

1.3 Flips in rectangulations
Different types of local operations can be defined on rectangulations, which have been given different
names, such as flips, local move, edge rotations, or edge pivoting. In general, they all consist of replacing
a horizontal edge of the rectangulation by a vertical one, or vice versa. In what follows, and with a slight
abuse of terminology, we will refer to all those under the common name of flip.

Law and Reading [15] described a family of flips on rectangulations and provided an elegant combina-
torial characterization. They showed that two rectangulations were connected by such a flip if and only if
they were in the cover relation of a certain natural lattice structure, analogous to the Tamari lattice on tri-
angulations (hence on 312-avoiding permutations), and part of the family of Cambrian lattices [21]. This
lattice was also studied by Giraudo [13] under the name of Baxter lattice. Wide-reaching generalizations
of these structures have been studied from the order-theoretic, algebraic, and polyhedral points of views
by Reading [23], Chatel and Pilaud [9], and Pilaud and Santos [20], among others.

Ackerman, Barequet and Pinter [3] defined related flip operations on rectangulations of a point set.
These rectangulations are defined on a given point set so that every point lies on a segment of the rect-
angulation, and vice versa. Ackerman et al. studied the flip graph induced by these operations [1]. The
flips considered by Ackerman et al. are the same as the ones in Law and Reading whenever the point set
lies on the diagonal. Their results include a linear upper bound on the diameter of this flip graph (see [1],
Section 4).

An interesting application of flips in rectangulation to visualization of hierarchical data has been re-
cently proposed by Sondag, Speckmann, and Verbeek [26]. They use flips to maintain treemap layouts,
representing information items by nested rectangles, under changes in the data. This improves the stability
of the representation over time, and provably allows for all possible treemap layouts.

1.4 Contribution
We first describe a known bijection from diagonal rectangulations to Baxter permutations. Then we con-
sider flip operations on diagonal rectangulations, classify the different kinds of flips and give a combinato-
rial interpretation for each. Some of them, namely those involving edges that do not intersect the diagonal
of the square, have already been characterized by Law and Reading [15]. We recall this characterization.
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Fig. 1: Flips in diagonal rectangulations with three rectangles, together with their associated Baxter per-
mutation.

For the others, we prove that the obtained flip graph is isomorphic to the graph on the corresponding
Baxter permutations in which two Baxter permutations are adjacent whenever they differ by a single
transposition of consecutive elements. We comment on the symmetry of the two interpretations. This pro-
vides a complete one-to-one correspondence not only between rectangulations and Baxter permutations,
but also between these sets of natural operations on the geometric and combinatorial structures. Overall,
this yields a complete characterization of flip operations in diagonal rectangulations. Illustrations of flip
operations on rectangulations with three rectangles is given in Figure 1.

1.5 Plan

In Section 2 we provide some basic definitions and give a simple known bijection between diagonal
rectangulations and Baxter permutations. In Section 3 we define and categorize a number of flip operations
on diagonal rectangulations. Finally, in Section 4 we give combinatorial characterizations for all the
described flip operations. We first summarize the Law-Reading characterization in terms of the lattice
structure (4.1), then proceed with the characterization of other flips (4.2), which is our main new result.

2 Diagonal rectangulations and Baxter permutations
In this section, we first define the combinatorial notion of diagonal rectangulation. Then we present
maps from the set of diagonal rectangulations with n rectangles to the set of permutations on n elements.
Those maps were described previously, and are known to be bijections between diagonal rectangulations
and permutations avoiding some vincular patterns on four elements. They will be instrumental in the
combinatorial interpretation of the flip graph on diagonal rectangulations. The material of this section is
adapted from Ackerman et al. [2], and Law and Reading [15]. A description of an essentially equivalent
map in terms of pairs of twin binary trees was given by Felsner et al. [12].
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Fig. 2: An example of diagonal rectangulation.

2.1 Diagonal rectangulations
A rectangulation is a partition of the unit square into axis-aligned rectangles. We define vertices as corners
of the rectangles, and edges as line segment connecting two vertices, with no other vertex in between. The
term segment is used to refer to inclusion-wise maximal line segments of the rectangulation, possibly
composed of several edges. We consider only rectangulations in which every vertex has exactly three
incident edges, except the four vertices of the square, which have exactly two incident edges. We refer to
the number of incident edges as the degree of the vertex, and classify the vertices into four self-explanatory
classes depending on the orientation of their three incident edges and denoted by $, %, J, and K.

We refer to the top-left to bottom-right diagonal of the square as the main diagonal, or simply the diag-
onal, when there is no ambiguity. A diagonal rectangulation is a rectangulation in which every rectangle
intersects the main diagonal. However, since we deal with combinatorial structures, we actually define
diagonal rectangulations as equivalence classes of such partitions of the square, with respect to moves that
do not change the adjacency relation between the rectangles. Hence we allow changes in the positions of
the vertices and edges, but we forbid moves that change the order of the vertices along a segment. This
allows the representation of any diagonal rectangulation in a unique way such that the intersections of the
main diagonal with the segments are equidistributed. An example of diagonal rectangulation is given in
Figure 2. The representation as a pair of twin binary trees is shown on Figure 3. We have the following
characterization of (the equivalence classes of) diagonal rectangulations.

Lemma 1. A rectangulation is diagonal if and only if it does not contain one of the two forbidden config-
urations of Figure 4.

The lemma can be deduced from the techniques in [2]. We provide a brief sketch of an alternative
proof. The necessity of the condition is clear. To prove sufficiency, one can greedily find a drawing in
which all rectangles intersect a monotone curve in the square, from the top left to the bottom right corner.
This splits the drawing into two binary trees, which can be redrawn so that the leaves are equidistributed
on the main diagonal.

We can also consider the equivalence classes of rectangulations for which we can change the relative
position of vertices along a segment. Two rectangulations are said to be equivalent when one can be
obtained from the other by performing so-called wall slides, as shown on Figure 5. Wall slides modify the
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Fig. 3: Twin binary trees associated with a diagonal rectangulation.

Fig. 4: Forbidden configurations in a diagonal rectangulation.
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Fig. 5: Wall slides.

adjacency relation among the rectangles, by exchanging the order of two vertices along a segment. The
equivalence relation is sometimes referred to as R-equivalence [4]. The R-equivalence classes are called
mosaic floorplans.

Lemma 2. Every mosaic floorplan, or R-equivalence class, has a unique representative as a diagonal
rectangulation.

2.2 A map from permutations to diagonal rectangulations
Before delving into the details of the bijections, we first describe a map ρ from any permutation to a
diagonal rectangulation.

Given a permutation π on n elements, we consider the square to be dissected and divide its main
diagonal into n intervals, that we label 1, 2, . . . , n, from left to right. We then proceed iteratively by
adding rectangles intersecting the intervals π1, π2, . . . , πn. Before the ith step, we denote by Ti´1 the
union of the rectangles that have already been drawn, together with the left and bottom edges of the
square. If πi “ j, we draw a rectangle intersecting the jth interval of the diagonal. We consider the left
endpoint ` of this interval. If ` is on the boundary of Ti´1, then the upper left corner of the ith rectangle is
the highest point above ` that belongs to Ti´1. Otherwise, the upper left corner is the rightmost point on
the boundary of Ti´1 that is directly left of `. Similarly, consider the right endpoint r of the jth interval.
If r is on the boundary of Ti´1, then the lower right corner of the new rectangle is the rightmost point of
Ti´1 that is directly right of r. Otherwise, it is the highest point on the boundary of Ti´1 lying directly
below r. The map is illustrated on Figure 6.

2.3 Maps from diagonal rectangulations to permutations
Given the algorithm above, one can realize that many distinct permutations can yield the same rectangu-
lation. For instance, one can check on the example of Figure 6 that rectangles 6 and 5 can both be drawn
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Fig. 6: The map ρ from permutations to diagonal rectangulations. Construction of the diagonal rectangu-
lation ρp4165372q.
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Fig. 7: Illustration of the map given by the leftmost order on the rectangulation R of Figure 2: the labels
of the rectangles are given by the n-order (left), and listed in the leftmost order (right). The obtained
twisted Baxter permutation is 4165372.

before rectangle 1, hence that ρp4165372q “ ρp4651372q. In general, given a diagonal rectangulation R,
one can easily find a permutation π such that ρpπq “ R by moving backwards in the order in which the
rectangles are drawn. At each step, there always exists a rectangle in the rectangulation that is drawn cor-
rectly when the above procedure is applied. In order to define a map from rectangulations to permutations,
we need a tie-breaking rule, which allows to decide univocally which is the next rectangle to pick, and
therefore to choose one well-defined element from each preimage ρ´1pRq. There are two simple rules we
can apply: the leftmost and rightmost rules. In those rules, the next rectangle we pick is the one that is
leftmost (respectively rightmost) on the diagonal. In all cases, the rectangles of the given rectangulation
are first labeled in what we call the n-order, defined as the order in which they intersect the diagonal.

The preimage ρ´1pRq can in fact be interpreted as the set of common linear extensions of the two
binary trees corresponding to R: the tree above the main diagonal oriented towards its root and the tree
below the main diagonal oriented from its root. In particular, the three tie-breaking rules are ways to chose
between these linear extensions.

Let us first consider the leftmost rule, as illustrated on Figure 7. One can check that the permutation
that is produced using the leftmost rule avoids the vincular patterns 3412 and 2413. Indeed, in both cases,
the leftmost rule prescribes that rectangle 1 is chosen before rectangle 4. Permutations avoiding those
two patterns are known as twisted Baxter permutations. In fact, only twisted Baxter permutations can be
produced, and the map is known to be a bijection between diagonal rectangulations and twisted Baxter
permutations [15].

Similarly, the rightmost rule yields a bijection between diagonal rectangulations and t3142, 2143u-
avoiding permutations. In fact, it can be shown that the preimage ρ´1pRq forms an interval, and the
leftmost and rightmost rules select the bottom and top elements of these intervals respectively.

We now describe the tie-breaking rule that allows to define a bijection B between diagonal rectangu-
lations and Baxter permutations, which avoid the patterns t3142, 2413u. In order to define B, we define
another linear order on the rectangles of a rectangulation: the m-order. The m-order is obtained by tak-
ing the representative mR of R in the equivalence class of mosaic floorplans such that the bottom-left to
top-right diagonal intersects every rectangle. From Lemma 2, this representative exists and is unique. The
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Fig. 8: Illustration of the map B on the rectangulation R of Figure 2: the labels of the rectangles are
given by the n-order (left), and listed in the m-order (right). The rectangulation on the right is in the
same equivalence class of mosaic floorplans as the one on the left. The obtained Baxter permutation is
BpRq “ 4651372.

m-order is then simply the order in which this diagonal intersects the rectangles. The Baxter permutation
BpRq corresponding to a diagonal rectangulation R is the order of the rectangle labels in the m-order, see
Figure 8. The map B can then be described concisely as follows:

1. label the rectangles with respect to the n-order,

2. enumerate the labels of the rectangles in the m-order.

The m-order is distinct from both the leftmost and the rightmost order, and can be shown to avoid the
Baxter patterns. An example illustrating this distinction is given on Figure 9. The following result is due
to Ackerman et al. [2]. In their proof, the description of the m-order involves block deletion operations,
but can be seen to be equivalent to ours.

Theorem 1. The map B is a bijection between diagonal rectangulations with n rectangles and Baxter
permutations on n elements.

2.4 Inversion
We now give a relation between rectangulations produced by a Baxter permutation π and its inverse π´1.
Note that inverses of Baxter permutations are also Baxter permutations. The map ρ from permutations of
n elements to diagonal rectangulations with n rectangles is defined by iteratively drawing the rectangle
given by the next element of the sequence on the main diagonal. We define a similar map ρ1 that produces
a rectangulation in which the rectangles intersect the other, bottom-left to top-right, diagonal. The map ρ1

is simply defined as the composition of ρ with a reflection with respect to the horizontal axis. We observe
that applying this map to the inverse permutation π´1 yields the alternative diagonal representation of
ρpπq.

Lemma 3. Let π “ BpRq for a rectangulation R. Then ρ1pπ´1q “ mR.

Proof: Consider the map B1 from rectangulations to permutations defined as follows:
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Fig. 9: Example of diagonal rectangulation in which the leftmost, rightmost, and m-orders are all distinct.
The leftmost order, hence the twisted Baxter permutation is 31426587, the rightmost order is 34126857,
and the m-order, hence the Baxter permutation, is 34126587.

1. label the rectangles with respect to the m-order,

2. enumerate the labels of the rectangles in the n-order.

Note that this matches the description of the map B, except that we exchanged the roles of the two orders.
Since the roles of the indices and the elements are now exchanged, we must have thatB1pRq “ π´1. Now
applying ρ1 on the permutation π´1 amounts to inserting the rectangles in the order given by π´1 along
the other, bottom-left to top-right diagonal. But since the rectangles were labeled by B1 in the m-order,
this must yield mR.

3 Flips
In this section, we present a geometric notion of flips in diagonal rectangulations. We consider only
flipping edges that are not part of the boundary of the square. We say that an edge is matched at one
of its endpoint whenever this endpoint is incident to another edge with the same (horizontal/vertical)
orientation.

3.1 Simple flips
Simple flips involve edges that separate two adjacent rectangles whose union is a rectangle itself. These
are precisely the edges that are unmatched at both endpoints. All such edges must intersect the diagonal.
A simple flip consists in replacing such a horizontal edge by a vertical one, or vice versa. When replacing
the edge, we can always do it in such a way that the resulting rectangulation remains diagonal. An example
of simple flip in the rectangulation of Figure 2 is given in Figure 10a.

It is perhaps worth noting that flipping those edges is not sufficient to connect any pair of diagonal rect-
angulations. In other words, the simple flip graph is not connected. Two rectangulations that differ only
by simple flips have been called S-equivalent by Asinowski et al. [4], and the corresponding equivalence
classes are shown to be in bijection with the t3412, 2143u-avoiding permutations.
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(a) Simple flip.

(b) Flip involving an edge that does not intersect the diagonal.

(c) Flip involving an edge intersecting the diagonal.

Fig. 10: The three kinds of flips in a diagonal rectangulation.
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(a) Unflippable edges matched at both endpoints. (b) Unflippable edge matched at one endpoint.

Fig. 11: Unflippable edges.

3.2 Flips using rotations
In some cases, an edge that is matched only at one of its endpoints can be rotated around this endpoint to
yield another diagonal rectangulation. Examples of such flips are given in Figures 10b and 10c. Flips of
the kind given in Figure 10b are exactly rotations in one of the twin binary trees.

Note that when such a flip involves an edge that intersects the main diagonal, like in Figure 10c, merely
replacing the rotated edge in a drawing of the rectangulation does not yield a drawing of the rectangulation
that is diagonal, that is, some rectangles do not intersect the diagonal anymore. However, the rectangula-
tion remains a proper diagonal rectangulation in the combinatorial sense, because no wall slide is needed
to make all rectangles intersect the diagonal.

Together, all these flip operations define a flip graph on the set of diagonal rectangulations. However,
not all edges can be flipped. An edge is said to be unflippable in two cases.

3.2.1 Unflippable edges matched at both endpoints.
If the edge is matched at both endpoints, rotating this edge around any of the two endpoints yields a
partition that is not a rectangulation. Examples are shown in Figure 11a.

3.2.2 Unflippable edges matched at one endpoint.
It can also be the case that an edge is matched at only one endpoint, and rotating it around this end-
point yields a rectangulation, but the obtained rectangulation is not diagonal. An illustration is given in
Figure 11b. We have the following lemma characterizing such unflippable edges.

Lemma 4. Unflippable edges matched at only one endpoint must fall in one of the four types described
in Figure 12. Furthermore, all of them must intersect the diagonal.

Proof: By definition, flipping the edge must create one of the two configurations in Lemma 1, shown in
Figure 4. Each of the two configurations can be forced to occur only after one of two edges have been
rotated, hence can only happen in one of the four cases described. The second statement can be proved by
contradiction, by considering the four types of unflippable edges. If, for one of them, the diagonal does
not intersect the edge, then the rectangulation is not diagonal to start with.
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Fig. 12: The four types of unflippable edges matched at only one endpoint.

All edges that are neither simply flippable nor unflippable according to the previous definitions can be
flipped using a rotation to get another diagonal rectangulation.

4 A complete combinatorial characterization of flips
In this section, we give a combinatorial characterization of all edges in the flip graph of diagonal rectan-
gulations. For this purpose, we will use some simple terminology on permutations. A transposition maps a
permutation π “ πp1qπp2q . . . πpjq . . . πpkq . . . πpnq to a permutation π1 “ πp1qπp2q . . . πpkq . . . πpjq . . . πpnq.
Furthermore, if the two values j and k satisfy |πpjq ´ πpkq| “ 1, then the transposition is said to be a
transposition of consecutive elements. If k “ j ` 1, then the transposition is said to be an adjacent trans-
position. Note that an adjacent transposition corresponds to a transposition of consecutive elements in the
inverse permutation.

4.1 Law-Reading flips
We first summarize a result of Law and Reading, characterizing some of the flip operations described
above as a cover relation in a lattice, which can be found in Section 7 of [15]. In what follows, we will
use the term Law-Reading flips to refer to those flips.

In the original description, the set of Law-Reading flippable edges is constructed as follows: for every
inner vertex, consider the two edges going towards (not necessarily intersecting) the diagonal. Consider
the one that is matched and exclude it from the set. The remaining edges are Law-Reading flippable. It can
be checked that all Law-Reading flippable edges are flippable with respect to the definitions of Section 3.
The following lemma gives a simple alternative definition of Law-Reading flips.

Lemma 5. Law-Reading flips are exactly the flips that are either simple, or that involve the rotation of a
flippable edge that does not intersect the diagonal, as illustrated in Figure 10b.
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Proof: Consider an edge that intersects the diagonal. If this edge is Law-Reading flippable, then it must
be unmatched at both endpoints, since otherwise one of the endpoints would lock it. Hence it must be
simply flippable. Conversely, suppose that this edge is flippable, but not simply flippable. Then it must
be matched at exactly one endpoint. But for this endpoint, the edge is towards the diagonal and therefore
must be locked. Hence Law-Reading flips of edges intersecting the diagonal are exactly the simple flips.

Consider now an edge that does not intersect the diagonal. We need to show that it is flippable if
and only if it is Law-Reading flippable. Suppose it is flippable. Then it must be matched at exactly
one endpoint. This endpoint must be the closest to the diagonal, for otherwise the rectangulation is not
diagonal. But then it cannot be locked, and is Law-Reading flippable. On the other hand, suppose it is
Law-Reading flippable. Then it cannot be locked, and can only be matched at the endpoint that is the
closest from the diagonal. From Lemma 4, unflippable edges matched at one endpoint must intersect the
diagonal. Therefore this edge must be flippable.

We now give a combinatorial characterization of Law-Reading flips proved in [15] using the map from
rectangulations to Baxter permutations. Before stating the result, we must define the lattice dRecn of
diagonal rectangulations with n rectangles.

4.1.1 A lattice on diagonal rectangulations.
The weak order (also known as the weak Bruhat order) is a partial order on the set Sn of permutations of
n elements in which a permutation π is smaller than another permutation π1 whenever the set of inversions
of π is a subset of the set of inversions of π1. The cover relation of the weak order is the set of pairs of
permutations that differ by a single adjacent transposition. The weak order is a classical, well-studied
order, and known to be a lattice.

The lattice dRecn on diagonal rectangulations can be defined as the restriction of the weak order to the
Baxter permutations corresponding to diagonal rectangulations with n rectangles. In fact, it can be shown
that the preimages ρ´1pRq of ρ form a lattice congruence on the weak order. The lattice dRecn is the
quotient of the weak order with respect to this congruence. Therefore, dRecn may as well be defined by
restricting the weak order to any set of representatives of each congruence class. More concretely, we can
pick for any rectangulation R any representative in ρ´1pRq and consider the order induced by those. For
instance, the partial order induced by the weak order on the twisted Baxter permutations is isomorphic to
dRecn.

We can now state the connection between this order and Law-Reading flips in rectangulations. Recall
that BpRq is the Baxter permutation associated with the diagonal rectangulation R.

Theorem 2 (Law and Reading [15]). Let R and R1 be two diagonal rectangulations. Then R and R1 are
connected by a Law-Reading flip if and only if BpRq and BpR1q are in a cover relation in dRecn.

This means that the two Baxter permutations corresponding to the pair of rectangulations are related
by a monotone sequence of adjacent transpositions, and the intermediate permutations, if any, are not
Baxter permutations. Note that the Law-Reading flips have a simple interpretation in the representation
of a rectangulation by twin binary trees. A Law-Reading flip then corresponds to a rotation in one of the
two binary tree (see Section 5.3 in Giraudo [13]).

4.2 Barcelona flips
We define Barcelona flips as those flips that involve a flippable edge intersecting the main diagonal.
Barcelona flips are either simple flips, or flips involving the rotation of an edge intersecting the diagonal,
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b

a b

a

Fig. 13: Illustration of the proof of Lemma 6. The n and m-orders of the two rectangles a and b are
indicated by the dotted arrows.

as shown in Figure 10c.

4.2.1 Barcelona flips in R and Law-Reading flips in mR.
Lemma 6. Let R and R1 be two diagonal rectangulations that are connected by a Barcelona flip. Then
mR and mR1 are connected by a Law-Reading flip.

Proof: We first consider the case where the Barcelona flip is a simple flip. Then the edge is unmatched a
both endpoints, and remain so in mR. Hence mR and mR1 are connected by a simple flip as well.

In the case where the Barcelona flip is not simple, it must involve two rectangles with labels a and b
that can be in two possible distinct relative positions, as depicted in Figure 13.

We first remark that in the configuration on the left of Figure 13 in R, the top left corners of a and b
must respectively be J and $ vertices. This is because otherwise the rectangulation after or before the
flip contains one of the two forbidden configurations of Figure 4 and cannot be diagonal. Similarly in
the configuration on the right, the bottom right corners of a and b must respectively be K and % vertices.
Hence the relative position of the two rectangles a and b cannot be changed by wall slides, and remains
the same in mR. This in turn implies that the other diagonal in mR does not intersect the flipped edge,
and that this edge is still matched at only one endpoint. Since it does not intersect the diagonal, Lemma 4
implies that the edge is flippable in mR, and the flip is a Law-Reading flip. Applying the same reasoning
starting with R1, we conclude that flipping this edge in mR yields the rectangulation mR1.

The Lemma is illustrated in Figure 14. Combining the above lemma with Lemma 3 on the way to
obtain mR from BpRq, and the characterization of Law-Reading flips in Theorem 2, one can already
conclude that a Barcelona flip in a rectangulation R corresponds to a sequence of adjacent transpositions
in the inverse permutation BpRq´1. It is perhaps tempting to conjecture at this stage that Barcelona and
Law-Reading flips are exactly dual to each other, in the sense that the set of Barcelona flips in R is in
bijection with the set of Law-Reading flips in mR. This is not the case. In what follows, we show that
the Barcelona flips are in correspondence with the Law-Reading flips in mR that involve a single adjacent
transposition in BpRq´1, that is, a single transposition of consecutive elements in BpRq. Law-Reading
flips in mR that involve more than one transpositions do not have a direct interpretation in terms of flips
in R.

4.2.2 A characterization of Barcelona flips.
Theorem 3. LetR andR1 be two diagonal rectangulations. ThenR andR1 are connected by a Barcelona
flip if and only if BpRq and BpR1q differ by a single transposition of consecutive elements.
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e

f
g

h

e

f g

h

Fig. 14: Illustration of Lemma 6: edges e, f, g, h, that can be flipped by a Barcelona flip in R (left) can be
flipped by a Law-Reading flip in mR (right).

`2

`3 `4

`2`1

`3 `4

e`1

(a) Unflippable edge matched at both endpoints.

`3

`4

`1

`2

e

(b) Unflippable edge matched at
one endpoint.

Fig. 15: Illustrations for the proof of Theorem 3.

Proof: pñq First suppose that R and R1 are connected by such a flip. If this is a simple flip, it is not
difficult to verify, by referring to the descriptions of the map B, that the permutations indeed differ by a
single transposition of consecutive elements.

Now suppose it is not a simple flip. From Lemma 6, we have that mR and mR1 are connected by a
nonsimple Law-Reading flip. But those involve precisely the edges that do not intersect the diagonal,
hence the m-order labels of the rectangles in R and R1 are the same. It remains to observe that since
flipping the edge does not create any obstruction to the rectangulation being diagonal, the n-order of the
rectangles a and b (refer to Figure 13) is simply reversed. We conclude that the flip corresponds to the
single transposition of the two elements a and b in BpRq.
pðq We now suppose that the two Baxter permutations π “ BpRq and π1 “ BpR1q differ by a single

transposition of two consecutive elements a and b. By definition of B the adjacent transposition must
correspond to an edge e in R that intersects the diagonal. We need to show that e is flippable. We
proceed by contradiction, and suppose that e is unflippable. Unflippable edges come in two flavors, and
we consider the two cases separately.

In the first case, e is unflippable because it is matched at both endpoints. Suppose first that e is horizontal
and let `2 “ a and `3 “ b be the labels of the two rectangles above and below the diagonal, corresponding
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to the two labels involved in the transposition. The two endpoints of emust have their other incident edges
oriented as shown on Figure 15a.

Now consider the leftmost rectangle having his lower horizontal edge on the same segment as e, and
denote its label by `1 (this may be the rectangle that is just on the left of `2, or another rectangle further
left). The diagonal must intersect rectangle `1 before rectangle `2. Similarly, consider the rightmost
rectangle having it upper horizontal edge on the same segment as e, and denote its label by `4. We must
have `1 ă `2 ă `3 ă `4.

In the m-order, the configuration of the rectangles is obtained by sliding the edges orthogonal to e so
that all the edges above e are on the right of the edges below e. By considering the four rectangles in the
m-order, as illustrated on the right of Figure 15a, we can check that π contains the pattern `3 . . . `4`1 . . . `2.
Therefore, π1 contains the subsequence `2 . . . `4`1 . . . `3, an occurence of the forbidden pattern 2413, and
π1 cannot be a Baxter permutation, a contradiction. A similar, symmetric, reasoning can be done when
the unflippable edge is vertical, and then the forbidden pattern is 3142.

In the second case, e is matched at one endpoint only, but still unflippable because rotating it around
its matched endpoint would yield a non-diagonal rectangulation. Again, we have four symmetric cases,
illustrated in Figure 12. We detail the case where e is horizontal, and is matched at its left endpoint (top
right case in the figure). Figure 15b illustrates what happens in this case. Let a “ `3 and b “ `4 be the
labels of the two rectangles above and below e, respectively.

From Lemma 4, the top horizontal edge of rectangle `3 must be part of the obstruction to the rectangu-
lation being diagonal. Let us denote by `2 the label of the predecessor of `3 in the n-order. Consider the
rectangle labeled `1 to the left of the left vertical edge of `3. We clearly must have `1 ă `2 ă `3 ă `4.

Now remark that the top left corner of rectangle `4 must be of type $, since otherwise we would have
a forbidden configuration for the diagonal representation. Therefore, in the m-order, no wall slide can
be involved, and the rectangles `1, `3, and `4 have the same relative positions. By considering the four
rectangles in the m-order, we can check that π must contain the pattern `4 . . . `1`3 . . . `2 (see Figure 15b).
By definition, π1 must contain the pattern `3 . . . `1`4 . . . `2, which is an instance of the forbidden pattern
3142. This is again a contradiction to the fact that π1 is a Baxter permutation. The same reasoning can be
done on the remaining three types of unflippable edges matched at one endpoint shown on Figure 12. In
all cases, we identify one of the two forbidden patterns in π1.

Therefore, the edge corresponding to the adjacent transposition in π must be flippable, and the transpo-
sition indeed corresponds to a flip operation, as claimed.

Hence this characterization of Barcelona flips is very similar to that of Law-Reading flips from Theo-
rem 2, except that the transpositions involve consecutive elements instead of adjacent elements, and that
only a single transposition is needed.

4.3 Characterization
We can summarize our combinatorial characterization of flips in diagonal rectangulations as follows.

Theorem 4. Two diagonal rectangulations R and R1 are connected by a flip if and only if one of these
two conditions hold:

• BpRq and BpR1q differ by a single transposition of consecutive elements,

• BpRq and BpR1q are in a cover relation in dRecn.
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unflippable

Barcelona flippable (nonsimple)

simply flippable

Law-Reading flippable (nonsimple)

Fig. 16: The various types of flippable and unflippable edges.

Furthermore, R and R1 are connected by a simple flip if and only if both conditions hold.

Note that if the two permutations BpRq and BpR1q differ by a single transposition of consecutive
elements, their inverses BpRq´1 and BpR1q´1 are in a cover relation in the weak order. The flip graph on
diagonal rectangulations can therefore be seen as the union of the cover graph of dRecn with those edges
induced by the cover graph of the weak order on the inverse permutations. Figure 16 shows all types of
flippable and unflippable edges on our running example. The flip graph on diagonal rectangulations with
four rectangles is given in Figure 17.
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