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A digraph such that every proper induced subdigraph has a kernel is said to be kernel perfect (KP for short) (critical

kernel imperfect (CKI for short) resp.) if the digraph has a kernel (does not have a kernel resp.). The unique CKI-

tournament is
−→
C 3 and the unique KP-tournaments are the transitive tournaments, however bipartite tournaments are

KP. In this paper we characterize the CKI- and KP-digraphs for the following families of digraphs: locally in-/out-

semicomplete, asymmetric arc-locally in-/out-semicomplete, asymmetric 3-quasi-transitive and asymmetric 3-anti-

quasi-transitive TT3-free and we state that the problem of determining whether a digraph of one of these families is

CKI is polynomial, giving a solution to a problem closely related to the following conjecture posted by Bang-Jensen

in 1998: the kernel problem is polynomially solvable for locally in-semicomplete digraphs.

Keywords: kernel, perfect graph, kernel perfect digraph, locally in-/out-semicomplete digraph, asymmetric arc-

locally in-/out-semicomplete digraph, asymmetric 3-(anti)-quasi-transitive digraph

1 Introduction

A family which is a generalization of tournaments is a family of digraphs that in some way preserves

basic structures of the tournaments, an interesting survey of generalizations of tournaments can be found

in Bang-Jensen and Gutin (1998). Generalizations of tournaments have been widely studied, more than

300 papers have been published in this topic and this has improved the understanding of topics such

as hamiltonicity, domination and pancyclicity, properties that digraphs of some families of generalized

tournaments preserve, see Bang-Jensen and Gutin (1998); Bang-Jensen and Huang (1995). The locally

semicomplete digraphs introduced in Bang-Jensen (1990) are among the families which have been most

studied. Locally in-semicomplete digraphs and locally out-semicomplete digraphs are also generalizations
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of tournaments. A digraph D is locally in-semicomplete (resp. locally out-semicomplete) if for any vertex

v ∈ V (D), the in-neighborhood (resp. out-neighborhood) induces a semicomplete digraph in D. A

digraph D is locally semicomplete if it is both locally in-semicomplete and locally out-semicomplete.

Observe that locally semicomplete digraphs are locally in-semicomplete and locally out-semicomplete,

but the converse is not true (see Figure 1), the class of locally in-semicomplete digraphs (resp. locally

Fig. 1: A locally-in semicomplete digraph which is not a locally semicomplete digraph.

out-semicomplete) is a quite wider class than the class of locally semicomplete digraphs. The arc-locally

semicomplete digraphs was defined in Bang-Jensen (2004), this definition is somehow close related to the

definition of locally semicomplete digraphs, although they are generalizations of bipartite tournaments

and it is surprising so few results there are on this family, properties such as hamiltonicity and pancyclism

are known. A family of digraphs is a family of generalized bipartite tournaments if the digraphs preserve

in some way basic structures of bipartite tournaments. The arc-locally in-semicomplete, arc-locally out-

semicomplete, 3-quasi-transitive and 3-anti-quasi-transitive digraphs are families of generalized bipartite

tournaments. A digraph D is arc-locally in-semicomplete (arc-locally out-semicomplete, resp.) if, for

every arc uv ∈ D and every pair of vertices x, y such that x ∈ N−(u) and y ∈ N−(v) (x ∈ N+(u)
and y ∈ N+(v), resp.), x, y are adjacent. A digraph D is arc-locally semicomplete if D is arc-locally

in-semicomplete and arc-locally out-semicomplete. In Bang-Jensen (2004), a digraph D was defined as

3-quasi-transitive (3-anti-quasi-transitive resp.) if, for every directed (anti-directed resp.) 4-path uvwx,

u and x are adjacent.

Kernels are an important topic in the theory of digraphs, they where introduced in Neumann and Mor-

genstern (1944) and has received lot of attention due to its theoretical interest as well as its many applica-

tions in different areas such as game theory, argumentation theory, logic, logic programming and artificial

intelligence, see Le Bars (2000); Creignou (1995); Dimopoulos and Torres (1996); Dung (1995). A kernel

in a digraph is an independent and absorbent set of vertices (a subset of vertices S of a digraph D is an

absorbent set if for every vertex u ∈ V (D) \ S there is a vertex v ∈ S such that uv ∈ A(D)), for surveys

of kernels see Bang-Jensen and Gutin (1998); Haynes et al. (1998). The problem of deciding whether a

digraph D has a kernel is NP-complete, see Chvátal (1973), even for planar digraphs with in-degree and

out-degree at least 1 and degree at most three, see Fraenkel (1981). Due to the difficulty of this topic,

the study of kernels is centered in sufficient conditions to asure the existence of kernels and the study of

fixed classes of digraphs having a kernel or fixed classes of kernel perfect digraphs. The existence of ker-

nels in digraphs with a perfect underlying graph has been studied in Galeana-Sánchez and Rojas-Monroy

(2006); the existence of kernels in locally in-/out-semicomplete digraphs has been studied in Galeana-

Sánchez (1995, 1997); and the existence of kernels in arc-locally in-/out-semicomplete digraphs has been

studied in Galeana-Sánchez (2006). The Strong Perfect Graph Conjecture, stated by C. Berge in 1960

and proved in Chudnovsky et al. (2006) states that a graph G is perfect if and only if G contains neither

C2n+1 nor the complement of C2n+1, n ≥ 2, as an induced subgraph. Many authors have contributed to

obtain nice properties and interesting characterizations of Perfect Graphs, see Chvátal and Berge (1984);

Ramı́rez-Alfonsı́n and Reed (2001). The underlying graph GD of a digraph D is the graph on the vertex
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set V (GD) = V (D) whith {u, v} ∈ E(GD) if and only if {uv, vu} ∩ A(D) 6= ∅. The digraphs of some

families of generalized tournaments have a perfect graph as underlying graph, for instance quasi-transitive

digraphs (for every directed path uvw there is an arc between u and w) and semicomplete multipartite

tournaments (the underlying graph is a complete multipartite graph).

A digraph such that every proper induced subdigraph has a kernel is said to be a kernel perfect digraph

(KP-digraph) (critical kernel imperfect digraph (CKI-digraph) resp.) if the digraph D has a kernel (does

not have a kernel resp.). In Berge and Duchet (1990) it was conjectured that a graph G is perfect if and

only if any orientation by sinks of G is a kernel perfect digraph, the authors considered orientations of

G by directing each edge of G in at least one of the two possible directions. An orientation of G is an

orientation by sinks (or normal) if every induced semicomplete subgraph H of G has an absorbing vertex

in H (a vertex v ∈ V (H) such that uv ∈ A(H) for every vertex u ∈ V (H) \ {v}). This conjecture

was proved in Berge and Duchet (1990) and in Boros and Gurvich (1996), and it constructs an important

bridge between two topics in graph theory: namely colorings and kernels. It is important to stress that a

digraph D without induced CKI-digraph is a KP-digraph and so, it does have a kernel. Although there are

digraphs with kernels which are not KP. Hence, another tool to decide whether a digraph has a kernel is

characterizing the CKI-digraphs; due to a result of the first author and Neumann-Lara Galeana-Sánchez

and Neumann-Lara (1991) CKI-digraphs cannot be characterized by forbidden minors. For structural

properties of CKI-digraphs see Balbuena et al. (2014); Galeana-Sánchez and Guevara (2016); Galeana-

Sánchez and Neumann-Lara (1991); Galeana-Sánchez and Olsen (2016a) and for characterizations of

families of CKI-digraphs see Galeana-Sánchez and Olsen (2016a,b). The unique tournament which is CKI

is
−→
C 3 and the unique KP-tournaments are the transitive tournaments, however any induced subdigraph

of a bipartite tournament does have a kernel. Hence, bipartite tournaments are KP. In Galeana-Sánchez

and Neumann-Lara (1986) it was proved that the semicomplete CKI-digraphs are
−→
C 3 and the family

D ∼=
−→
C n(1,±2,±3, . . . ,±⌊

n
2
⌋), for some n ≥ 4, where

−→
Cm(J) is a circulant (or rotational) digraph

defined by V (
−→
Cm(J)) = Zm and A(

−→
Cm(J)) = {(i, j) : i, j ∈ Zm, j − i ∈ J}, with Zm as the cyclic

group of integers modulo m (m ≥ 2) and J is a nonempty subset of Zm \ {0}. In Galeana-Sánchez and

Olsen (2016b) the authors characterized the locally semicomplete CKI-digraphs as directed odd cycles,
−→
C 7(1, 2) and D ∼=

−→
Cm(1,±2,±3, . . . ,±⌊n

2
⌋), for n ≥ 4.

We characterize the CKI-digraphs having a perfect graph as underlying graph, using the relation be-

tween perfect graphs and kernel perfect graphs Berge and Duchet (1990); Boros and Gurvich (1996);

Galeana-Sánchez (2012) and we characterize the locally in-semicomplete digraphs and the locally out-

semicomplete digraphs which are CKI-/KP-digraphs. It is important to stress that the property of being

CKI is not preserved for the converse digraph of a CKI digraph, see Duchet and Meyniel (1981), the

converse digraph D−1 of a digraph D is obtained by reversing the arcs of D. Hence, characterizing the

locally in-semicomplete digraphs and the locally out-semicomplete digraphs which are CKI-/KP-digraphs

is not the same problem, although for these two families the families of CKI-/KP-digraphs remains the

same. Finally, we characterize the asymmetric CKI-/KP-digraphs which are arc-locally in-semicomplete,

arc-locally out-semicomplete or 3-anti-quasi-transitive TT3-free digraphs as the directed odd cycles and

the asymmetric 3-quasi-transitive CKI-digraphs as
−→
C 3. Moreover, we state that the problem of determin-

ing whether a digraph is CKI is polynomial for digraphs of the following families of digraphs: locally

in-/out-semicomplete, asymmetric arc-locally in-/out-semicomplete, 3-quasi-transitive and asymmetric

3-anti-quasi-transitive TT3-free. Hence, we give a solution to a problem closely related to the follow-

ing conjecture posted in Bang-Jensen and Gutin (1998): the kernel problem is polynomially solvable for

locally in-semicomplete digraphs.
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2 Definitions and prelimiaries

For general concepts and notation we refer the reader to Bang-Jensen and Gutin (2008). The paths and

cycles considered in this paper are not necessarily directed paths or cycles. We denote the path P by

the sequence of its vertices P = u0u1 . . . un. We say that P is a directed path if uiui+1 ∈ A(D) for

0 ≤ i ≤ n− 1, P is an anti-directed path if it has no directed subpath of length 2. Let D be a digraph and

H a proper subdigraph of D. An arc uv ∈ A(D) \A(H) is a diagonal of H whenever u, v ∈ V (H). For

a subset of vertices S of a digraph D, D[S] denotes the digraph induced by the vertex set S.

Remark 1 Directed odd cycles and
−→
C 7(1, 2) are CKI-digraphs. Directed even cycles are KP-digraphs.

The following remark is a consequence of the definition of KP-digraphs and CKI-digraphs.

Remark 2 If D is a CKI-digraph (or a KP-digraph), then D has no proper induced CKI-subdigraph. In

particular, D has no proper induced subdigraph isomorphic to a directed odd cycle.

Circulant digraphs are regular, vertex transitive and isomorphic to its converse digraph (the converse

digraph D−1 of a digraph D is obtained by reversing the arcs of D). Thus, if a circulant digraph D is

CKI, then D−1 is also CKI. This is not true in general, due to Duchet and Meyniel (1981). A graph is a

perfect graph, if for every induced subgraph, the clique number equals the chromatic number.

Theorem 1 (Strong Perfect Graph Theorem; Chudnovsky et al. (2006)) A graph G is not perfect if

and only if G has as an induced subgraph

(i) an odd cycle on at least 5 vertices or

(ii) the complement of an odd cycle on at least 7 vertices.

Let H be a subdigraph of G. An absorbing vertex in H is a vertex v ∈ V (H) such that uv ∈ A(H)
for every vertex u ∈ V (H) \ {v}. A digraph DG is an orientation (or biorientation) of a graph G if

V (DG) = V (G) and {u, v} ∈ E(G) if and only if {uv, vu} ∩ A(D) 6= ∅, and an orientation DG of G is

an orientation by sinks if every complete subgraph of G has an absorbing vertex in DG.

Theorem 2 (Berge and Duchet (1990); Boros and Gurvich (1996)) A graph G is perfect if and only if

every orientation by sinks of G is a KP-digraph.

For another relation between kernels and perfect graphs see Galeana-Sánchez (2012).

Theorem 3 (Galeana-Sánchez and Neumann-Lara (1986)) A semicomplete digraph D is a CKI-

digraph if and only if D ∼=
−→
C 3 or D ∼=

−→
C n(1,±2,±3, . . . ,±⌊

n
2
⌋), for some n ≥ 4.

Theorem 4 (Galeana-Sánchez and Olsen (2016b)) A locally semicomplete digraphD is a CKI-digraph

if and only if D is an odd cycle, D ∼=
−→
C 7(1, 2) or D ∼=

−→
C n(1,±2,±3, . . . ,±⌊

n
2
⌋), for some n ≥ 4.

3 Generalized tournaments

In this section we characterize the CKI-digraphs with a perfect underlying graph and the locally in- and

the locally out-semicomplete CKI-digraphs. As a consequence of Remark 2, Theorems 2 and 3 we have

the following characterization of CKI-digraphs having a perfect underlying graph.

Theorem 5 Let D be a digraph such that the underlying graph, GD , is a perfect graph. Then D is CKI

if and only if D ∼=
−→
C 3 or D ∼=

−→
C n(1,±2,±3, . . . ,±⌊

n
2
⌋), for some n ≥ 4.
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Proof: Let D be a CKI-digraph such that GD is a perfect graph. By Theorem 2, D is not oriented by

sinks, and therefore D has an induced semicomplete subdigraph H with no sink. Hence, H is not KP

and contains an induced subdigraph H ′ which is semicomplete and CKI. By Remark 2, D has no proper

induced CKI-subdigraph, thereforeD = H ′. Hence, GD is complete, D is semicomplete and by Theorem

3, D ∼=
−→
C 3 or D ∼=

−→
C n(1,±2,±3, . . . ,±⌊

n
2
⌋), for some n ≥ 4. ✷

A digraph is a semicomplete multipartite tournament if the underlying graph is a complete multipartite

graph. A digraph is quasi-transitive if for every directed path uvw there is an arc between u and w. We

have the following corollary.

Corollary 1 Let D be a semicomplete multipartite digraph or a quasi-transitive digraph. Then D is CKI

if and only if D ∼=
−→
C 3 or D ∼=

−→
Cm(1,±2,±3, . . . ,±⌊m

2
⌋) for some m ≥ 4.

Proof: The underlying graph of a semicomplete multipartite digraph is a complete multipartite graph,

which is a perfect graph and the underlying graph of a quasi-transitive digraph is a comparability graph,

see Duchet (1984), which is a perfect graph. Hence, the result follows. ✷

As a consequence of Theorem 5 and Corollary 1 we have the following result.

Theorem 6 Let D be a digraph such that the underlying graph is a perfect graph. Then D is KP if and

only if D has no induced subdigraph H such that H ∼=
−→
C 3 or H ∼=

−→
C n(1,±2,±3, . . . ,±⌊

n
2
⌋), for some

n ≥ 4. In particular, semicomplete multipartite digraphs and quasi-transitive digraphs are KP if and

only if they have no induced subdigraph H with H ∼=
−→
C 3 or H ∼=

−→
Cm(1,±2,±3, . . . ,±⌊m

2
⌋), for some

m ≥ 4.

The following lemma determines the orientation of some induced subdigraphs in asymmetric locally

in-semicomplete digraphs or asymmetric locally out-semicomplete digraphs. An arc uv ∈ A(D) is asym-

metric if vu /∈ A(D) (symmetric if vu ∈ A(D) resp.). A digraph is asymmetric if all its arcs are

asymmetric arcs. Observe that if n ≥ 5, GD is an induced cycle on n vertices if and only if GD is an

antihole on n vertices.

Lemma 1 Let D be a locally in-semicomplete digraph or a locally out-semicomplete digraph. If GD is

an induced cycle on at least 4 vertices, then D is a directed cycle. If GD is an induced cycle on at least 5
vertices, then D ∼=

−→
C 2n+1(2,−3, 4,−5, . . . , (−1)nn).

Proof: Let D be a locally in-semicomplete digraph (locally out-semicomplete digraph resp.). Suppose

that GD is an induced cycle C = u0u1 . . . un−1u0, with n ≥ 4. Since C is induced and D is locally

in-semicomplete, (locally out-semicomplete resp.), there is no vertex ui ∈ V (C) such that ui−1, ui+1 ∈
N−(ui), (ui−1, ui+1 ∈ N+(ui) resp.), with indices taken modulo n. Thus, C is an induced directed cycle

on at least 4 vertices. Hence, if D is a locally in-/out-semicomplete digraph and GD is an induced cycle

on at least n vertices, n ≥ 4, then D is a induced directed cycle on n vertices.

If D is a locally in-semicomplete digraph or a locally out-semicomplete digraph and GD is an induced

cycle on 5 vertices, then GD is an induced cycle on 5 vertices and D is a directed cycle on 5 vertices.

LetD be a locally in-semicomplete digraph. Suppose thatGD is an induced cycleC = u0u1 . . . un−1u0,

with n ≥ 6. Observe that ui and ui+1 are not adjacent in D for 0 ≤ i ≤ n− 1 with indices taken modulo

n and since D is locally in-semicomplete, N+(ui) ∩N+(ui+1) = ∅.
Let uiui+j ∈ A(D). Clearly, 2 ≤ j ≤ n − 2. If j ≥ 3 and ui+1ui+j ∈ A(D), then ui, ui+1 ∈

N−(ui+j), a contradiction because {ui, ui+1} /∈ E(GD). Thus, if j ≥ 3, it follows that ui+1ui+j /∈
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ui−1

ui

ui+1ui+j−1

ui+j

ui+j+1

Fig. 2: The dotted arcs are not arcs of D.

A(D), see Figure 2. Analogously, if j ≤ n − 3, then ui−1ui+j /∈ A(D), see Figure 2. Since C is an

induced cycle in GD, it follows that for uiui+j ∈ A(D)

(a) if j ≥ 3, then ui+jui+1 ∈ A(D), (b) if j ≤ n− 3, then ui+jui−1 ∈ A(D). (1)

First we prove that D is asymmetric, and then we determine the arcs of D.

For a contradiction, suppose that {ui, ui+j} is a symmetric arc for some j ≥ 4. Since uiui+j ∈ A(D)
it follows by 1(a) that ui+jui+1 ∈ A(D), see Figure 3; since ui+jui ∈ A(D) and n−((i+j)−i) ≤ n−4,

it follows by 1(b) that uiui+j−1 ∈ A(D), see Figure 3. In this case ui+j−1ui+1 /∈ A(D), because D
is locally in-semicomplete and ui+j−1 and ui+j are not adjacent; and ui+1ui+j−1 /∈ A(D), because

ui and ui+1 are not adjacent. Thus, {ui+j−1, ui+1} /∈ E(GD), see Figure 3, a contradiction because

ui+j−1

ui+j

ui+1

ui

Fig. 3: The dotted arcs are not arcs of D.

j ≥ 4 and C is an induced cycle in GD. Thus, if j ≥ 4, then {ui, ui+j} is an asymmetric arc. By a

dual argumentation, using first 1(b) and then 1(a), we obtain that if j ≤ n − 4, then {ui, ui+j} is an

asymmetric arc.

If |V (D)| ≥ 7, then every edge {ui, ui+j} ∈ E(GD) is an asymmetric arc in D because j = (i+ j)−
i ≥ 4 or n − j = n − ((i + j) − i) ≥ 4, that is at least one of the induced paths in GD u0u1 . . . uj or

ujuj+1 . . . u0 has 4 arcs. Hence, D is asymmetric if |V (D)| ≥ 7.

If |V (D)| = 6, it follows that {ui, ui+j} is asymmetric if j = 2, 4. For a contradiction, suppose

that {u0, u3} is an asymmetric arc. By 1(a), u0u2, u0u4, u3u1, u3u5 ∈ A(D). In this case u2u5 /∈
A(D), because D is locally in-semicomplete, u3u5 ∈ A(D) and u2 and u3 are not adjacent in D; and

u5u2 /∈ A(D), because u0u2 ∈ A(D) and u0 and u5 are not adjacent in D. Thus, {u2, u5} /∈ E(GD), a

contradiction. Hence, D is asymmetric.

In order to prove that D ∼=
−→
C 2m+1(2,−3, 4,−5, . . . , (−1)mm), we need the following claim.

Claim 1 Let j be an integer, with 2 ≤ j ≤ n− 2. If ukuk+j ∈ A(D) for some vertex uk ∈ V (D), then

uiui+j ∈ A(D) for every vertex ui ∈ V (D).

Proof of Claim 1. Let k, j be integers such that ukuk+j ∈ A(D). If j = 2, 3, then by 1(b), it

follows that uk+juk−1 ∈ A(D), see Figure 4(b). Consider the arc uk+juk−1, by 1(b), it follows that

uk−1uk−1+j ∈ A(D). Consider the arc uk−1uk−1+j , by 1(b), it follows that uk−1+juk−2 ∈ A(D).
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Consider the arc uk−1+juk−2, by 1(b), it follows that uk−2uk−2+j ∈ A(D). Continuing these two steps

it follows that for j = 2, 3, if ukuk+j ∈ A(D) for some vertex uk ∈ V (D), then uiui+j ∈ A(D) for

every vertex ui ∈ V (D). Analogously, using 1(a), if j = n − 2, n − 3 and ukuk+j ∈ A(D), then

uiui+j ∈ A(D) for every ui ∈ V (D).

(a) j ≥ 3

uk+1+j

uk+j

uk

uk+1

(b) j ≤ n− 3

uk−1+j

uk+j

uk

uk−1

Fig. 4: The dotted arcs are not arcs of D.

If 3 < j < n − 3, then by 1(a), it follows that uk+juk+1 ∈ A(D), see Figure 4(a). Consider the

arc uk+juk+1, by 1(a), it follows that uk+1uk+1+j ∈ A(D). Consider the arc uk+1uk+1+j , by 1(a), it

follows that uk+1+juk+2 ∈ A(D). Consider the arc uk+1+juk+2, by 1(a), it follows that uk+2uk+2+j ∈
A(D). Continuing these two steps it follows that for 4 ≤ j ≤ n − 4, if ukuk+j ∈ A(D), then uiui+j ∈
A(D) for every ui ∈ V (D). ✷

If u0u2 ∈ A(D), then u3u0 ∈ A(D) and in this case u0u4 ∈ A(D). Continuing this argument we

obtain that u0u2i, u2i+1u0 ∈ A(D). If the order of D is equal to n = 2m, then if m is even u0um ∈ A(D)
(if m is odd, umu0 ∈ A(D) resp.) and by Claim 1 it follows that uiui+m ∈ A(D) (ui+mui ∈ A(D)
resp.). In particular for i = m we obtain that umu0 ∈ A(D) (u0um ∈ A(D) resp.) implying that

{u0, um} is a symmetric arc, a contradiction. Hence, the order of D is odd. Let n = 2m + 1. If

u0u2 ∈ A(D), then by Claim 1 it follows that D ∼=
−→
C 2m+1(2,−3, . . . , (−1)m(m)). If u2u0 ∈ A(D), by

a dual argument, we obtain D ∼=
−→
C 2m+1(−2, 3, . . . , (−1)m−1(m)). Since

−→
C 2m+1(J) ∼=

−→
C 2m+1(−J),

the result follows for in-semicomplete digraphs.

The case when D is a out-semicomplete digraph and GD is an induced cycle on at least 6 vertices

is obtained by a dual argumentation, considering locally out-semicomplete digraphs instead of locally

in-semicomplete digraphs and changing the orientation of all arcs in the proof. ✷

We use the Strong Perfect Graph Theorem in Chudnovsky et al. (2006) and Lemma 1 to characterize

the locally in-semicomplete CKI-digraphs.

Theorem 7 If D is a locally in-semicomplete CKI-digraph or a locally out-semicomplete CKI-digraph,

then D is a directed odd cycle, D ∼=
−→
C 7(1, 2) or D ∼=

−→
C n(1,±2,±3, . . . ,±⌊

n
2
⌋), for some n ≥ 4.

Proof: Let D be a locally in-semicomplete CKI-digraph or a locally out-semicomplete CKI-digraph. By

Theorem 5, if GD is a perfect graph, then D ∼=
−→
C 3 or D ∼=

−→
C n(1,±2,±3, . . . ,±⌊

n
2
⌋) for some n ≥ 4.

Assume that GD is not a perfect graph. By Theorem 1, GD has an induced odd cycle C on at least 5
vertices or GD has an induced odd cycle C on at least 7 vertices. If GD has an induced odd cycle C, then

by Lemma 1, D[C] is a directed odd cycle, which is CKI. Let C = u0u1 . . . u2nu0. By Remark 2, D[C]
is not a proper subdigraph. Hence, D is a directed odd cycle. If GD has an induced odd cycle C, then by

Lemma 1, D ∼=
−→
C 2n+1(2,−3, 4,−5, . . . , (−1)nn).

If n > 3, then 2n + 1 ≥ 9. Let i, j, k ≥ 3 be odd integers such that i + j + k = 2n + 1. Since

ui+j+k = u0, we have the proper asymmetric
−→
C 3 = u0uiui+jui+j+k , which contradicts Remark 2,
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because
−→
C 3 and D are CKI-digraphs. Since C has at least 7 vertices, n = 3 and D[V (C)] =

−→
C 7(2,−3),

which is isomorphic to
−→
C 7(1, 2). By Remark 1,

−→
C 7(1, 2) is CKI, then by Remark 2, D[V (C)] is not a

proper subdigraph and D ∼=
−→
C 7(1, 2). Hence, if GD has an induced odd cycle, then D is

−→
C 7(1, 2), which

is CKI.

Thus, ifD is a locally in-/out-semicomplete CKI-digraph, thenD is a directed odd cycle,D ∼=
−→
C 7(1, 2)

or D ∼=
−→
C n(1,±2,±3, . . . ,±⌊

n
2
⌋), for some n ≥ 4. ✷

Characterizing the locally in-semicomplete CKI-digraphs and the locally out-semicomplete CKI-digraphs

is not the same problem, because there are digraphs such thatD is CKI but D−1 is not CKI, see Duchet and

Meyniel (1981). Although, in Theorem 7, it turned out that the digraphs that characterize the locally in-

semicomplete CKI-digraphs and the locally out-semicomplete CKI-digraphs remains the same. Using the

fact that locally semicomplete digraphs are both locally in-semicomplete and locally out-semicomplete,

we have the following result as a corollary of Theorem 7.

Corollary 2 (Galeana-Sánchez and Olsen (2016b)) If D is a locally semicomplete CKI-digraph, then

D is a directed odd cycle, D ∼=
−→
C 7(1, 2) or D ∼=

−→
C n(1,±2,±3, . . . ,±⌊

n
2
⌋), for some n ≥ 4.

As a consequence of Theorem 7 and Corollary 2, it turns out that the characterizations of the CKI-

digraphs of locally semicomplete digraphs and locally in-/out-semicomplete families are the same. Hence,

we have the following result.

Theorem 8 Locally in-semicomplete digraphs, locally out-semicomplete digraphs and locally semicom-

plete digraphs are KP if and only if they have no induced subdigraph H such that H is a directed odd

cycle, H ∼=
−→
C 7(1, 2) or H ∼=

−→
C n(1,±2,±3, . . . ,±⌊

n
2
⌋), for some n ≥ 4.

4 Generalized bipartite tournaments

In this section we characterize the arc-locally in-semicomplete, arc-locally out-semicomplete, 3-quasi-

transitive and 3-anti-quasi-transitive CKI-digraphs. The following result is a reformulation of the original

result.

Theorem 9 (Theorem 4.3 Galeana-Sánchez and Neumann-Lara (1984)) Let D be a CKI-digraph, which

is not a directed odd cycle. For every vertex u0 ∈ V (D) there is a directed cycle C = u0u1 . . . u2nu0

such that C has no diagonal uiuj with j ∈ {0} ∪ {1, 3, . . . , 2n− 1}, i ∈ {0, 1, . . . , 2n}.

Theorem 10 Let D be a CKI-digraph, which is not a directed odd cycle. For every vertex u0 ∈ V (D)
there exist a directed cycle C = u0u1 . . . u2nu0 with n ≥ 2 such that

i) C has a diagonal.

ii) C has no diagonal uiuj with j ∈ {0} ∪ {1, 3, . . . , 2n− 1}, i ∈ {0, 1, . . . , 2n}.

iii) C has no diagonal u2i−1u2j with 0 < i < j ≤ n.

Proof: i) follows by Remark 2. By Theorem 9, for each vertex u0 ∈ V (D) there is a directed cycle C =
u0u1 . . . u2nu0 such that C has no diagonal uiuj with j ∈ {0}∪{1, 3, . . . , 2n−1} and i ∈ {0, 1, . . . , 2n}.
Hence, ii) follows. Consider a directed cycle C satisfying ii) of minimum length. If C has a diagonal

u2i+1u2j with 0 < i < j ≤ n, then C′ = u0u1 . . . u2i+1u2j . . . u2nu0 is a cycle satisfying ii) and C′ is

shorter than C, contradicting the choice of C and iii) is proved. ✷
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A not necessarily directed path P = uvwx is an H1-path if u → v ← w ← x; an H2-path if

u ← v ← w → x; an H3-path if P is a directed path and an H4-path if P is an anti-directed path. For

i = 1, 2, 3, 4, Bang-Jensen defined a digraph to be Hi-free, if every Hi-path uvwx has an arc between

u and x. In Bang-Jensen (2004) the arc-locally in-/out-semicomplete and the 3-quasi-(anti-)transitive

digraphs where defined in terms of Hi-free digraphs, i = 1, 2, 3, 4. The family of H1-free digraphs (H2-

free digraphs, resp.) is the family of arc-locally in-semicomplete digraphs (arc-locally out-semicomplete

digraphs, resp.). The H3-free digraphs are the 3-quasi-transitive digraphs and the H4-free digraphs are

the 3-anti-quasi-transitive digraphs. We denote by TT3 the transitive (acyclic) tournament on 3 vertices.

Theorem 11 The unique asymmetric 3-quasi-transitive CKI-digraph is
−→
C 3. The directed odd cycles

are the only asymmetric CKI-digraphs which are arc-locally in-semicomplete digraphs, arc-locally out-

semicomplete digraphs or 3-anti-quasi-transitive TT3-free digraphs.

Proof: The asymmetric 3-quasi-transitive digraph
−→
C 3 is CKI. Suppose, for a contradiction, that D is

an asymmetric 3-quasi-transitive CKI-digraph, which is not
−→
C 3. By hypothesis D is H3-free and since

directed odd cycles of order at least 5 have induced directed paths of order 4, D is not an odd cycle. Let

u0 ∈ V (D). By Theorem 10, D has a directed odd cycle of minimum length C = u0u1 . . . u2nu0, n ≥ 2,

such that C has no diagonal uiuj with i ∈ {0, 1, . . . , 2n} and j ∈ {0} ∪ {1, 3, 5, . . . , 2n − 1}. Since

D is CKI, C is not induced and C has at least five vertices. By definition, the H3-path u2n−1u2nu0u1

must have a diagonal between the vertices u2n−1 and u1, that is a diagonal between two vertices with

odd subindices, contradicting the choice of C in Theorem 10 ii). Hence, the unique asymmetric 3-quasi-

transitive CKI-digraphs is
−→
C 3.

Directed odd cycles are asymmetric arc-locally in-semicomplete (arc-locally out-semicomplete resp.)

[3-anti-quasi-transitive TT3-free resp.] CKI-digraphs. Suppose, for a contradiction, that D is an asym-

metric arc-locally in-semicomplete (arc-locally out-semicomplete resp.) [3-anti-quasi-transitive TT3-free

resp.] CKI-digraph, which is not a directed odd cycle. Let u0 ∈ V (D). By Theorem 10, D has a di-

rected odd cycle of minimum length C = u0u1 . . . u2nu0, n ≥ 2, such that C has no diagonal uiuj with

i ∈ {0, 1, . . . , 2n} and j ∈ {0} ∪ {1, 3, 5, . . . , 2n− 1}. Observe that C has at least five vertices. Let vw
be a diagonal, with v, w ∈ {u0, u1, . . . , u2n} and the index are taken modulo 2n+ 1.

We have two cases: (i) The cycle C and its diagonal vw induce a directed cycle containing u0u1 or

(ii) the cycle C and its diagonal vw induce a directed cycle avoiding u0u1.

(i) The directed cycle C and its diagonal vw induce a directed cycle containing the arc u0u1.

By Theorem 10 ii) and iii), the diagonal is vw=u2iu2j with 0 < i < j ≤ n (0 < i < j ≤ n resp.)

[1 < i + 1 < j ≤ n resp.]. By definition, the H1-path u2i−1u2iu2ju2j−1 must have a diagonal between

the vertices u2i−1 and u2j−1 (the H2-path u2i+1u2iu2ju2j+1 must have a diagonal between the vertices

u2i+1 and u2j+1 resp.) [the H4-path u2j−1u2ju2iu2i+1 must have a diagonal between the vertices u2i+1

and u2j−1 resp., (2i + 1 < 2j − 1 because D is TT3-free)], in each case vw is a diagonal between two

vertices with subindices which are odd or equal to zero (if j = n, then 2j + 1 ≡ 0 (mod 2n + 1)),
contradicting the choice of C in Theorem 10 ii). Hence, C has no diagonal inducing a directed cycle

containing the arc u0u1.

(ii) The directed cycle C and its diagonal vw induce a directed cycle avoiding the arc u0u1.

By the choice of C, we may assume that vw = uiu2j with i = 0 and 1 ≤ j < n (1 ≤ j < n resp.) [since

D is TT3-free, 1 < j < n resp.] or i 6= 0 and 2j + 2 < i ≤ 2n (by Remark 2, D has no
−→
C 3).

If i = 0, since vw is a diagonal, it follows that 1 ≤ j < n (1 ≤ j < n resp.) [since D is TT3-free,
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1 < j < n resp.]. By definition, the H1-path u2nu0u2ju2j−1 must have a diagonal between the vertices

u2j−1

u2j

u2j+1u2n

u0

u1

(a)

u2j−1

u2j

u2j+1u2n

u0

u1

(b)

u2j−1

u2j

u2j+1u2n

u0

u1

(c)
Fig. 5: The dotted arcs are not diagonals of C.

u2n and u2j−1, since 2j − 1 is odd, by Theorem 10 ii), u2j−1u2n is a diagonal of C, contradicting the

minimality of C in Theorem 10 iii), see Figure 5(a) (the H2-path u1u0u2ju2j+1 must have a diagonal

between the vertices u2j+1 and u1, a diagonal between two vertices with odd subindices, a contradiction

to the choice of C in Theorem 10 ii), see Figure 5(b) resp.) [the anti-directed path u2j−1u2ju0u1 must

have a diagonal between the vertices u2j−1 and u1 (u2j−1 6= u1 because D is TT3-free), a diagonal

between two vertices with odd subindices, contradicting the choice of C in Theorem 10 ii), see Figure

5(c) resp.].

Hence, i 6= 0 and since, j ≥ 1, it follows that 4 ≤ 2j + 2 < i ≤ 2n. If i is odd, by definition,

the H1-path ui−1uiu2ju2j−1 must have a diagonal between the vertices ui−1 and u2j−1 (the H2-path

ui+1uiu2ju2j+1 must have a diagonal between the vertices u2j+1 and ui+1 resp.) [the anti-directed path

u2j−1u2juiui+1 must have a diagonal between the vertices u2j−1 and ui+1 (u2j−1 6= u1 because D is

TT3-free) resp.]. By Theorem 10 ii), the diagonal must be u2j−1ui−1 (u2j+1ui+1) [u2j−1ui+1 resp.]

contradicting the minimality of the cycle C in Theorem 10 iii). Hence, i is even. By definition, the

H1-path ui−1uiu2ju2j−1 must have a diagonal between the vertices ui−1 and u2j−1 contradicting the

choice of C in Theorem 10 ii) because i − 1 is odd (the H2-path ui+1uiu2ju2j+1 must have a diagonal

between the vertices u2j+1 and ui+1 contradicting the choice of C in Theorem 10 ii) because i + 1 is

odd or i+1 = 0 resp.) [the anti-directed path u2j−1u2juiui+1 must have a diagonal between the vertices

u2j−1 and ui+1. Since i + 1 is odd or i + 1 = 0, it follows that a diagonal between the vertices u2j−1

and ui+1 contradicts the choice of C in Theorem 10 ii), unless the diagonal is the arc u0u1 (i = 2n,

i + 1 = 0 and 2j − 1 = 1), because in this case the diagonal of the anti-directed path u2j−1u2juiui+1

is not a diagonal of the directed cycle C. By Remark 2, the odd cycle C′ = u2u3 . . . u2iu2 is not an

induced cycle in D and since any diagonal of C′ is a diagonal of C, by the choice of C, C′ has a diagonal

v′w′ = ui′u2j′ such that 4 < 2j′ + 2 < i′ ≤ 2n or 4 ≤ 2j′ + 2 < i′ < 2n. Since, v′w′ is a diagonal of

C, the anti-directed path u2j′−1u2j′ui′ui′+1 must have a diagonal between the vertices u2j′−1 and ui′+1

contradicting the choice of C in Theorem 10 ii) because 3 ≤ 2j′ − 1 < 2n, and i′ + 1 = 0 or i′ + 1 is

odd resp.].

Both cases lead to a contradiction, thus D is an odd cycle. ✷

As a consequence of Theorem 11 we have the following result.

Theorem 12 An asymmetric 3-quasi-transitive digraph is KP if and only if it has no induced
−→
C 3. Asym-

metric arc-locally in-/out-semicomplete digraphs and 3-anti-quasi-transitive TT3-free digraphs are KP if

and only if they have no induced directed odd cycle.
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5 Conclusions

For tournaments, there is a unique CKI-digraph namely the
−→
C 3, and for each integer n the transitive

tournament of order n is the unique KP-digraph. The families of generalized tournaments considered in

this paper have a nice characterization of their CKI-digraphs due to Corollary 1 and Theorem 7, and a

nice characterization of their KP-digraphs due to Theorem 6 and Theorem 8. Hence, these families of

generalized tournaments somehow preserve the property of the tournaments, that the characterizations of

the CKI- and the KP-digraphs are nice.

All bipartite tournaments are KP-digraphs, so there are no bipartite tournaments which are CKI-digraphs.

The families of generalized bipartite tournaments considered in this paper have a nice characterization of

their CKI-digraphs due to Theorem 11 and a nice characterization of their KP-digraphs due to Theorem

12. Hence, these families of generalized bipartite tournaments somehow preserve the property of the

bipartite tournaments, that there is only one class of CKI-digraphs, although not every digraph is KP.

The asymmetric part of a digraph D is the spanning subdigraph of D induced by the asymmetric arcs

of D. The asymmetric part of the digraphs considered in this paper is either isomorpic to
−→
C 7(1, 2) or

isomorphic to a cycle. As pointed out in Galeana-Sánchez and Olsen (2016b), deciding whether a digraph

D is isomorphic to a directed cycle or isomorphic to
−→
C 7(1, 2) is polynomial, and for the case when

the asymmetric part of the digraph D is a cycle, deciding whether the digraph D is an odd cycle or the

digraph D is isomorphic to
−→
C n(1,±2,±3, . . . ,±⌊

n
2
⌋) for some n ≥ 4 is also polynomial. Therefore,

it is polynomial to determine whether a digraph is CKI if the underlying graph is a perfect graph or if

the digraph is semicomplete, semicomplete multipartite, quasi-transitive, locally in-/out-semicomplete,

locally semicomplete, asymmetric 3-quasi-transitive, asymmetric arc-locally in-/out-semicomplete and

3-anti-quasi-transitive TT3-free.
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