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We construct explicit solutions of a number of Stieltjes moment problems based on moments of the formρ(r)
1 (n) =

(2rn)! andρ(r)
2 (n) = [(rn)!]2, r = 1,2, . . . , n= 0,1,2, . . . , i.e. we find functionsW(r)

1,2 (x) > 0 satisfying
R ∞

0 xnW(r)
1,2 (x)dx=

ρ(r)
1,2(n). It is shown using criteria for uniqueness and non-uniqueness (Carleman, Krein, Berg, Pakes, Stoyanov)

that for r > 1 bothρ(r)
1,2(n) give rise to non-unique solutions. Examples of such solutions are constructed using the

technique of the inverse Mellin transform supplemented by aMellin convolution. We outline a general method of

generating non-unique solutions for moment problems generalizing ρ(r)
1,2(n), such as the productρ(r)

1 (n) ·ρ(r)
2 (n) and

[(rn)!]p, p = 3,4, . . . .

Keywords: Classical moment problem, Stieltjes moment problem, Mellin transform

1 Introduction
This paper concerns solutions of the Stieltjes moment problem [1, 2],i.e. positive functionsW(x) which
satisfy the infinite set of equations

∞
Z

0

xnW(x)dx= ρ(n), n = 0,1,2, . . . . (1)

†Corresponding author: e-mail:penson@lptl.jussieu.fr

subm. to DMTCSc© by the authors Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France



2 K. A. Penson, P. Blasiak, G. H. E. Duchamp, A. Horzela and A. I.Solomon.

We previously met this problem when considering the properties of the so-calledcoherent states(CS) of
Quantum Mechanics [3]. These CS, as well as their many generalizations, should satisfy the property of
Resolution of Unitywhich is essentially equivalent to Eq. (1) [4, 5]. Standard CS lead toρ(n) = n! and
W(x) = e−x. Generalized CS lead toρ(n)’s other thann! [6] and the solutions of Eq.(1), if any, must be
studied in each individual case separately [7, 8, 9, 10]. It quickly occurred to us that an efficient approach
to this problem was to use the inverse Mellin transform method which allows one to establish many
solutions of Eq. (1), either by analytic methods [11] or by extensive use of available tables [12, 13]. As a
byproduct of this method we have established that, for a large number of combinatorial sequences such as
Bell and Catalan numbers,etc., the corresponding sequencesρ(n) are solutions of the moment problem
Eq. (1) [14, 15]. Likewise, sequences arising in theory of ordering of differential operators [16] solve
appropriate moment problems too. This admixture of quantum-mechanical, analytical and combinatorial
features deserves a deeper study which we intend to pursue.

Our paper is partly expository in character, and has the following structure: first we establish a link
between the Mellin transform and the moment problem; next, in Section 3, we provide principal solutions
to two moment problems, termed toy models. In Section 4 we discuss criteria for the uniqueness of
solutions of the moment problem. Section 5 is devoted to the explicit construction of non-unique solutions
of the toy-models. In Section 5 some generalizations of model sequences, together with their solutions,
are reviewed. Section 6 is devoted to a discussion and conclusions.

We dedicate this paper to Philippe Flajolet on the occasion of his 60th birthday. His pioneering ap-
plications of Mellin transform asymptotics to the analysisof combinatorial structures [17, 18, 19] have
been a source of inspiration for us.

2 The Mellin transform versus moment problem
The Mellin transform of a functionf (x) of the real variablex is defined for complexs by the following
relation

M [ f (x);s] =

∞
Z

0

xs−1 f (x)dx≡ f ∗(s) (2)

( in this definition f ∗(s) is not the complex conjugate off (s) ! ), and its inverseM −1 is defined by

M
−1[ f ∗(s);x] =

1
2πi

c+i∞
Z

c−i∞

f ∗(s)x−sds. (3)

See Ref. [20] for a discussion of the dependence off (x) on the real constantc. Among the many relations
satisfied by the Mellin transform we shall mainly use the following

M [xb f (axh);s] =
1
h

a−
s+b

h f ∗
(

s+b
h

)

, a,h > 0. (4)

If M [ f (x);s] = f ∗(s) andM [g(x);s] = g∗(s), then

M
−1[ f ∗(s)g∗(s);x] =

∞
Z

0

f
(x

t

)

g(t)
dt
t

=

∞
Z

0

g
(x

t

)

f (t)
dt
t

(5)
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which is called the Mellin convolution property. Note that if in Eq. (5) both f (x) andg(x) are positive

for x > 0 then
∞
R

0
f ( x

t )g(t)dt
t is also positive forx > 0. This means that the Mellin convolution preserves

positivity, an essential property when considering the moment problem.
Eq.(1), if rewritten forn = s−1 as

W(x) =M −1[ρ(s−1);x], (6)

is, if W(x) > 0, a solution of a Stieltjes moment problem. Thus according to Eq. (6) one can solve
the Stieltjes moment problem by performing the inverse Mellin transform on the moment sequence and
checking if the resulting function is positive. All the solutions in the sequel have been obtained using Eqs.
(6), (4) and (5). Note thatW(x) obtainedvia Eq. (6) may not be the only solution of Eq.(1). We call
W(x) > 0 obtainedvia Eq. (6) from Eq. (1) the principal solution.

3 Principal solutions of the moment problems
Let us consider two sequences of integers given by

ρ(r)
1 (n) = (2rn)!, n = 0,1,2, . . . , r = 1,2, . . . . (7)

ρ(r)
2 (n) = [(rn)!]2, n = 0,1,2, . . . , r = 1,2, . . . . (8)

In the following we shall obtain the solutions of the Stieltjes moment problem for the moment sequences

given by Eqs. (7) and (8),i.e. the functionsW(r)
1,2 (x) > 0 satisfying

∞
Z

0

xnW(r)
1,2(x)dx= ρ(r)

1,2(n). (9)

From now on we shall refer to the model problemsρ(r)
1,2(n) astoy modelsTM1 andTM2, respectively.

a) TM1: we begin by obtainingW(1)
1 (x). Note that(2n)! = Γ(2n+ 1) = Γ(2(s− 1

2)). We now apply
Eq.(4) witha = 1, b = − 1

2 andh = 1
2. We subsequently useM −1[Γ(s);x] = e−x which gives

∞
Z

0

xnW(1)
1 (x)dx=

∞
Z

0

xn

[

e−
√

x

2
√

x

]

dx= (2n)!, n = 0,1,2, . . . . (10)

In the same spirit we observe that(2rn)! = Γ
(
2r

(
n+ 1

2r

))
= Γ

(
2r

(
s− 2r−1

2r

))
. Upon using Eq. (4) but

now witha = 1, b = − 2r−1
2r andh = 1

2r one obtains

∞
Z

0

xnW(r)
1 (x)dx=

∞
Z

0

xn
[

1

2rx
2r−1

2r

e−x
1
2r

]

dx= (2rn)!, n = 0,1,2, . . . . (11)

We callW(r)
1 (x) > 0 theprincipal solutionof the moment problem Eq. (11).
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b) TM2: we begin by derivingW(1)
2 (x) = M −1[Γ2(s);x] and employ the Mellin convolution Eq. (5).

By using the Sommerfeld representation of the modified Bessel function of second kindK0(x) [21] one
obtains

∞
Z

0

xnW(1)
2 (x)dx=

∞
Z

0

xn
[

2K0(2x
1
2 )

]

dx= (n!)2, n = 0,1,2, . . . . (12)

Subsequently note that[(rn)!]2 = [Γ
(
r
(
n+ 1

r

))
]2 = [Γ

(
r
(
s− r−1

r

))
]2 and again apply Eq.(4) witha = 1,

b = − r−1
r andh = 1

r . The result is

∞
Z

0

xnW(r)
2 (x)dx=

∞
Z

0

xn
[

2

rx
r−1

r

K0(2x
1
2r )

]

dx= [(rn)!]2, n = 0,1,2, . . . . (13)

SinceK0(t) > 0 for t > 0,W(r)
2 (x) > 0 is the principal solution of the moment problem Eq. (13).

4 Criteria of uniqueness and non-uniqueness of the Stieltjes mo-
ment problem

It was realized from the very beginning of the history of the moment problem that its solutions may not be
unique;i.e. for a given moment sequence there may exist more than one solution. Stieltjes himself gave
an example of a non-unique solution of a problem leading to what turned out to be the lognormal distri-
bution [22]. This example, being about the only one available, was quoted repeatedly in the literature. As
recently as twenty years ago new non-unique solutions of other types of problems have been constructed.
Of special interest were Stieltjes moment problems arisingin probability theory, related to investigation
of probability distributions not determined by their moments. Consequently, the subject was further de-
veloped and systematized, largely due to the comprehensivework of Berg [23], Berg and Pedersen [24],
Lin [25], Stoyanov [26, 27], Pakes [28], Gut [29] and others.From the practical point of view one needs
criteria to decide whether the pursuit of non-unique solutions is reasonable. Such criteria are either based
on theρ(n)’s alone or on the solutionW(x) alone, or on bothρ(n) andW(x), see below. From now on we
assume that all theρ(n)’s are finite and thatW(x) is continuous. We now give , in a somewhat condensed
form, a list of such criteria.

C1 Carleman uniqueness criterion (T. Carleman, 1922, [1]) This is based on the properties of theρ(n)’s
alone and is:

If S= ∑∞
n=1[ρ(n)]−

1
2n = ∞, then the solution is unique.

This criterion does not imply that ifS< ∞ then the solution is non-unique. In fact it is possible to
construct models for whichS< ∞ and solutions are still unique [26, 30].

C2 Krein’s non-uniqueness criterion (M. G. Krein, around 1950, [31])

This is based entirely on the solutionW(x) and does not involve the moments.

If
R ∞

0
− ln [W(x2)]

1+x2 dx< ∞, i.e., the so-called Krein integral exists, then the solution is non-unique.
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C3 Converse Carleman criterion for non-uniqueness (A. Pakes,2001, [28], A. Gut, 2002, [29])

This is based onρ(n)’s andW(x).

If there exists x′ ≥ 0 such that for x> x′, 0<W(x) < ∞ andψ(y) =− ln [W(ey)] is convex in(y′,∞),

where y′ = ln(x′), and if, in addition, S= ∑∞
n=1[ρ(n)]−

1
2n < ∞, then the solutionW(x) is non-unique.

See [23, 24, 26, 28, 29] for various refinements of these criteria.

5 Construction of non-unique solutions for TM1 and TM2
We first apply the criterion C1 to sequencesρ(r)

1,2(n) (the logarithmic test of divergence of the seriesS is

conclusive) and conclude that forr = 1 both solutionsW(1)
1 (x) = e−

√
x

2
√

x andW(1)
2 (x) = 2K0(2x

1
2 ) are unique.

For r > 1 we find that∑∞
n=1[ρ

(r)
1,2(n)]−

1
2n is convergent. Application of criterion C2 gives convergence of

the Krein integral, showing that the solutions ofTM1 and TM2 are non-unique. These findings are

confirmed by use of criterion C3: convexity ofψ(r)
1,2(x) = − ln [W(r)

1,2(ex)] is proved as it is equivalent to

ex/r > 0 for x > 0, (TM1) andK1(2ex/r)−K0(2ex/r) > 0 for x > 0, (TM2). The quest for non-unique
solutions forr > 1 is then well founded.

We know of no general method to construct such solutions. However we have proposed a procedure
based on the application of inverse Mellin transform which generates the required solutions [8, 32] which
we now briefly expose.

The first step is to construct, within the framework of a givenset ofρ(n)’s, a family of functionsωk(x),
parametrized by a constantk (to be defined below), such thatall their moments vanish,i.e.

∞
Z

0

xnωk(x)dx=

∞
Z

0

xs−1ωk(x)dx= 0, n = 0,1,2, . . . , s= 1,2, . . . . (14)

The Mellin transform ofωk(x), ω⋆
k(s), vanishes fors = 1,2, . . . . Such functions are orthogonal to all

polynomials and play an important role in the study of integral transforms [33]. For our purposes we
choose a particular method of producing the functionsω⋆

k(x):

∞
Z

0

xnωk(x)dx= ρ(r)
1,2(n) ·hk(n), (15)

or equivalently
∞

Z

0

xs−1ωk(x)dx= ρ(r)
1,2(s−1) ·hk(s−1), (16)

wherehk(s) is any holomorphic function vanishing fors= 1,2, . . . . Among an infinity of possible choices
the simplest one ishk(s)= sin(πk(s+1)) and it defines a discrete parameterk=±1,±2,±3, . . .. The
functionωk(x) acquires new parameters now and is formally obtained by calculating the inverse Mellin
transform

ω(r)
1,2,k(x) =

1
2πi

i∞
Z

−i∞

ρ(r)
1,2(s−1)sin(πks)x−sds, k = ±1,±2,±3, . . . . (17)
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It turns our that for bothρ(r)
1,2(s) the integration in Eq.(17) can be performed:

a) TM1: for ρ(r)
1 (n) = (2rn)!, ω(r)

1,k(x) is a special case of earlier evaluation [8] and reads:

ω(r)
1,k(x) = 1

2rx
2r−1

2r
e−x

1
2r sin

[
kπ

(
2r−1

2r

)
+x1/2r tan

(
kπ
2r

)]
, (r > |k|)

= W(r)
1 (x)sin

[
kπ

(
2r−1

2r

)
+x1/2r tan

(
kπ
2r

)]
.

(18)

In Eq.(18) we notice a pleasant factorization ofW(r)
1 (x).

b) TM2: for ρ(r)
2 (n) = [(rn)!]2 the corresponding functionω(r)

2,k(x) has to be, in the first place, represented
as

ω(r)
2,k(x) =M −1[Γ(rs−s+1)

︸ ︷︷ ︸

I

Γ(rs−s+1)sin(πks)
︸ ︷︷ ︸

II

;x] (19)

which can be conceived as another case of Mellin convolution. A little thought gives the two partners to
be convoluted as

I →W(r/2)
1 (x) =

1

rx
r−1

r

e−x
1
r , (20)

(see Eq.(18)) and

II → ω(r/2)
1,k (x) = 1

rx
r−1

r
e−x

1
r sin

[
kπ

(
r−1

r

)
+x1/r tan

(
kπ
r

)]
, (21)

(compare Eq.(18)). Thus, the integral form ofω(r)
2,k(x) is

ω(r)
2,k(x) =

∞
Z

0

W(r/2)
1

(x
t

)

ω(r/2)
1,k (t)

dt
t

(22)

whose evaluation requires a number of changes of variables as well as the use of formula 2.5.37.2, p. 453
of vol.1 Ref.[12], but is essentially elementary. The final result is

ω(r)
2,k(x) = 2

rx
r−1

r
Re

[

eiπ( 1
2−k r−1

r )K0

(

2x1/2r
(
1+ i tan

(πk
r

))1/2
)]

≡ 2

rx
r−1

r
V(r)

k (x)

(23)

where we note a “near” factorization ofW(r)
2 (x).

Armed with explicit forms forω(r)
1,k(x) andω(r)

2,k(x) we are in position now to write down the families of
non-unique solutions. Their structure has the form: principal solution + const·ωk(x). More precisely:
TM1:

W̃(r)
1 (ε,k,x) = W(r)

1 (x)

[

1+ εsin

(

kπ
(

2r −1
2r

)

+x1/2r tan

(
kπ
2r

))]

(24)

for realε, |ε| < 1.
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TM2:

W̃(r)
2 (γ,k,x) = W(r)

2 (x)

[

1+ γ
V(r)

k (x)

K0(2x1/2r)

]

(25)

for r > 2|k|.
As

[

1+ γ V
(r)
k (x)

K0(2x1/2r )

]

is an oscillating function of bounded variation, a constantγ = γ(k, r) can be always

found to assure the overall positivity ofW̃(r)
2 (γ,k,x). The above technique for obtaining non-unique solu-

tions can be readily extended to moment sequences more general thanρ(r)
1,2(n). We shall simply mention

two such extensions without entering into details.

For ρ(r)
3 (n) = [(rn)!]3 we begin with the sequence(n!)3 for which the solution is

∞
Z

0

xnMeijerG([ [ ], [ ] ], [ [0,0,0], [ ] ],x)dx= (n!)3, (26)

where we use a convenient and self-explanatory notation forMeijer’s G-function borrowed from that of
computer algebra systems. The extension,via Eq. (4), leads to the principal solution

∞
Z

0

xn
[

1

rx
r−1

r

MeijerG
(

[ [ ], [ ] ], [[0,0,0], [ ]],x1/r
)]

dx= [(rn)!]3. (27)

The integrand in Eq. (27) is a positive function forx> 0 which cannot be represented by any other known
special function. It possesses an infinite series representation in terms of polygamma functions, which we
will not quote here. The Carleman sumS is convergent but the criterion C2 is not conclusive. Only the

criterion C3 permits to ascertain the non-uniqueness. The corresponding functionω(r)
3,k(x) is defined as

ω(r)
3,k(x) =M −1[Γ2(rs−s+1)

︸ ︷︷ ︸

I

Γ(rs−s+1)sin(πks)
︸ ︷︷ ︸

II

;x] (28)

which can be calculated as Mellin convolution of I→W(r)
2 (x) and II→ ω(r/2)

1,k (x), see Eqs. (18) and (23),
respectively.

As a final example consider the sequenceρ(r)
4 (n) = ρ(r)

1 (n)ρ(r)
2 (n). The corresponding Mellin convolu-

tion of two principal solutionsW(r)
1,2(x), see Eqs. (24) and (25), yields directly the principal solution for

ρ(r)
4 (n):

∞
R

0
xn

[

4r−1

r
√

πx
2r−1

r
MeijerG

(
[ [ ], [ ] ], [[r − 1

2, r, r, r], [ ]], 1
4x1/r

)
]

dx = (2rn)![(rn)!]2,

n = 0,1,2. . . , r = 1,2, . . . ,
(29)

which is non-unique by C3 only, as C2 remains inconlusive.
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6 Discussion and Conclusion
We have demonstrated a methodology for obtaining unique andnon-unique solutions of the Stieltjes
moment problem using the Mellin convolution method. Although the initial moment sequences were
simple and classical, one is rapidly forced to leave the realm of standard special functions, as the resulting
solutions are special cases of Meijer G-functions. In most cases they resist the check for non-uniqueness
via both the Carleman criterion C1 and the Krein criterion C2, and criterion C3 appears to be the only tool
to decide this question. We have generated parametrized families of non-unique solutions exemplified
here by Eqs. (18) and (23). Such functions are now calledStieltjes classes[34, 35] and their properties
are investigated.

Acknowledgments
We thank A. Gut, B. Chemin and H. L. Pedersen for discussions.We also wish to acknowledge support
from Agence Nationale de la Recherche (Paris, France) underProgram No. ANR-08-BLAN-0243-2 and
from PAN/CNRS Project PICS No.4339 (2008-2010). Two of us (P.B. and A.H.) wish to acknowledge
support from Polish Ministry of Science and Higher Education under Grants Nos. N202 061434 and N202
107 32/2832.

References
[1] N. I. Akhiezer,The Classical Moment Problem(Oliver and Boyd, Edinburgh and London, 1963).

[2] B. Simon, “The Classical Moment Problem as a Self-Adjoint Finite Difference Operator”, Adv.Math.
137 (1998) 82–203.

[3] Coherent states were originally proposed by Erwin Schroedinger in the early days of Quantum
Mechanics to describe wave packets obeying the time evolution close to the classical motion (E.
Schroedinger, “Der Stetige Ubergang von der Mikro-zur Makromechanik”, Naturwissenschaften14
(1926) 664–666). They were reintroduced more than half a century ago in seminal papers by R. J.
Glauber and others: R. J. Glauber, “The quantum theory of optical coherence”, Phys. Rev.130 (1963)
2529–2539, E. C. G. Sudarshan, “Equivalence of semiclassical and quantum mechanical description
of statistical light beams”, Phys. Rev. Lett.10 (1963) 277–279, and J. R. Klauder, “Continuous-
Representation Theory. I. Postulates of Continuous-Representation Theory”, J. Math. Phys.4 (1963)
1055–1058; “Continuous-Representation Theory. II. Generalized Relation between Quantum and
Classical Dynamics”, J. Math. Phys.4 (1963) 1058–1073. Such states are nowadays an important
tool widely used in quantum optics and in general investigations of quantization.

[4] J. R. Klauder and E. C. G. Sudarshan,Fundamentals of Quantum Optics(Benjamin, New York, 1968).

[5] J. R. Klauder and B-S. Skagerstam,Coherent States. Application in Physics and Mathematical Physics
(World Scientific, Singapore, 1985).

[6] A. O. Barut and L. Girardello, “New ’Coherent States’ Associated with Non-Compact Groups”,
Comm. Math. Phys.21 (1971) 41–55.



On certain non-unique solutions of the Stieltjes moment problem 9

[7] K. A. Penson and A. I. Solomon, “New generalized coherentstates”, J. Math.Phys.40 (1999) 2354–
2363.

[8] J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, “Mittag-Leffler coherent states”, J. Phys. A: Math.
Gen.32 (1999) 7543–7563.

[9] J. R. Klauder, K. A. Penson and J.-M. Sixdeniers, “Constructing coherent states through solutions of
Stieltjes and Hausdorff moment problems”, Phys. Rev. A64 (2001) 013817.

[10] K. A. Penson and A. I. Solomon, “Coherent states from combinatorial sequences”, inProceedings
2nd Int. Symposium ’Quantum Theory and Symmetries’, Kraków, Poland, 18-22 July 2001, pp.527–
530 (World Scientific, Singapore, 2002), arXiv:quant-ph/0111151.

[11] O. I. Marichev,Handbook of Integral Transforms of Higher Transcental Functions, Theory and
Algorithmic Tables(Ellis Horwood, New York, 1983).

[12] A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev,Integrals and Series, vol.1, ’Elementary func-
tions’, vol.2, ’Special functions’, vol.3, ’More special functions’ (Gordon and Breach, New York,
1998).

[13] F. Oberhettinger,Tables of Mellin Transforms(Springer Verlag, Berlin,1974).

[14] K. A. Penson, P. Blasiak, G. Duchamp, A. Horzela and A.I.Solomon , “Hierarchical Dobiński
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