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A graph G is matching-decyclable if it has a matching M such that G − M is acyclic. Deciding whether G is
matching-decyclable is an NP-complete problem even if G is 2-connected, planar, and subcubic. In this work we
present results on matching-decyclability in the following classes: Hamiltonian subcubic graphs, chordal graphs, and
distance-hereditary graphs. In Hamiltonian subcubic graphs we show that deciding matching-decyclability is NP-
complete even if there are exactly two vertices of degree two. For chordal and distance-hereditary graphs, we present
characterizations of matching-decyclability that lead to O(n)-time recognition algorithms.
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1 Introduction
In this work we focus on the following problem: given a graph G, is it possible to destroy all of its cycles
by removing a matching from its edge set? Equivalently, is it possible to find a partition (M,F ) of E(G)
such that M is a matching and F is acyclic? If the answer is “yes” then we say that M is a decycling
matching of G, and G is a matching-decyclable graph, or simply m-decyclable.

The problem of destroying all the cycles of a graph by removing a set of edges (a decycling set) has already
been considered. For a graphG on n vertices andm edges and withw connected components, a minimum
decycling set E∗ has exactlym−n+w edges, because the removal of E∗ must leave a spanning forest of
G. On the other hand, for directed graphs, finding a minimum set of arcs whose removal leaves an acyclic
digraph is precisely the optimization version of the classical Feedback Arc Set Problem, a member of
Karp’s list of 21 NP-complete problems (Karp, 1972).

M-decyclable graphs have recently been studied in (Lima et al., 2017), where the authors prove that
recognizing matching-decyclability is NP-complete even for 2-connected planar fairly cubic graphs. (A
graph is fairly cubic if it has n − 2 vertices of degree three and two vertices of degree two.) The au-
thors also show polynomial-time recognition algorithms of m-decyclable graphs restricted to chordal,
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P5-free, (claw,paw)-free, and C4-free distance hereditary graphs, but no structural characterizations of
m-decyclable graphs in such classes are provided.

As we shall see later in this work, a necessary (but not sufficient) condition for a graph G to be m-
decyclable is that |E(H)| ≤ b 3

2 |V (H)| c − 1 for every subgraph H of G. Say that a graph G sat-
isfying such a necessary condition is sparse. Two-connected fairly cubic graphs are sparse, thus the
NP-completeness result in (Lima et al., 2017) tells us that deciding matching-decyclability is hard even
for a subset of sparse graphs. On the other hand, a natural question is to find graph classes in which being
sparse is equivalent to being m-decyclable. In the next sections, we show that this is exactly the case for
chordal graphs and K2,4-free distance-hereditary graphs.

The remainder of this work is organized as follows. Section 2 contains the necessary background. In Sec-
tion 3 we show that deciding whether a Hamiltonian fairly cubic graph is m-decyclable is NP-complete;
this result strengths the result in (Lima et al., 2017), since Hamiltonian fairly cubic graphs form a sub-
class of 2-connected fairly cubic graphs. In Section 4 we characterize m-decyclable chordal graphs; the
characterization leads to a simple O(n)-time recognition algorithm for such graphs, refining a previous
result presented in (Lima et al., 2017). M-decyclable split graphs are also considered in Section 4. Sec-
tion 5 describes a characterization of m-decyclable distance-hereditary graphs and a direct application of
this result to cographs; the characterization extends the result in (Lima et al., 2017), and implies a simple
O(n)-time recognition algorithm. Section 6 contains our conclusions.

2 Preliminaries

In this work, all graphs are finite, simple, and nonempty. Let G be a graph with |V (G)| = n and
|E(G)| = m. The degree of a vertex v ∈ V (G) is denoted by dG(v). The minimum degree of G is
defined as δ(G) = min{dG(v) : v ∈ V (G)}. A cut vertex (resp., bridge) is a vertex (resp., edge) whose
removal disconnects G. A block of G is either a bridge or a maximal 2-connected subgraph of G. A leaf
block is a block containing exactly one cut vertex. We say that G contains H if H is a (not necessarily
induced) subgraph of G. If, in addition, H is induced, we say that G contains H as an induced subgraph.
If G does not contain H1, H2, . . . ,Hk as induced subgraphs then G is (H1, H2, . . . ,Hk)-free.

We say that G is subcubic if all of its vertices have degree at most three, and fairly cubic if G contains
n−2 vertices of degree three and two vertices of degree two (the latter terminology is adopted from (Chae
et al., 2007), p. 2985). A graph H is bad if |E(H)| > b 3

2 |V (H)| c−1. Say that G is sparse if G contains
no bad subgraph. If G is sparse then, of course, m ≤ b 3

2n c − 1.

The complete graph with n vertices is denoted by Kn. The graph K3 is called triangle. A 2K2 is graph
with vertices a, b, c, d and edges ab, cd. A gem is a graph with vertices a, b, c, d, e and edges ab, bc, cd,
ae, be, ce, de. A house is a graph with vertices a, b, c, d, e and edges ab, bc, cd, ad, ae, be. A domino is a
graph with vertices a, b, c, d, e, h and edges ab, bc, cd, ad, be, eh, ch. A square is a 4-cycle with no chords.
A diamond is a graph consisting of a 4-cycle plus one chord. A k-hole (or simply hole) is a k-cycle with
no chords, for k ≥ 5. We denote by K−3,3 the graph obtained by removing one edge of K3,3, and by
Pk the path with k vertices. A chordal graph is a (square, hole)-free graph. A split graph is a (square,
5-hole, 2K2)-free graph (Földes and Hammer, 1977). A cograph is a P4-free graph (Corneil et al., 1981).
A distance-hereditary graph is a (house, hole, domino, gem)-free graph (Bandelt and Mulder, 1986). See
Figure 1.
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House Hole Domino Gem 

Fig. 1: Forbidden induced subgraphs for distance-hereditary graphs 6.

We say that G is m-decyclable if there is a partition (M,F ) of E(G) such that M is a matching and F
is acyclic; in this case, M is a decycling matching of G. It is easy to see that being m-decyclable is a
property inherited by all subgraphs. This fact and other useful facts are listed in the proposition below;
some of them are already mentioned in (Lima et al., 2017).

Proposition 1. Let G be a graph. Then:

(a) If G is m-decyclable then every subgraph of G is m-decyclable.

(b) If G is m-decyclable then m ≤ b 3
2n c − 1.

(c) If G is sparse then every subgraph of G is sparse.

(d) If G is sparse then G contains at least two vertices of degree two or less.

(e) If G is sparse then G contains no K4, K3,3, or gem.

(f) Every 2-connected fairly cubic graph is sparse.

(g) If G is m-decyclable then G is sparse.

(h) The graph K2,4 is not m-decyclable.

(i) If G is connected and matching-decyclable then G has a matching M for which G−M is a tree.

(j) If G is subcubic and connected, then G is matching-decyclable if and only if G has a spanning tree T
such that all leaves of T are of degree at most 2 in G.

Proof.
(a) Let M be a decycling matching of G. Then, for every subgraph H of G, M ∩ E(H) is a decycling
matching of H .

(b) If G is m-decyclable, the existence of a partition (M,F ) where M is a matching and F is acyclic
implies m = |M |+ |F | ≤ b n

2 c+ (n− 1) = b 3
2n c − 1.

(c) Trivial from the definition of sparse graph.

(d) Suppose thatG contains at most one vertex v with dG(v) ≤ 2. Thenm ≥ (3(n−1)+2)/2 > b 3
2n c−1,

contradicting the definition of sparse graphs.

(e) Follows from the fact that the graphs K4, K3,3, and gem are bad.

(f) Let G be a 2-connected fairly cubic graph, and let H be a subgraph of G. We claim that H has at
least two vertices of degree at most 2. If H = G, then this is immediate by the definition of a fairly
cubic graph. So we can assume that H is a proper subgraph of G. If H contains exactly one vertex v



4 Fábio Protti, Uéverton S. Souza

with a neighbour outside H , then v is a cut vertex of G, which contradicts the fact that G is 2-connected.
Hence H contains at least two vertices with a neighbour outside H , which proves our claim. This implies
|E(H)| ≤ b 3

2 |V (H)| c − 1. Hence, G is sparse.

(g) Assume that G is not sparse. Then G contains a bad subgraph H , i.e., |E(H)| > b 3
2 |V (H)| c − 1.

By item (b), this implies that H is not m-decyclable. But this contradicts item (a). Therefore, item (g)
follows.

(h) A decycling set of K2,4 must contain at least three edges, but the size of a maximum matching in K2,4

is two.

(i) The proof can be found in (Lima et al., 2017).

(j) The proof can be found in (Lima et al., 2017). 2

Since K2,4 is sparse, Proposition 1(h) implies that being sparse is not a sufficient condition for a graph
to be m-decyclable. An interesting question is to find graph classes in which being m-decyclable is
equivalent to being sparse. This question is dealt with in sections 4 and 5.

3 M-decyclable subcubic graphs

In this section we study m-decyclable subcubic graphs. Let C be the class of 2-connected planar fairly
cubic graphs. In (Lima et al., 2017) the authors show that a graph G ∈ C is m-decyclable if and only if
G has a Hamiltonian path whose endvertices are precisely the vertices of degree two in G. In fact, the
assumptions “2-connected” and “planar” are not needed to state their result:

Proposition 2. (Lima et al., 2017) Let G be a connected fairly cubic graph. Then G is matching-
decyclable if and only if there is a Hamiltonian path in G whose endpoints are the vertices of degree
two.

Proof. If G is matching-decyclable, by Proposition 1(i) G has a matching M such that G −M is a tree.
Thus |M | = |E(G)|− (n−1) = (32n−1)− (n−1) = n

2 , i.e., M is a perfect matching. This implies that
G −M has n − 2 vertices of degree two and two vertices s and t of degree one, i.e., it is a Hamiltonian
path with endpoints s and t. Since dG(s) = dG(t) = 2, the first part follows. Conversely, if there is a
Hamiltonian path P in G whose endpoints are the vertices of degree two, it is easy to see that the edges
not in P form a matching, i.e., G is matching-decyclable. 2

A simple by-product of the above proposition is the existence of a class of graphs in which being m-
decyclable is equivalent to being Hamiltonian:

Corollary 3. Let C ′ = {H ∈ C : the vertices of degree two in H are adjacent}. Then G ∈ C ′ is
m-decyclable if and only if G is Hamiltonian.

As explained in (Lima et al., 2017), for a graph G ∈ C the problem of deciding whether there is a
Hamiltonian path whose endvertices are the vertices of degree two is NP-complete. Thus:

Theorem 4. (Lima et al., 2017) Deciding whether a 2-connected planar fairly cubic graph is m-decyclable
is NP-complete.

Corollary 5. Deciding whether a sparse graph is m-decyclable is NP-complete.
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Proof. Recall from Proposition 1(f) that 2-connected fairly cubic graphs are sparse. Thus, by Theorem 4
deciding matching-decyclability is hard even for a subset of sparse graphs. 2

Now we strength the result of Theorem 4 in the following way. By the theorem, deciding matching-
decyclability is NP-complete in the class D of 2-connected fairly cubic graphs. We show below that
deciding matching-decyclability remains NP-complete in a proper subclass of D , namely, Hamiltonian
fairly cubic graphs. By Proposition 2, we will show instead that, given a Hamiltonian fairly cubic graph
G, the problem of deciding whether there is a Hamiltonian path in G whose endpoints are the vertices of
degree two is NP-complete. First, we need to consider the following problem:

HAMILTONIAN CYCLE CONTAINING A SPECIFIED EDGE IN A CUBIC GRAPH
Input: A cubic graph H , an edge e of H .
Question: Does H admit a Hamiltonian cycle containing edge e?

The above problem is easily seen to be in NP. The hardness proof is a straightforward reduction from the
problem of checking whether a cubic graph G is Hamiltonian (Garey et al., 1976). From G we construct a
cubic graph H by replacing an arbitrarily chosen vertex v of G by the gadget Hv depicted in Figure 2. In
addition, we define e = v′v′′. It is easy to see that G admits a Hamiltonian cycle if and only if H admits
a Hamiltonian cycle containing edge v′v′′. Therefore:

Lemma 6. The problem HAMILTONIAN CYCLE CONTAINING A SPECIFIED EDGE IN A CUBIC GRAPH
is NP-complete.

y

v
x y

z

x

z

v'

v''

Hv

HG

Fig. 2: Illustration for Lemma 6.

Theorem 7. Let G be a Hamiltonian fairly cubic graph, and let s, t ∈ V (G) such that dG(s) = dG(t) =
2. Then deciding whether there is a Hamiltonian path in G whose endpoints are s and t is NP-complete.

Proof. The problem is clearly in NP, because given a path P inG, one can easily check in polynomial time
whether P is Hamiltonian and has endpoints s and t. The hardness proof uses a reduction from HAMIL-
TONIAN CYCLE CONTAINING A SPECIFIED EDGE IN A CUBIC GRAPH. From an instance (H, e) of this
problem, we construct a Hamiltonian fairly cubic graph G as follows. We can assume that |V (H)| ≥ 3.

Defining the gadgets. Write V (H) = {v1, v2, . . . , vn} (n ≥ 3), and assume without loss of generality
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that e = v1v2. We replace each vertex vi, 2 ≤ i ≤ n, by the gadget Gi depicted in Figure 3(a). If
vi has neighbors vj , vk, vl in H , then Gi contains the vertices xij , xik, xil that will be used to connect
Gi to gadgets Gj , Gk, and Gl, respectively. We remark that their positions can be interchanged, i.e., in
Figure 3(a), xij can occupy the position of xik or xil, etc.

Vertex v1 is replaced by a different gadgetG1, shown in Figure 3(b). The position of x12 is fixed (between
D and r1), and if v1 has additional neighbors vk and vl in H then x1k and x1l occupy the positions
indicated in Figure 3(b) (but their positions can also be switched, similarly as explained for Figure 3(a)).

D

D

D
ai bi

ci

ri ui

pi

wi

qi

xil

xij

xik

(a)

D =

s

t

r1 u1

p1 q1

x1lx12

x1k

(b)

D

D

Fig. 3: Gadgets used in the reduction of Theorem 7.

Connecting the gadgets. Figure 4 shows how to connect the gadgets. If vi has neighbors vj , vk, vl in H
then we link gadgetGi to gadgetsGj , Gk, Gl by creating the edges xijxji, xikxki, xilxli. Since v1 and v2
are neighbors, the edge x12 x21 connecting gadgets G1 and G2 always exists. In addition, there are edges
q1p2, q2p3, q3p4, . . . , qn−1pn and qn t (represented as dashed lines). Figure 4 shows the construction of
G from H = K4.

Properties of G. Note that G is a fairly cubic graph, since vertices s and t have degree two, and the
remaining vertices have degree three. Now, consider the following paths (where the symbol ‘D’ represents
a suitable subpath visiting all the vertices of a diamond) :

P1 = p1 s D x12 r1 D x1k u1 x1l q1 p2,

Pi = pi D xil ri ai bi ci wi xij D ui xik D qi pi+1 (2 ≤ i ≤ n− 1),

Pn = pn D xnl rn an bn cn wn xnj D un xnk D qn t p1.
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p2

q2

x24

x21

x23

D

D

p3

q3

x34

x31

x32

D

D

p4

q4

x43

x41

x42

D

D

D D D

G1 G2 G3 G4

s

t

r1 u1

p1 q1

x14
x12

x13

D

D

Fig. 4: Proof of Theorem 7: construction of graph G from H = K4.

Note that the concatenation P1 P2 · · · Pn−1 Pn is a Hamiltonian cycle. Thus, G is a Hamiltonian fairly
cubic graph, as required.

Properties of the gadgets. We list below some important properties of the gadgets that will be useful for
the proof. All of them can be easily checked by inspection.

Property 1: There is a (unique) Hamiltonian path Qi in Gi, 2 ≤ i ≤ n, with endpoints xij and xik (up to
distinct ways of traversing the diamonds – in fact, a diamond can be viewed as a vertex of degree two in
all the properties listed in this subsection):

Qi = xij D ui bi ai ci wi pi D xil ri qi D xik.

Property 2: There is a (unique) Hamiltonian path Ri in Gi, 2 ≤ i ≤ n, with endpoints xij and xil :

Ri = xij D ui xik D qi ri ai bi ci wi pi D xil.

Property 3: There is a (unique) Hamiltonian path Si in Gi, 2 ≤ i ≤ n, with endpoints xik and xil :

Si = xik D qi ri ai ci bi ui D xij wi pi D xil.

Property 4: There is a (unique) Hamiltonian path Zi in Gi, 2 ≤ i ≤ n, with endpoints pi and qi :

Zi = pi D xil ri ai bi ci wi xij D ui xik D qi.
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Property 5: There is no Hamiltonian path in Gi, 2 ≤ i ≤ n, with an endpoint in the set {pi, qi} and
another endpoint in the set {xij , xik, xil}.
To state the next property, we need some definitions. Let Ti = {pi, qi, xij , xik, xil}, for 2 ≤ i ≤ n. Say
that Ti is the set of terminals of Gi. The vertices xij , xik, xil are the type-x terminals of Ti. Similarly,
we define T1 = {t, q1, x12, x1k, x1l} as the set of terminals of G1, where x12, x1k, and x1l are the type-x
terminals of G1.

Property 6: For 2 ≤ i ≤ n, there is no partition of V (Gi) into two subsets Xi and Yi such that both Xi

and Yi form nontrivial paths starting and ending at terminals. In other words, it is not possible to cover all
the vertices of Gi using two nontrivial disjoint paths whose endpoints are terminals.

The diamonds in Figures 3(a) and 3(b) have the purpose of forcing the paths to visit some parts of the
gadgets. Vertices of degree two could play the same role as the diamonds, but since we need to construct
a fairly cubic graph G, the use of diamonds is simply an artifice to make all the vertices have degree three
(except s and t, of course).

Completing the proof. Let us prove that there is a Hamiltonian cycle in H containing edge e = v1v2 if
and only if there is a Hamiltonian path from s to t in G.

Suppose first that there is a Hamiltonian cycle C in H containing edge e = v1v2. Suppose without loss
of generality that C = v1v2v3 . . . vn−1vnv1. For h = 2, 3, . . . , n, let P (xhh−1, xhh+1) be a Hamiltonian
path of Gh from xhh−1 to xhh+1 (by Properties 1, 2, and 3 such a path is one of Qh, Rh, Sh). We remark
that h+ 1 ≡ 1 when h = n.

The following path is a Hamiltonian path in G from s to t:

sDx
12
P (x

21
, x

23
)x

23
x

32
P (x

32
, x

34
)x

34
x

43
. . . x

n−1n
x

nn−1
P (x

nn−1
, x

n1
)x

n1
x

1n
q
1
r
1
Dx

1k
u

1
p

1
t.

(The above path assumes that x1n = x1l in Figure 3(b). If x1n = x1k, then the final part of the Hamilto-
nian path is:

. . . x
1n
D r

1
q
1
x

1l
u

1
p

1
t.

This concludes the first part of the proof. Suppose now that there is a Hamiltonian path Pst from s to t
in G. We need the following definition. A visit to a gadget Gi, 1 ≤ i ≤ n, is a maximal subpath P ′ of
Pst such that P ′ contains only vertices of Gi. Note that a visit to a gadget Gi is a path in Gi starting and
ending at terminals of Gi. Since each Gi, 2 ≤ i ≤ n, contains five terminals, it is visited at most twice.
The claim below says that G2, G2, . . . , Gn cannot be visited twice. (G1 is an exception to this rule.)

Claim 1: In a Hamiltonian path Pst from s to t in G, each gadget Gi, 2 ≤ i ≤ n, is visited exactly once.

Proof of Claim 1: Suppose by contradiction that some Gi, 2 ≤ i ≤ n, is visited twice. Let P ′ and P ′′

be the two paths representing such visits. Then V (P ′) and V (P ′′) is a partition of V (Gi) such that both
P ′ and P ′′ are paths starting and ending at terminals. But this contradicts Property 6. Hence, the claim
follows. 2

The path Pst starts at gadget G1, and ends at the same gadget, so G1 is visited more than once. Consider
the first visit to G1, that starts at vertex s.

I If the first visit to G1 leaves it via q1 then we have the following four possibilities:

s p1 u1 x1l q1, s p1 u1 x1k D r1 q1, s D x12 r1 q1, s D x12 r1 D x1k u1 x1l q1.
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In all the possibilities above, it is easy to see that, besides t, at least one more vertex of G1 is not visited
before leaving the gadget. The path Pst then follows edge q1p2 and enters G2. By Claim 1, G2 must be
visited only once. Thus the visit to G2 must pass through all of its vertices. But Property 5 tells us that
the visit to G2 must end precisely at q2; in addition, Property 4 tells us that that the visit to G2 is the path
Z2. This process continues, and each new visit to a gadget Gi, 2 ≤ i ≤ n, by Claim 1 and Properties 4-5,
consists precisely of the path Zi. Eventually, there is a visit to a gadget Gj , which is left via the edge qjt,
concluding the traversal of G. But since at least one vertex of G1 has not been visited, this contradicts the
fact that Pst is a Hamiltonian path. Hence:

Claim 2: The first visit to G1 cannot leave it via q1.

In fact, the above arguments show that if a visit to G1 (not necessarily the first one) leaves it via q1 then
the path Pst returns to G1 using an edge qjt. Hence:

Claim 3: If a visit to G1 leaves it via q1 then the only vertex of G1 to be visited subsequently is t.

I The preceding discussion leads to the conclusion that the first visit toG1 leaves it via a type-x terminal.
Therefore, Pst must then enter a gadget Gi, 2 ≤ i ≤ n, at a type-x terminal as well. By Claim 1, all the
vertices of Gi must be visited before leaving it, and by Properties 1 to 3 the visit to Gi consists of one of
the paths Qi, Ri, Si. This implies that the next visit to a gadget Gi′ , i′ 6= i, similarly consists of one of
the paths Qi′ , Ri′ , Si′ . The process continues, and eventually there is a visit to a gadget Gj which is left
via a type-x terminal xj1, and the path returns to gadget G1 at one of its type-x terminals. Hence:

Claim 4: The first visit to G1 leaves it via a type-x terminal, and Pst returns to G1 at another of its type-x
terminals.

Claim 5: If a visit to G1 (not necessarily the first one) leaves it via a a type-x terminal then Pst returns to
G1 at another of its type-x terminals.

We now need to analyze the possible ways the path Pst leaves and returns to G1.

II Suppose that the first visit to G1 passes by all of its type-x terminals. The possibilities are:

s D x12 r1 D x1k u1 x1l and s D x12 r1 q1 x1l u1 x1k.

By Claim 5, Pst must return toG1 at one of its type-x terminals, but all of them have been already visited.
Thus the first visit to G1 cannot pass by all of its type-x terminals.

II Suppose now that the first visit to G1 passes by exactly two of its type-x terminals. The table below
lists the possibilities. A symbol “?” means that the traversal cannot continue (thus the corresponding
possibility is impossible).

By Table 1, the first visit to G1 cannot pass by exactly two of its type-x terminals.

II Finally, suppose that the first visit to G1 passes by exactly one of its type-x terminals. The table
below lists the possibilities.

From Table 2, we conclude that Pst visits G1 twice: the first visit to G1 is

s D x12

and the second visit is

x1kD r1 q1 x1l u1 p1 t or x1l q1 r1Dx1k u1 p1 t.
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1st visit to G1 2nd visit to G1 3rd visit to G1 Observations
s p1 u1 x1l q1 r1 D x1k x12 D ? – impossible
s p1 u1 x1l q1 r1 x12 x1k D ? – impossible
s p1 u1 x1k D r1 x12 x1l q1 t (Claim 3) a D is not visited

s p1 u1 x1k D r1 q1 x1l x12 D ? – impossible
s D x12 r1 D x1k x1l q1 t (Claim 3) u1 and p1 are not visited
s D x12 r1 D x1k x1l u1 p1 t – q1 is not visited
s D x12 r1 q1 x1l x1k u1 p1 t – a D is not visited

Tab. 1: Possibilities for the case when the first visit to G1 passes by exactly two of its type-x terminals.

1st visit to G1 2nd visit to G1 3rd visit to G1 Observations
s p1 u1 x1l x1k D r1 x12 ? impossible: all type-x terminals already visited

x1k D r1 q1 t (Claim 3) a D and x12 are not visited
x12 r1 D x1k ? impossible: all type-x terminals already visited
x12 r1 q1 t (Claim 3) the D’s and x1k are not visited

s p1 u1 x1k x1l q1 t (Claim 3) the D’s, x12, and r1 are not visited
x1l q1 r1 x12 ? impossible: all type-x terminals already visited
x12 r1 q1 t (Claim 3) the D’s and x1l are not visited

x12 r1 q1 x1l ? impossible: all type-x terminals already visited
s D x12 x1k u1 x1l ? impossible: all type-x terminals already visited

x1k u1 x1l q1 t a D, r1, and p1 are not visited
x1k u1 p1 t – a D, r1, q1, and x1l are not visited
x1k D r1 q1 t u1, p1, and x1l are not visited

x1k D r1 q1 x1l ? impossible: all type-x terminals already visited
x1k D r1 q1 x1l u1 p1 t – ok: all vertices are visited

x1l u1 x1k ? impossible: all type-x terminals already visited
x1l u1 x1k D r1 q1 t p1 is not visited

x1l u1 p1 t – a D, r1, q1, and x1k are not visited
x1l q1 t a D, r1, u1, p1, and x1k are not visited

x1l q1 r1 D x1k ? impossible: all type-x terminals already visited
x1l q1 r1 D x1k u1 p1 t – ok: all vertices are visited

Tab. 2: Possibilities for the case when the first visit to G1 passes by exactly one of its type-x terminals.

After the first visit to G1, the path Pst enters G2 via x21. By Claim 1, all the vertices of G2 must be
visited before leaving it, and by Properties 1 to 3 the visit to G2 consists of one of the paths Q2, R2, S2.
Note that Pst can only return to G1 after visiting all the gadgets Gi, 2 ≤ i ≤ n, because the second visit
toG1 ends at t, the final destination of Pst. Thus, after leavingG2 via one of its type-x terminals, the next
visit is made to a gadget Gi, i /∈ {1, 2}, that similarly consists of one of the paths Qi, Ri, Si. The process
continues, and eventually there is a visit to a gadget Gj which is left via a type-x terminal xj1, and the
path finally returns to G1 to make the second visit to it. Assume without loss of generality that Pst visits
G1, G2, G3, . . . , Gn, G1 in this order. This corresponds to a Hamiltonian cycle v1, v2, v3, . . . , vn, v1 in
H that contains the edge e = v1v2. This concludes the proof. 2
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4 M-decyclable chordal graphs

A chain is a graph containing exactly two leaf blocks, such that: (i) if B is a leaf block then B is a
diamond; (ii) if B is not a leaf block then B is a triangle. See Figure 5.

. . .

. . .

. . .

Fig. 5: Some examples of Chains.

Theorem 8. Let G be a chordal graph. Then the following are equivalent:

(a) G is m-decyclable;

(b) G is sparse;

(c) G contains no chain, and each block of G is a diamond, a triangle, or a bridge.

Proof.
(a)⇒ (b). Follows from Proposition 1(g).

(b) ⇒ (c). If G is sparse then, by Proposition 1(e), G contains no induced gem. Therefore, by Theorem
2.5 in (Howorka, 1981), every k-cycle in G has at least b 3

2 (k − 3) c chords. But note that if k ≥ 5 then
such a cycle (together with its chords) forms a bad subgraph of G, a contradiction. This implies that G
contains no k-cycles for k ≥ 5. Since G is chordal and, by Proposition 1(e), G contains no K4, the only
possible cycles in G are triangles and 4-cycles having exactly one chord (diamonds). Now, consider a
block B of G that is not a bridge, and two vertices a1, a2 ∈ V (B). Let P and Q be two internally disjoint
paths linking a1 and a2 in B. By the preceding discussion, the graph B′ induced by V (P ) ∪ V (Q) is
either a diamond or a triangle. We analyze two cases:
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1. B′ is a diamond. If V (B) \ V (B′) 6= ∅, consider a path R leaving B′ at x1 and returning to B′ at
x2 6= x1 such that R visits x ∈ V (B) \ V (B′). Let R1 and R2 be the subpaths of R from x1 to x
and from x to x2, respectively. Figure 6 shows the three possible cases for x1 and x2. Figures 6(a)
and 6(b) contain cycles of size at least five, a contradiction. In Figure 6(c), both R1 and R2 must
consist of a single edge each (R1 = x1x and R2 = xx2), in order to avoid the existence of a cycle
of size at least five inG; but then the subgraph ofG induced byE(B′)∪{x1x, xx2} is bad (contains
5 vertices and 7 edges), another contradiction. Hence, V (B) \ V (B′) = ∅, i.e., B = B′.

2. B′ is a triangle. IfB = B′, we are done. Otherwise, as in the previous case, we can similarly define
x1, x2, x,R1, R2 (see Figure 7). Note that both R1 and R2 must consist of a single edge each, in
order to avoid a cycle of size greater than four in G. Hence, B contains a diamond B′′ induced by
E(B′) ∪ {x1x, xx2}. By Case 1, no vertices outside V (B′′) are possible; therefore, B = B′′.

(a) (b) (c)

x

x
1

x
2

x

x
1

x
2

x
1

x
2

x
R

1 R
1

R
1

R
2 R

2

R
2

Fig. 6: Case 1 in the proof of (b)⇒ (c), Theorem 8.

From the above cases we conclude that each block ofG is a diamond, a triangle, or a bridge. To prove that
G contains no chain as a subgraph, note that a chain with k triangle blocks (k ≥ 0) has 2k + 7 vertices
and 3k + 10 edges, i.e., it is a bad subgraph; by Proposition 1(c), this concludes the proof of (b)⇒ (c).

(c) ⇒ (a). Let G′ be the graph obtained by the removal of the bridges of G. As G′ has no chain then a
decycling matchingM ofG′ (and thus ofG) can be trivially obtained as follows: (i) unmark all the edges;
(ii) include in M two disjoint edges for each diamond block of G′; (iii) mark every edge belonging to M
or incident with some edge in M ; (iv) include in M one non-marked edge eT for each triangle block T of
G′ so that the chosen edges are pairwise disjoint. 2

Corollary 9. LetG be a 2-connected chordal graph. ThenG is m-decyclable if and only ifG is a diamond
or a triangle.

The following result refines the polynomial-time algorithm presented in (Lima et al., 2017):

Theorem 10. M-decyclable chordal graphs can be recognized in O(n) time.

Proof. Given a chordal graph G, first check whether m ≤ b 3
2n c−1. If so, we have m = O(n), and then

the block decomposition ofG can be obtained inO(n) time using standard depth-first search. Next, check
whether every block of the decomposition is a diamond, a triangle, or a bridge (this can be easily done
in O(1) time per block: if a block has more than four vertices then the process stops, otherwise if it has
four vertices then it must have exactly five edges). Finally, remove the bridges and check whether each
resulting connected component contains at most one diamond block. The entire process clearly runs in
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R
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R
2

Fig. 7: Case 2 in the proof of (b)⇒ (c), Theorem 8.

O(n) time. In addition, if each resulting connected component in the above procedure indeed contains at
most one diamond block then a decycling matching M of G can be trivially obtained in O(n) as follows:
(i) unmark the current edges of G; (ii) include in M two disjoint edges for each diamond block of G′; (iii)
mark every edge belonging to M or incident with some edge in M ; (iv) include in M one non-marked
edge eT for each triangle block T of G′ so that the chosen edges are pairwise disjoint. 2

Corollary 11. If M is a decycling matching of a chordal graph G then M contains exactly 2d+ t edges,
where d is the number of diamond blocks and t the number of triangle blocks of G.

Proof. Follows directly from the previous proof. 2

A star is a graph isomorphic to K1,p, for a natural number p. The center of the star is the vertex of degree
p. A double star is the union of two stars together with an edge joining their centers. A “triangle with
pendant vertices” is a graph containing a triangle formed by vertices a, b, c, such that each remaining
vertex v (if any) has exactly one neighbor in {a, b, c}. A “diamond with pendant vertices all attached to a
same triangle” is a graph containing a diamond formed by vertices a, b, c, d and edges ab, ac, ad, bc, cd,
such that each remaining vertex v (if any) has exactly one neighbor in {a, b, c}.
By combining the fact that a split graph contains no 2K2 as an induced subgraph (see (Földes and Ham-
mer, 1977)) with item (c) in Theorem 8, an easy consequence of Theorem 8 is:

Corollary 12. Let G be a connected split graph. Then G is matching-decyclable if and only if G is a star,
a double star, a triangle with pendant vertices, or a diamond with pendant vertices all attached to a same
triangle.

5 M-decyclable distance-hereditary graphs
In this section we present a characterization of distance-hereditary graphs that are m-decyclable. The
arguments used in the proofs are strongly based on sparseness, and extend in some sense those used in the
previous section for chordal graphs. As we shall see, the concept of ear decomposition (Whitney, 1932)
will be useful for the proofs.

We use the following notation. Let C = v1v2 . . . vkv1 be a k-cycle in G. The subgraph of G induced by
V (C) is denoted by GC . A j-chord in C (2 ≤ j ≤ bk2 c) is an edge joining two vertices vi, vi+j ∈ V (C)

(where i+ j is taken modulo k). Note that K−3,3 consists of a 6-cycle plus two 3-chords.
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Lemma 13. Let G be a sparse distance-hereditary graph, and let C be a cycle of G. Then GC is one of
the following graphs: triangle, square, diamond, or K−3,3.

Proof. Let C be a k-cycle of G. If k = 3 then GC is a triangle, and if k = 4 then, by Proposition 1(e),
GC is either a square or a diamond.

Assume k = 5. Since G is distance-hereditary, GC is neither a hole nor a house. Thus C must contain
at least two chords. But this implies that GC is a bad subgraph of G with five vertices and at least seven
edges, a contradiction. Hence, G contains no 5-cycles.

Assume now k = 6. Since G is distance-hereditary, GC is neither a hole nor a domino. In addition,
C contains no 2-chord, for otherwise G would contain a 5-cycle, and this is impossible by the previous
paragraph. Since by Proposition 1(c) GC is sparse, C cannot contain three or more chords. Thus GC is
the graph K−3,3.

In all the remaining cases, C must contain at least one chord, because G contains no holes. The cases are
explained below.

I k = 7: If C contains a 2-chord then GC contains a 6-cycle C ′; but, by the previous analysis, GC′ is
the graph K−3,3, implying the existence of two additional chords in C and therefore at least ten edges in
GC , a contradiction. If C contains a 3-chord then GC contains a 5-cycle, which we have already seen to
be impossible. Hence, G contains no 7-cycles.

I k = 8: If C contains a 2-chord then GC contains a 7-cycle, which is impossible by the previous
case. If C contains a 3-chord, say v1v4, then GC contains a 6-cycle C ′ = v1v4v5v6v7v8v1 such that GC′

is again the graph K−3,3; now C ′ contains an additional pair of 3-chords, {v1v6, v4v7} or {v4v7, v5v8}
or {v1v6, v5v8}, but in any case additional 6-cycles other than C ′ exist in GC , each of them requiring
one additional chord not yet listed; and this implies the existence of more than eleven edges in GC ,
a contradiction. Finally, if C contains a 4-chord then GC contains two 5-cycles, which is impossible.
Hence, G contains no 8-cycles.

I k = 9: If C contains a 2-chord (resp., 3-chord, 4-chord) then GC contains a 8-cycle (resp., 7-cycle,
5-cycle), which is impossible by the previous cases. Hence, G contains no 9-cycles.

I k = 10: For any j ∈ {2, 3, 4}, if C contains a j-chord then GC contains an (11 − j) - cycle, which
is impossible by the previous cases. If C contains a 5-chord then GC contains two distinct 6-cycles, each
requiring two additional chords; this implies the existence of at least fifteen edges in GC , a contradiction.
Hence, G contains no 10-cycles.

I k ≥ 11: In this case, the existence of any chord in C implies a k′-cycle in GC for 7 ≤ k′ < k, and this
is impossible by the previous cases. Hence, G contains no k-cycles for k ≥ 11. 2

The following definitions are necessary for the next theorem. The union of two graphs G1 and G2 is the
graph G1∪G2 such that V (G1∪G2) = V (G1)∪V (G2) and E(G1∪G2) = E(G1)∪E(G2). An ear of
a graph G is a maximal path P whose internal vertices have degree two in G, and whose endpoints have
degree at least three in G. An ear decomposition of a graph G is a decomposition G0 ∪ G1 ∪ · · · ∪ Gp

of G such that G0 is a cycle and Gi is an ear of G0 ∪ G1 ∪ · · · ∪ Gi. It is well known that a graph is
2-connected if and only if it admits an ear decomposition. Furthermore, every cycle in a 2-connected
graph is the initial cycle of some ear decomposition (Whitney, 1932).
Theorem 14. LetG be a 2-connected distance-hereditary graph with n ≥ 3. ThenG is sparse if and only
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if G is one of the following graphs: triangle, square, diamond, K2,3, K2,4, or K−3,3.

Proof. If G is a triangle, square, diamond, K2,3, K2,4, or K−3,3 then G is sparse. Conversely, suppose
that G is sparse, and let G0 ∪G1 . . .∪Gp be an ear decomposition of G. By Lemma 13, G0 is a triangle,
a square, or a 6-cycle. We analyze below the possible cases for G0.

Henceforth, whenever the arguments used in the proof lead to the existence of a bad subgraph (contradict-
ing the sparseness of G) or a k-cycle for k = 5 or k ≥ 7 (contradicting Lemma 13), we will simply use
an (*) to indicate the contradiction, in order to shorten the explanation.

I G0 is a triangle: If p = 0 then G is a triangle. If p ≥ 1, we analyze the possible cases for G1.

If G1 = P3 then G0 ∪G1 is a diamond. If G1 = P4 or G1 = P5 then G contains a 5-cycle (*). Finally, if
G1 = Pk for k ≥ 6 then G contains a (k + 1)-cycle (*).

If p ≥ 2, recall that G0 ∪ G1 is a diamond. If G2 = P2 then G contains a K4 (*). If G2 = P3 then
G0 ∪ G1 ∪ G2 is bad (*). If G2 = P4 then G contains a 5-cycle, no matter the endpoints of G2 are
adjacent or not (*). If G2 = P5 and the endpoints of G2 are adjacent then G contains a 5-cycle (*).
If G2 = P5 and the endpoints of G2 are not adjacent then G contains a 6-cycle requiring two chords,
implying the existence of a bad subgraph in G (*). Finally, if G2 = Pk for k ≥ 6 then G contains a
(k + 1)-cycle (*).

This concludes the first case: if G0 is a triangle then G is either a triangle or a diamond.

I G0 is a square: If p = 0 then G is a square. If p ≥ 1, we analyze the possible cases for G1.

If G1 = P2 then G0 ∪ G1 is a diamond and, from the argumentation of the previous case, no additional
ears can exist, i.e., p = 1 and G is a diamond. If G1 = P3 and the endpoints of G1 are adjacent then
G contains a 5-cycle (*). If G1 = P3 and the endpoints of G1 are not adjacent then G0 ∪ G1 is a K2,3.
If G1 = P4 and the endpoints of G1 are adjacent then G0 ∪ G1 is a domino, that requires an additional
edge to form a K−3,3; thus there must be an additional ear, and the analysis is postponed. If G1 = P4 and
the endpoints of G1 are not adjacent then G contains a 5-cycle (*). If G1 = P5 and the endpoints of G1

are adjacent then G contains a 5-cycle and a 7-cycle (*). If G1 = P5 and the endpoints of G1 are not
adjacent then G contains a 6-cycle requiring two chords, implying the existence of a bad subgraph in G
(*). Finally, if G1 = Pk for k ≥ 6 then G contains a (k + 1)-cycle or (k + 2)-cycle, depending on the
adjacency relation between the endpoints of G1 (*).

Thus, if G0 is a square and p ≥ 1 then G0∪G1 is either a K2,3 or a domino. These subcases are analyzed
below.

II G0 ∪ G1 is a K2,3: If p = 1 then G is a K2,3. If p ≥ 2, we analyze the possible cases for G2.
Assume that V (G0 ∪G1) is partitioned into stable sets {u, v} and {x, y, z}.
Note that G2 cannot be a P2, otherwise G0 ∪G1 ∪G2 is bad (*). If G2 = P3 and the endpoints of G2 are
adjacent then G contains a 5-cycle (*). If G2 = P3 and the endpoints of G2 are u and v then G contains
a K2,4. If G2 = P3 and the endpoints of G2 are in {x, y, z} then G0 ∪ G1 ∪ G2 is a K−3,3. If G2 = P4

and the endpoints of G2 are adjacent then G0 ∪G1 ∪G2 contains a 6-cycle requiring an additional chord;
but this would imply the existence of seven vertices and ten edges in G0 ∪G1 ∪G2 (*). If G2 = P4 and
the endpoints of G2 are not adjacent then G contains a 5-cycle. If G2 = P5 and the endpoints of G2 are
u and v then G0 ∪G1 ∪G2 contains a 6-cycle which requires two additional chords; thus G0 ∪G1 ∪G2

contains eight vertices and at least twelve edges (*). If G2 = P5 and the endpoints of G2 are not both
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in {u, v} then a k-cycle is formed for k ≥ 7 (*). Finally, if G2 = Pk for k ≥ 6 then a (k + 1)-cycle is
formed for k ≥ 6 (*) (this conclusion holds for any possible pair of endpoints of G2 in V (G0 ∪G1)).

Thus, if G0 ∪ G1 is a K2,3 and p ≥ 2 then G0 ∪ G1 ∪ G2 is either a K2,4 or a K−3,3. If p = 2 then G is
either the graph K2,4 or the graph K−3,3. If p ≥ 3, we analyze the possibilities for G3.

We first observe that if G0 ∪ G1 ∪ G2 is a K2,4 and the new ear G3 is a P3 then G0 ∪ G1 ∪ G2 ∪ G3 is
bad (*). In all the remaining possibilities, we obtain the same contradictions as those previously obtained
when ear G2 was added to G0 ∪ G1, because we can always look at the endpoints of G3 as if they were
located in a K2,3. Therefore, assume that G0 ∪G1 ∪G2 is a K−3,3.

Note thatG3 cannot be a P2, otherwiseG0∪G1∪G2∪G3 is bad (*). IfG3 = P3 thenG0∪G1∪G2∪G3

has seven vertices and ten edges, i.e., it is bad (*). If G3 = P4, let G0 ∪ G1 ∪ G2 consisting of a cycle
v1v2v3v4v5v6v1 together with the 3-chords v1v4 and v2v5. Also, let G3 = viu1u2vj , where vi and vj are
the endpoints of G3 and i < j.

Assume first that vi = v1 (by symmetry, this case is the same for any choice of vi in {v1, v2, v4, v5}). If
the endpoints of G3 are v1 and v2 then G contains the 8-cycle v1u1u2v2v3v4v5v6v1 (*). If the endpoints
of G3 are v1 and v3 then G contains the 5-cycle v1u1u2v3v2v1 and the 7-cycle v1u1u2v3v4v5v6v1 (*). If
the endpoints of G3 are v1 and v4 then G contains the 6-cycle v1v2v3v4u2u1v1, that requires two chords
(note that there is already one chord, namely v1v4); but this would imply the existence of eight vertices
and thirteen edges in G0 ∪ G1 ∪ G2 ∪ G3 (*). If the endpoints of G3 are v1 and v5 then G contains
the 7-cycle v1v2v3v4v5u2u1v1 (*). If the endpoints of G3 are v1 an v6 then G contains the 8-cycle
v1v2v3v4v5v6u2u1v1 (*).

Next, assume that vi ∈ {v3, v6}. In fact, the only case that remains to be analyzed is G3 = v3u1u2v6.
But then a 6-cycle v3u1u2v6v1v2v3 is formed that needs two additional chords, leading to a contradiction
– the existence of eight vertices and thirteen edges in G0 ∪G1 ∪G2 ∪G3 (*).

Finally, if G3 = Pk for k ≥ 5, whatever are the endpoints of G3 a k-cycle is formed for k = 5 or
k ≥ 7 (*).

Thus, if G0 ∪G1 ∪G2 is a K−3,3 then G is the graph K−3,3. To conclude this subcase, if G0 ∪G1 is a K2,3

then G is a K2,3, a K2,4, or a K−3,3.

II G0 ∪G1 is a domino: In this case G0 ∪G1 requires an additional edge between two of its vertices to
form a K−3,3. Thus, we may assume without loss of generality that G2 = P2 and G0 ∪G1 ∪G2 is a K−3,3.
But, from the argumentation of the previous subcase, no additional ears can exist. Then p = 2 and G is
the graph K−3,3, and this completes the proof of this subcase.

I G0 is a 6-cycle: Note that two chords must be added to G0 in order to form a K−3,3. Thus, we may
assume without loss of generality that G1 = P2, G2 = P2, and G0 ∪ G1 ∪ G2 is a K−3,3. As already
explained, no additional ears can exist. Then p = 2 and G is the graph K−3,3. This concludes the proof of
the theorem. 2

Theorem 15. Let G be a 2-connected distance-hereditary graph. Then the following are equivalent:

(a) G is m-decyclable;

(b) G is sparse and K2,4-free;

(c) G is one of the following graphs: triangle, square, diamond, K2,3, or K−3,3.
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Proof.
(a)⇒ (b). Follows from Propositions 1(g) and 1(h).

(b)⇒ (c). Follows from Theorem 14.

(c)⇒ (a). All the graphs listed in item (c) are m-decyclable. 2

Corollary 16. Let G be a 2-connected, K2,4-free distance-hereditary graph. Then G is matching-
decyclable if and only if G is sparse.

If G is a (not necessarily 2-connected) m-decyclable distance-hereditary graph then, by Theorem 15, each
block of G is a bridge, triangle, square, diamond, K2,3, or K−3,3. However, as in the case of chordal
graphs, some subgraph configurations are forbidden for G. They can be determined by combining the
possible blocks into minimal subgraphs that are not m-decyclable. Instead of a exhaustive description of
such forbidden configurations, we present an O(n)-time algorithm for the recognition of m-decyclable
distance-hereditary graphs.

Theorem 17. M-decyclable distance-hereditary graphs can be recognized in O(n) time.

Proof. The proof is similar to the proof of Theorem 10. Given a distance-herditary graph G, check
whether m ≤ b 3

2n c − 1. If so, m = O(n) and then the block decomposition of G can be obtained in
O(n) time. Next, check whether every block of the decomposition is a bridge, triangle, square, diamond,
K2,3, or K−3,3; this can be easily done in O(1) time per block since the number of vertices in a block is
at most six. Then, execute the following steps: (1) remove the bridges; (2) set all the remaining edges as
“unmarked”; (3) take any leaf block B and try to find a decycling set MB of B formed only by unmarked
edges – if not possible, stop (G is not m-decyclable); (4) adjust MB so that its edges are not incident
to the cut vertex xB of B (if possible); (5) if xB is covered by MB , mark all the edges incident to
xB in G − B; (6) remove V (B) \ {xB} from the graph; (7) if no more edges are left, stop and return⋃
{MB : B is a block} as a decycling set of G, otherwise go back to step (3). The entire process clearly

runs in O(n) time. 2

An md-star is a graph G such that: (a) G contains exactly one cut vertex x; (b) G contains at most one
diamond block, and the remaining blocks are bridges or triangles; (c) if there is a diamond block D then
dD(x) = 3.

Let G be an m-decyclable, nontrivial connected cograph. Since every cograph is distance-hereditary, by
Theorem 15 and the fact that K−3,3 is not a cograph, it follows that every block of G is a bridge, triangle,
square, diamond, orK2,3. In addition, sinceG is P4-free,G contains at most one cut-vertex. IfG contains
no cut-vertex then G is a K2, triangle, square, diamond, or K2,3. If G contains exactly one cut vertex x
then no block of G is a square, a K2,3, or a diamond D with dD(x) = 2, otherwise there would be an
induced P4 in G; in addition, G contains at most one diamond, otherwise G would have a bad subgraph;
thus, G is an md-star. Hence:

Corollary 18. Let G be a nontrivial connected cograph. Then G is m-decyclable if and only if G is one
of the following graphs: K2, triangle, square, diamond, K2,3, md-star.
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6 Conclusions

In this work we considered the following question: characterize matching-decyclable graphs belonging to
a special class C . This question was solved for chordal graphs, split graphs, distance-hereditary graphs,
and cographs. In such classes (except in distance-hereditary graphs) being matching-decyclable is equiv-
alent to being sparse. In addition, the presented characterizations lead to simple O(n)-time recognition
algorithms.

The graph K2,4 is sparse but not m-decyclable. Hence, in planar graphs, being m-decyclable is not
equivalent to being sparse. An interesting question is to find a subclass of planar graphs in which these
concepts are equivalent.

Finally, for Hamiltonian subcubic graphs, we proved that deciding whether a Hamiltonian fairly cubic
graph is m-decyclable is NP-complete. This leads to an interesting by-product: deciding whether a Hamil-
tonian fairly cubic graph contains a Hamiltonian path whose endpoints are the vertices of degree two is
NP-complete.
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