On the maximum number of minimum total dominating sets in forests

Michael A. Henning1* Elena Mohr2 Dieter Rautenbach2

1 Department of Pure and Applied Mathematics, University of Johannesburg, South Africa
2 Institute of Optimization and Operations Research, Ulm University, Germany

We propose the conjecture that every tree with order n at least 2 and total domination number γ_t has at most $(n - \frac{\gamma_t}{2})^{\frac{\gamma_t}{2}}$ minimum total dominating sets. As a relaxation of this conjecture, we show that every forest F with order n, no isolated vertex, and total domination number γ_t has at most

$$\min \left\{ (8\sqrt{e})^n \left(\frac{n - \frac{\gamma_t}{2}}{\frac{\gamma_t}{2}} \right)^{\frac{\gamma_t}{2}}, (1 + \sqrt{2})^{n - \gamma_t}, 1.4865^n \right\}$$

minimum total dominating sets.

Keywords: Tree, forest, total domination, domination

1 Introduction

A set D of vertices of a graph G is a dominating set of G if every vertex of G that is not in D has a neighbor in D, and D is a total dominating set of G if every vertex of G has a neighbor in D. The minimum cardinalities of a dominating set of G and a total dominating set of G are the well studied $\gamma(G)$ and $\gamma_t(G)$, respectively. A (total) dominating set is minimal if no proper subset is a (total) dominating set. A dominating set of G of cardinality $\gamma(G)$ is a minimum dominating set of G, and a total dominating set of G of cardinality $\gamma_t(G)$ is a minimum total dominating set or γ_t-set of G. For a graph G, let $\sharp \gamma_t(G)$ be the number of minimum total dominating sets of G.

Providing a negative answer to a question of Fricke et al. [6], Bien [2] showed that trees with domination number γ can have more than 2^γ minimum dominating sets. In fact, Bien's example allows to construct forests with domination number γ that have up to 2.0598γ minimum dominating sets. In [1] Alvarado et al. showed that every forest with domination number γ has at most 2.4606γ minimum dominating sets, and they conjectured that every tree with domination number γ has $O\left(\frac{\gamma^2}{\ln \gamma}\right)$ minimum dominating sets.

*Research supported in part by the University of Johannesburg.

ISSN 1365–8050 © 2019 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License
In the present paper we consider analogous problems for total domination, which turns out to behave quite differently. As shown by the star \(K_{1,n-1}\) which has total domination number 2 but \(n-1\) minimum total dominating sets, the number of minimum total dominating sets of a tree is not bounded in terms of its total domination number alone, but in terms of both the order and the total domination number. In Figure 1 we illustrate what we believe to be the structure of trees \(T\) with given order \(n\) at least 2 and total domination number \(\gamma_t\) that maximize \(\sharp\gamma_t(T)\).

If \(\gamma_t\) is even, say \(\gamma_t = 2k\), then the tree \(T_{\text{even}}\) in the left of Figure 1 satisfies
\[
\sharp\gamma_t(T_{\text{even}}) = \prod_{i=1}^{k} (\ell_i + 1) \leq \left(\frac{n - \frac{\gamma_t}{2}}{2}\right)^{\frac{\gamma_t}{2}},
\]
where we use that the geometric mean is at most the arithmetic mean. Similarly, if \(\gamma_t\) is odd, say \(\gamma_t = 2k + 1\), then the tree \(T_{\text{odd}}\) in the right of Figure 1 satisfies
\[
\sharp\gamma_t(T_{\text{odd}}) = \sum_{i=1}^{k} \left(\prod_{j=1}^{i-1} \ell_j \prod_{j=i+1}^{k} (\ell_j + 1) \right) \leq k \left(\frac{n - k - 4}{k - 1}\right)^{k-1} = \left(\frac{\gamma_t - 1}{2}\right) \left(\frac{n - (\gamma_t + 7)}{2}\right)^{\frac{\gamma_t - 3}{2}}.
\]
In view of these estimates, we pose the following.

Conjecture 1. If a tree \(T\) has order \(n\) at least 2 and total domination number \(\gamma_t\), then
\[
\sharp\gamma_t(T) \leq \left(\frac{n - \frac{\gamma_t}{2}}{2}\right)^{\frac{\gamma_t}{2}}.
\]

As our first result, we show that Conjecture 1 holds up to a constant factor for bounded values of \(\gamma_t\). More precisely, we show the following.

Theorem 2. If a forest \(F\) has order \(n\), no isolated vertex, and total domination number \(\gamma_t\), then
\[
\sharp\gamma_t(F) \leq \left(8\sqrt{e}\right)^{\gamma_t} \left(\frac{n - \frac{\gamma_t}{2}}{2}\right)^{\frac{\gamma_t}{2}}.
\]
On the maximum number of minimum total dominating sets in forests

The well known estimate $1 + x \leq e^x$ implies

$$
\left(\frac{n - \gamma t}{\gamma t^2} \right)^{\frac{\gamma t}{2}} = \left(1 + \frac{n - \gamma t}{\gamma t^2} \right)^{\frac{\gamma t}{2}} \leq e^{n-\gamma t}.
$$

In the following theorem we can show an upper bound that is a little better. But since $1 + x << e^x$ for large x, the estimate is not good for fixed γt and large values of n. In this case Theorems 2 and 4 give better upper bounds.

Theorem 3. If a forest F has order n, no isolated vertex, and total domination number γt, then

$$
\#\gamma t(F) \leq \left(1 + \sqrt{2} \right)^{n-\gamma t},
$$

with equality if and only if every component of F is K_2.

Note that Theorem 3 is only tight for $\gamma t = n$, which corresponds to the fact that $1 + x = e^x$ only for $x = 0$. For n divisible by 5, the disjoint union of $\frac{n}{5}$ stars of order 5 yields a forest F with $\#\gamma t(F) = 4 \frac{n}{5} \approx 1.3195^n$. Our third result comes close to that value.

Theorem 4. If a forest F has order n and no isolated vertex, then $\#\gamma t(F) \leq 1.4865^n$.

Before we proceed to the proofs of our results, we mention some related research. Connolly et al. [4] gave bounds on the maximum number of minimum dominating sets for general graphs. The maximum number of minimal dominating sets was studied by Fomin et al. [5], and the maximum number of general dominating sets by Wagner [12] and Skupień [11], and by Bród and Skupień [3] for trees. Krzywokowski and Wagner [9] study the maximum number of total dominating sets for general graphs and trees. For similar research concerning independent sets we refer to [10, 13, 14].

The next section contains the proofs of our results. We use standard graph theoretical terminology and notation. An *endvertex* is a vertex of degree at most 1, and a *support vertex* is a vertex that is adjacent to an endvertex.

2 Proofs

For the proof of Theorem 2, we need the following lemma.

Lemma 5. If T is a tree of order n at least 2, and B is a set of vertices of T such that

(i) $|B \cap \{ u, v \}| \leq 1$ for every $uv \in E(T)$, and

(ii) $|B \cap N_T(u)| \leq 1$ for every $u \in V(T)$,

then $|B| \leq \frac{n}{2}$.

Proof: The proof is by induction on n. If T is a star, then (i) and (ii) imply $|B| \leq 1 \leq \frac{n}{2}$. Now, let T be a tree that is not a star; in particular, $n \geq 4$. Let $uvw \ldots$ be a longest path in T. By (i) and (ii), we have $|B \cap (N_T[u] \setminus \{w\})| \leq 1$. By induction applied to the tree $T' = T - (N_T[v] \setminus \{w\})$ and the set $B' = B \cap V(T')$, we obtain $|B| \leq |B'| + |B \cap (N_T[v] \setminus \{w\})| \leq \frac{n(T')}{2} + 1 \leq \frac{n}{2}$. \hfill \Box

We are now in a position to present the proof of Theorem 2.
Proof of Theorem 2: Let F be a forest of order n and total domination number γ_t such that $z\gamma_t(F)$ is as large as possible. Let D be a γ_t-set of F. Let F' arise by removing from F all endvertices of F that do not belong to D. For every $u \in D$, let $L(u) = N_F(u) \setminus N_{F'}(u)$ and $\ell(u) = |L(u)|$, that is, $L(u)$ is the set of neighbors of u in D that are endvertices of F that do not belong to D. We call a vertex u in D big if $\ell(u) \geq 2$, and we assume that – subject to the above conditions – the forest F and the set D are chosen such that the number k of big vertices is as small as possible.

Claim 1. No two big vertices are adjacent.

Proof of Claim 1: Suppose, for a contradiction, that u and v are adjacent big vertices. Let L' be a set of $\ell(u) - 1$ vertices in $L(u)$, and let $F' = F - \{ux : x \in L'\} + \{vx : x \in L'\}$, that is, we shift $\ell(u) - 1$ neighbors of u in $L(u)$ to v. Clearly, the vertices u and v both belong to every γ_t-set of F and also to every γ_t-set of F'. This easily implies that a set of vertices of F is a γ_t-set of F if and only if it is a γ_t-set of F'. It follows that D is a γ_t-set of F' and that $z\gamma_t(F) = z\gamma_t(F')$. Since F' and D lead to less than k big vertices, we obtain a contradiction to the choice of F and D. \qed

Claim 2. No two big vertices have a common neighbor in D.

Proof of Claim 2: Suppose, for a contradiction, that u and w are big vertices with a common neighbor v in D. Let

- z_u be the number of γ_t-sets of F that contain a vertex from $L(u)$,
- z_w be the number of γ_t-sets of F that contain a vertex from $L(w)$, and
- $z_{u,w}$ be the number of γ_t-sets of F that contain no vertex from $L(u) \cup L(w)$.

In view of v, no γ_t-set of F contains a vertex from both sets $L(u)$ and $L(w)$, which implies

$$z\gamma_t(F) = z_u + z_w + z_{u,w}.$$

Note that $\frac{z_u}{\ell(u)}$ is the number of subsets of $V(F) \setminus L(u)$ that can be extended to a γ_t-set of F by adding one vertex from $L(u)$. By symmetry, we may assume that $\frac{z_u}{\ell(u)} \leq \frac{z_w}{\ell(w)}$. Again, let L' be a set of $\ell(u) - 1$ vertices in $L(u)$, and let $F' = F - \{ux : x \in L'\} + \{vx : x \in L'\}$. Similarly as before, the vertices u and w both belong to every γ_t-set of F and also to every γ_t-set of F'. It follows that D is a γ_t-set of F', and that

$$z\gamma_t(F') = \frac{z_u}{\ell(u)} + \frac{z_w}{\ell(w)}(\ell(u) + \ell(w) - 1) + z_{u,w} \geq z_u + z_w + z_{u,w} = z\gamma_t(F).$$

Since F' and D lead to less than k big vertices, this contradicts the choice of F and D. \qed

Claim 3. $k \leq \frac{\gamma_t}{2}$.

Proof of Claim 3: This follows immediately by applying Lemma 5 to each component of $F[D]$, choosing B as the set of big vertices in that component. \qed
On the maximum number of minimum total dominating sets in forests

Let \(n' = n(F') \), let \(V'_1 \) be the set of endvertices of \(F' \), let \(n'_1 = |V'_1| \), and let \(m \) be the number of edges of \(F' \) between \(D \) and \(V(F') \setminus D \). Since the vertices in \(V'_1 \) are either endvertices of \(F \) that belong to \(D \) or are adjacent to an endvertex of \(F \), we obtain that \(V'_1 \subseteq D \). Since \(D \) is a total dominating set, we obtain

\[
n' - \gamma_t = |V(F') \setminus D| \leq m \leq \sum_{u \in D} (d_{F'}(u) - 1). \tag{1}
\]

Since \(F' \) is a forest with, say, \(\kappa \) components,

\[
n'_1 = 2\kappa + \sum_{u \in V(F') : d_{F'}(u) \geq 2} (d_{F'}(u) - 2)
\geq \sum_{u \in D : d_{F'}(u) \geq 2} (d_{F'}(u) - 2)
= \sum_{u \in D : d_{F'}(u) \geq 2} d_{F'}(u) - 2(\gamma_t - n'_1),
\]

which implies

\[
2\gamma_t - n'_1 \geq \sum_{u \in D : d_{F'}(u) \geq 2} d_{F'}(u). \tag{2}
\]

Now, we obtain

\[
n' \overset{(1)}{\leq} \sum_{u \in D} d_{F'}(u) = \sum_{u \in D : d_{F'}(u) \geq 2} d_{F'}(u) + n'_1 \overset{(2)}{\leq} 2\gamma_t. \tag{3}
\]

Let \(u_1, \ldots, u_k \) be the big vertices. By (3), the forest \(F'' = F - \bigcup_{i=1}^k L(u_i) \) has order at most \(3\gamma_t \). Let \(D'' \) be a set of vertices of \(F'' \) that is a subset of some \(\gamma_t \)-set \(D \) of \(F \). For every \(i \in \{1, \ldots, k\} \), if \(u_i \) has a neighbor in \(D'' \), then \(D \) contains no vertex from \(L(u_i) \), otherwise, the set \(D \) contains exactly one vertex from \(L(u_i) \). This implies that each of the \(2^{n(F'')} \) subsets of \(V(F'') \) can be extended to a \(\gamma_t \)-set of \(F \) in at most \(\prod_{i=1}^k \ell(u_i) \) many ways.

Since

(i) \(n(F'') \leq 3\gamma_t \),

(ii) the geometric mean is less or equal the arithmetic mean,

(iii) \(\sum_{i=1}^k \ell(u_i) = n - n(F'') \leq n - \gamma_t \leq n - \frac{n}{3} \),

(iv) \(\left(1 + \frac{\gamma_t - k}{k}\right)^k \leq e^{\frac{\gamma_t}{2} - k} \leq e^{\frac{\gamma_t}{2}} \), and

(v) \(\frac{n}{\gamma_t} \leq 1 \),
we obtain
\[\sharp_{\gamma_t}(F) \leq 2^{\gamma_t(F')} \prod_{i=1}^{k} \ell(u_i) \]
\[\leq 2^{3\gamma_t} \prod_{i=1}^{k} \ell(u_i) \]
\[\leq 2^{3\gamma_t} \left(\frac{1}{k} \sum_{i=1}^{k} \ell(u_i) \right)^k \]
\[\leq 2^{3\gamma_t} \left(\frac{n - \frac{2\gamma_t}{k}}{k} \right)^k \]
\[\leq 2^{3\gamma_t} \left(1 + \frac{\gamma_t}{k} - \frac{k}{k} \left(\frac{n - \frac{2\gamma_t}{k}}{n - \frac{2\gamma_t}{k}} \right) ^{\frac{k}{k}} \left(\frac{n - \frac{2\gamma_t}{k}}{\frac{2\gamma_t}{k}} \right) ^{\frac{k}{k}} \right) \]
\[\leq 2^{3\gamma_t} e^{\frac{n - \frac{2\gamma_t}{k}}{\frac{2\gamma_t}{k}}} \left(\frac{n - \frac{2\gamma_t}{k}}{\frac{2\gamma_t}{k}} \right) ^{\frac{k}{k}} \]
\[\leq 2^{3\gamma_t} e^{\frac{n - \frac{2\gamma_t}{k}}{\frac{2\gamma_t}{k}}} \left(\frac{n - \frac{2\gamma_t}{k}}{\frac{2\gamma_t}{k}} \right) ^{\frac{k}{k}} \]
\[\leq \left(8\sqrt{e} \right)^{\gamma_t} \left(\frac{n - \frac{2\gamma_t}{k}}{\frac{2\gamma_t}{k}} \right) ^{\frac{k}{k}} \]
which completes the proof.

There is clearly some room for lowering $8\sqrt{e}$ to a smaller constant. Since the dependence on γ_t would still be exponential, we did not exploit this for the sake of simplicity. It would be interesting to see whether the bound can be improved to
\[\left(1 + o \left(\frac{n}{\gamma_t} \right) \right) \left(\frac{n - \frac{2\gamma_t}{k}}{\frac{2\gamma_t}{k}} \right) ^{\frac{k}{k}} \]

Note that Theorem 2 implies
\[\sharp_{\gamma_t}(T) \leq \left(\frac{n - \frac{2\gamma_t}{k}}{\frac{2\gamma_t}{k}} \right) ^{\frac{k}{k}} + o(\frac{n}{\gamma_t}) \]

We proceed to our next proof.

Proof of Theorem 3: We proceed by induction on n. If $n = 2$, then $F = K_2$, $\gamma_t = 2$, and $\sharp_{\gamma_t}(F) = 1 = (1 + \sqrt{2})^0 = (1 + \sqrt{2})^{n - \gamma_t}$. Now, let $n \geq 3$.

Claim 1. If F contains a component T that is a star, then $\sharp_{\gamma_t}(F) \leq (1 + \sqrt{2})^{n - \gamma_t}$, with strict inequality if T has order at least 3.

Proof of Claim 1: Suppose that F contains a component T that is a star. Thus, $T = K_{1,t}$ for some $t \geq 1$. The forest $F' = F - V(T)$ has order $n' = n - t - 1$, no isolated vertex, and total domination number
\[
gamma'_t = \gamma_t - 2. \text{ By induction, we obtain}
\]
\[
2 \gamma_t(F) = \gamma_t(F') \leq t(1 + \sqrt{2})^{n' - \gamma'_t} = t(1 + \sqrt{2})^{n - t - 1 - (\gamma_t - 2)}
\]
\[
= (1 + \sqrt{2})^{n - \gamma_t} \cdot (t(1 + \sqrt{2})^{1 - t}) \leq (1 + \sqrt{2})^{n - \gamma_t},
\]
where we use \((1 + \sqrt{2})^{1 - t} \leq 1\) for \(t = 1\) and \(t \geq 2\). Furthermore, if \(t \geq 2\), then \((1 + \sqrt{2})^{1 - t} < 1\), in which case \(\gamma_t(F) < (1 + \sqrt{2})^{n - \gamma_t} \).

Claim 2. If \(F\) contains a component \(T\) of diameter 3, then \(2 \gamma_t(F) < (1 + \sqrt{2})^{n - \gamma_t}\).

Proof of Claim 2: Suppose that \(F\) contains a component \(T\) of diameter 3. Note that \(T\) has a unique minimum total dominating set. The forest \(F' = F - V(T)\) has order \(n' \leq n - 4\), no isolated vertex, and total domination number \(\gamma'_t = \gamma_t - 2\). By induction, we obtain
\[
2 \gamma_t(F) = 2 \gamma_t(F') \leq (1 + \sqrt{2})^{n' - \gamma'_t} \leq (1 + \sqrt{2})^{n - \gamma_t - 2} < (1 + \sqrt{2})^{n - \gamma_t}.
\]

By Claim 1 and Claim 2, we may assume that there is a component of \(F\) that has diameter at least 4, for otherwise the desired result follows. Let \(T\) be such a component of \(F\). Let \(uvwxy \ldots r\) be a longest path in \(T\), and consider \(T\) as rooted in \(r\). For a vertex \(z\) of \(T\), let \(V_z\) be the set that contains \(z\) and all its descendants.

Claim 3. If \(d_F(w) \geq 3\), then \(2 \gamma_t(F) < (1 + \sqrt{2})^{n - \gamma_t}\).

Proof of Claim 3: Suppose that \(d_F(w) \geq 3\), which implies that \(w\) belongs to every \(\gamma_t\)-set of \(F\), because either \(w\) is a support vertex or \(w\) is the only neighbor of two support vertices, that is no leaf. Let \(v'\) be a child of \(w\) distinct from \(v\). Let \(F' = F - V_{v'}\). If \(v'\) is an endvertex, then \(F'\) has order \(n' = n - 1\), no isolated vertex, and total domination number \(\gamma'_t = \gamma_t - 1\). By induction, we obtain
\[
2 \gamma_t(F) \leq 2 \gamma_t(F') \leq (1 + \sqrt{2})^{n' - \gamma'_t} = (1 + \sqrt{2})^{n - \gamma_t - 1} < (1 + \sqrt{2})^{n - \gamma_t}.
\]

If \(v'\) is not an endvertex, then \(F'\) has order \(n' \leq n - 2\), no isolated vertex, and total domination number \(\gamma'_t = \gamma_t - 1\). Note that if \(T\) is a minimum total dominating set of \(F\), \(T - \{v\}\) is a total dominating set of \(F'\), since \(v'\) is a support vertex and \(v\) and \(w\) are part of every minimum total dominating set of \(F\). By induction, we obtain
\[
2 \gamma_t(F) \leq 2 \gamma_t(F') \leq (1 + \sqrt{2})^{n' - \gamma'_t} \leq (1 + \sqrt{2})^{n - \gamma_t - 1} < (1 + \sqrt{2})^{n - \gamma_t}.
\]

In both cases, \(2 \gamma_t(F) < (1 + \sqrt{2})^{n - \gamma_t}\).

By Claim 3, we may assume that \(d_F(w) = 2\), for otherwise the desired result holds.

Claim 4. If \(d_F(v) \geq 3\), then \(2 \gamma_t(F) < (1 + \sqrt{2})^{n - \gamma_t}\).

Proof of Claim 4: Suppose that \(\ell = d_F(v) - 1 \geq 2\). Let \(F' = F - V_w, F'' = F - (N_F(v) \setminus \{v\})\), and \(F''' = F - (V_w \cup \{x\})\). See Figure 2 for an illustration.
The forest F

The forest F'

The forest F''

The forest F'''

\textbf{Fig. 2:} The important details of the forests F, F', F'' and F'''.

- There are at most $\ell \cdot \sharp\gamma_t(F')$ many γ_t-sets of F that contain v and a child of v but do not contain w. Furthermore, if such a γ_t-set exists, then F' has order $n' = n - \ell - 2$, no isolated vertex, and total domination number $\gamma_t' = \gamma_t - 2$.

- There are at most $\sharp\gamma_t(F'')$ many γ_t-sets of F that contain v, w, and x. Furthermore, if such a γ_t-set exists, then F'' has order $n'' = n - \ell$, no isolated vertex, and total domination number $\gamma_t'' = \gamma_t - 1$.

- There are at most $\sharp\gamma_t(F''')$ many γ_t-sets of F that contain both v and w but do not contain x. Furthermore, if such a γ_t-set exists, then F''' has order $n''' = n - \ell - 3$, no isolated vertex, and total domination number $\gamma_t''' = \gamma_t - 2$.

Since all γ_t-sets of F are of one of the three considered types, we obtain, by induction,

\[
\sharp\gamma_t(F) \leq \ell \cdot \sharp\gamma_t(F') + \sharp\gamma_t(F'') + \sharp\gamma_t(F''') \\
\leq \ell(1 + \sqrt{2})^{n-\ell-2-(\gamma_t-2)} + (1 + \sqrt{2})^{n-\ell-(\gamma_t-1)} + (1 + \sqrt{2})^{n-\ell-3-(\gamma_t-2)} \\
= (1 + \sqrt{2})^{n-\gamma_t}(1 + \sqrt{2})^{-\ell-1}(\ell(1 + \sqrt{2}) + (1 + \sqrt{2})^2 + 1) \\
< (1 + \sqrt{2})^{n-\gamma_t},
\]

where we use $\ell(1 + \sqrt{2}) + (1 + \sqrt{2})^2 + 1 < (1 + \sqrt{2})^{\ell+1}$ for all $\ell \geq 2$. \qed

By Claim 4, we may assume that $d_F(v) = 2$, for otherwise the desired result holds.

\textbf{Claim 5.} If x is a support vertex, then $\sharp\gamma_t(F) < (1 + \sqrt{2})^{n-\gamma_t}$.

\textbf{Proof of Claim 5:} Suppose that x is a support vertex, which implies that v and x belong to every γ_t-set of F. Let $F' = F - V_w$ and $F'' = F - (N_F[v] \cup N_F[x])$.

On the maximum number of minimum total dominating sets in forests

- There are at most \(\gamma_{t}(F') \) many \(\gamma_{t} \)-sets of \(F \) that contain \(u \) but do not contain \(w \). Furthermore, if such a \(\gamma_{t} \)-set exists, then \(F' \) has order \(n' = n - 3 \), no isolated vertex, and total domination number \(\gamma'_{t} = \gamma_{t} - 2 \).
- There are at most \(\gamma_{t}(F') \) many \(\gamma_{t} \)-sets of \(F \) that contain \(w \) and at least one other neighbour of \(x \). Furthermore, if such a \(\gamma_{t} \)-set exists, then \(F' \) has order \(n' = n - 3 \), no isolated vertex, and total domination number \(\gamma'_{t} = \gamma_{t} - 2 \).
- There are at most \(\gamma_{t}(F'') \) many \(\gamma_{t} \)-sets of \(F \) that contain \(w \) and no other neighbour of \(x \). Furthermore, if such a \(\gamma_{t} \)-set exists, then \(F'' \) has order \(n'' = n - 5 \), no isolated vertex, and total domination number \(\gamma''_{t} = \gamma_{t} - 3 \).

Since all \(\gamma_{t} \)-sets of \(F \) are of one of the three considered types, we obtain, by induction,

\[
\gamma_{t}(F) \leq 2\gamma_{t}(F') + \gamma_{t}(F'') < 2(1 + \sqrt{2})^{n-3-(\gamma-2)} + (1 + \sqrt{2})^{n-5-(\gamma-3)} = (1 + \sqrt{2})^{n-\gamma-2} + (1 + \sqrt{2})^{n-\gamma-3},
\]

where we use \(2(1 + \sqrt{2}) + 1 = (1 + \sqrt{2})^2 \). Note that in \(F' \) there is a component that contains a path of length two, in particular not every component of \(F' \) is a \(K_2 \). \(\square \)

By Claim 5, we may assume that \(x \) is not a support vertex, for otherwise the desired result holds.

Claim 6. If \(x \) has a child that is a support vertex, then \(\gamma_{t}(F) < (1 + \sqrt{2})^{n-\gamma} \).

Proof of Claim 6: Suppose that \(x \) has a child \(w' \) that is a support vertex. Clearly, the vertex \(w' \) is distinct from \(w \) and belongs to every \(\gamma_{t} \)-set of \(F \). The forest \(F' = F - V_w \) has order \(n' = n - 3 \), no isolated vertex, and total domination number \(\gamma'_{t} = \gamma_{t} - 2 \). By induction, we obtain

\[
\gamma_{t}(F) = 2\gamma_{t}(F') \leq 2(1 + \sqrt{2})^{n-3-(\gamma-2)} = (1 + \sqrt{2})^{n-\gamma-2}2(1 + \sqrt{2})^{-1} < (1 + \sqrt{2})^{n-\gamma},
\]

where we use \(2 < (1 + \sqrt{2}) \). \(\square \)

By Claim 6, we may assume that no child of \(x \) is a support vertex, for otherwise the desired result holds. Together with Claims 3 and 4, we may assume that the subforest of \(F \) induced by \(V_x \) arises from a star \(K_{1,q} \) for some \(q \geq 1 \) by subdividing every edge twice. Let \(F' = F - V_x \), \(F'' = F - (V_x \cup \{y\}) \), and \(F''' = F - (V_x \cup N_F[y]) \).

- There are at most \(2^{q}\gamma_{t}(F') \) many \(\gamma_{t} \)-sets of \(F \) that do not contain \(x \). Furthermore, if such a \(\gamma_{t} \)-set exists, then \(F' \) has order \(n' = n - 3q - 1 \), no isolated vertex, and total domination number \(\gamma'_{t} = \gamma_{t} - 2q \).
- There are at most \((2^q - 1)\gamma_{t}(F'') \) many \(\gamma_{t} \)-sets of \(F \) that contain \(x \) but do not contain \(y \). Furthermore, if such a \(\gamma_{t} \)-set exists, then \(F'' \) has order \(n'' = n - 3q - 2 \), no isolated vertex, and total domination number \(\gamma''_{t} = \gamma_{t} - 2q - 1 \).
- There are at most \(2^{q}\gamma_{t}(F''') \) many \(\gamma_{t} \)-sets of \(F \) that contain both \(x \) and \(y \). Furthermore, if such a \(\gamma_{t} \)-set exists, then \(F''' \) has order \(n''' \leq n - 3q - 3 \), no isolated vertex, and total domination number \(\gamma'''_{t} = \gamma_{t} - 2q - 2 \).
Since all \(\gamma_t \)-sets of \(F \) are of one of the three considered types, we obtain, by induction,

\[
\sharp \gamma_t(F) \leq 2^q \sharp \gamma_t(F') + (2^q - 1) \sharp \gamma_t(F'') + 2^q \sharp \gamma_t(F''')
\]

\[
\leq 2^q(1 + \sqrt{2})^{n-3q-1-\gamma_t} + (2^q - 1)(1 + \sqrt{2})^{n-3q-2-\gamma_t} + 2^q(1 + \sqrt{2})^{n-3q-3-\gamma_t}
\]

\[
= (1 + \sqrt{2})^{n-\gamma_t} (1 + \sqrt{2})^{-q-1}(2^q + 2^q - 1 + 2^q)
\]

\[
< (1 + \sqrt{2})^{n-\gamma_t},
\]

where we use \(3 \cdot 2^q - 1 < (1 + \sqrt{2})^{q+1} \) for all \(q \geq 1 \). This completes the proof of Theorem 3.

We proceed to the proof of Theorem 4, which uses exactly the same approach as Theorem 3.

Proof of Theorem 4: By induction on \(n \), we show that \(\sharp \gamma_t(F) \leq \beta^n \), where \(\beta \) is the unique positive real solution of the equation \(2\beta + \beta^3 + 1 = \beta^5 \), that is, \(\beta \approx 1.4865 \). If \(n = 2 \), then \(F = K_2 \) and \(\sharp \gamma_t(F) = 1 < \beta^2 \). Now, let \(n \geq 3 \).

Claim 1. If \(F \) contains a component \(T \) that is a star, then \(\sharp \gamma_t(F) \leq \beta^n \).

Proof of Claim 1: Suppose that \(F \) contains a component \(T \) that is a star. Thus, \(T = K_{1,t} \) for some \(t \geq 1 \). The forest \(F' = F - V(T) \) has order \(n' = n - t - 1 \) and no isolated vertex. By induction, we obtain \(\sharp \gamma_t(F) = t \cdot \sharp \gamma_t(F') \leq t \beta^{n-1} \leq \beta^n \), where we use \(t \leq \beta^{t+1} \).

Claim 2. If \(F \) contains a component \(T \) of diameter 3, then \(\sharp \gamma_t(F) \leq \beta^n \).

Proof of Claim 2: Suppose that \(F \) contains a component \(T \) of diameter 3. The forest \(F' = F - V(T) \) has order \(n' \leq n - 4 \) and no isolated vertex. By induction, we obtain \(\sharp \gamma_t(F) = \sharp \gamma_t(F') \leq \beta^{n'} \leq \beta^n \).

By Claim 1 and Claim 2, we may assume that every component of \(F \) has diameter at least 4, for otherwise the desired result follows. Let \(T \) be an arbitrary component of \(F \). Let \(uvwx \ldots r \) be a longest path in \(T \), and consider \(T \) as rooted in \(r \). For a vertex \(z \) of \(T \), let \(V_z \) be the set that contains \(z \) and all its descendants.

Claim 3. If \(d_F(w) \geq 3 \), then \(\sharp \gamma_t(F) \leq \beta^n \).

Proof of Claim 3: Suppose that \(d_F(w) \geq 3 \), which implies that \(w \) belongs to every \(\gamma_t \)-set of \(F \). Let \(v' \) be a child of \(w \) distinct from \(v \). The forest \(F' = F - V_v \) has order \(n' < n \) and no isolated vertex. Since \(\sharp \gamma_t(F) \leq \sharp \gamma_t(F') \), we obtain, by induction, \(\sharp \gamma_t(F) \leq \beta^{n'} \leq \beta^n \).

By Claim 3, we may assume that \(d_F(w) = 2 \), for otherwise the desired result holds.

Claim 4. If \(d_F(v) \geq 3 \), then \(\sharp \gamma_t(F) \leq \beta^n \).

Proof of Claim 4: Suppose that \(\ell = d_F(v) - 1 \geq 2 \). Arguing exactly as in the proof of Claim 4 in the proof of Theorem 3 using the forests \(F', F'' \), and \(F''' \), we obtain, by induction,

\[
\sharp \gamma_t(F) \leq \ell \cdot \sharp \gamma_t(F') + \sharp \gamma_t(F'') + \sharp \gamma_t(F''')
\]

\[
\leq \ell \beta^{n-\ell-2} + \beta^n t + \beta^n t - 3
\]

\[
= \beta^n \beta^{-\ell-3} (\ell \beta + \beta^3 + 1)
\]

\[
\leq \beta^n,
\]
On the maximum number of minimum total dominating sets in forests

where we use \(\ell \beta + \beta^3 + 1 \leq \beta^{\ell+3} \) for all \(\ell \geq 2 \); in fact, this inequality is the reason for the specific choice of \(\beta \). \(\square \)

By Claim 4, we may assume that \(d_F(v) = 2 \), for otherwise the desired result holds.

Claim 5. If \(x \) is a support vertex, then \(\sharp \gamma_t(F) \leq \beta^n \).

Proof of Claim 5: Suppose that \(x \) is a support vertex. Arguing exactly as in the proof of Claim 5 in the proof of Theorem 3 using the forests \(F' \) and \(F'' \), we obtain, by induction,

\[
\sharp \gamma_t(F) \leq 2\sharp \gamma_t(F') + \sharp \gamma_t(F'') \leq 2\beta^{n-3} + \beta^{n-5} = \beta^n \beta^{-5}(2\beta^2 + 1) \leq \beta^n,
\]

where we use \(2\beta^2 + 1 \leq \beta^5 \). \(\square \)

By Claim 5, we may assume that \(x \) is not a support vertex, for otherwise the desired result holds.

Claim 6. If \(x \) has a child that is a support vertex, then \(\sharp \gamma_t(F) \leq \beta^n \).

Proof of Claim 6: Suppose that \(x \) has a child \(w' \) that is a support vertex. Arguing exactly as in the proof of Claim 6 in the proof of Theorem 3 using the forest \(F' \), we obtain, by induction,

\[
\sharp \gamma_t(F) = 2\sharp \gamma_t(F') \leq 2\beta^{n-3} = \beta^n 2\beta^{-3} \leq \beta^n,
\]

where we use \(2 < \beta^3 \). \(\square \)

Now, arguing exactly as at the end of the proof of Theorem 3 using the forests \(F' \), \(F'' \), and \(F''' \), we obtain, by induction,

\[
\sharp \gamma_t(F) \leq 2^q \sharp \gamma_t(F') + (2^q - 1)\sharp \gamma_t(F'') + 2^q \sharp \gamma_t(F''')
\]
\[
\leq 2^q \beta^{n-3q-1} + (2^q - 1)\beta^{n-3q-2} + 2^q \beta^{n-3q-3}
\]
\[
= \beta^n \beta^{-3q-3}(2^q \beta^2 + (2^q - 1)\beta + 2^q)
\]
\[
\leq \beta^n \beta^{-3q-3}2^q (\beta^2 + \beta + 1)
\]
\[
\leq \beta^n,
\]

where we use \(2^q (\beta^2 + \beta + 1) \leq \beta^{3q+3} \) for all \(q \geq 1 \). \(\square \)

References

[2] A. Bien, Properties of gamma graphs of trees, presentation at the 17th Workshop on Graph Theory Colourings, Independence and Domination (CID 2017), Piechowice, Poland.

