On the maximum number of minimum total dominating sets in forests

Michael A. Henning ${ }^{1 *} \quad$ Elena Mohr ${ }^{2} \quad$ Dieter Rautenbach ${ }^{2}$
${ }^{1}$ Department of Pure and Applied Mathematics, University of Johannesburg, South Africa
${ }^{2}$ Institute of Optimization and Operations Research, Ulm University, Germany

received $19^{\text {th }}$ Aug. 2018, revised $18^{\text {th }}$ Dec. 2018, accepted $11^{\text {th }}$ Jan. 2019.

We propose the conjecture that every tree with order n at least 2 and total domination number γ_{t} has at most $\left(\frac{n-\frac{\gamma t}{2}}{\frac{\gamma t}{2}}\right)^{\frac{\gamma t}{2}}$ minimum total dominating sets. As a relaxation of this conjecture, we show that every forest F with order n, no isolated vertex, and total domination number γ_{t} has at most

$$
\min \left\{(8 \sqrt{e})^{\gamma_{t}}\left(\frac{n-\frac{\gamma t}{2}}{\frac{\gamma t}{2}}\right)^{\frac{\gamma t}{2}},(1+\sqrt{2})^{n-\gamma_{t}}, 1.4865^{n}\right\}
$$

minimum total dominating sets.
Keywords: Tree, forest, total domination, domination

1 Introduction

A set D of vertices of a graph G is a dominating set of G if every vertex of G that is not in D has a neighbor in D, and D is a total dominating set of G if every vertex of G has a neighbor in D. The minimum cardinalities of a dominating set of G and a total dominating set of G are the well studied [7, 8] domination number $\gamma(G)$ of G and the total domination number $\gamma_{t}(G)$ of G, respectively. A (total) dominating set is minimal if no proper subset is a (total) dominating set. A dominating set of G of cardinality $\gamma(G)$ is a minimum dominating set of G, and a total dominating set of G of cardinality $\gamma_{t}(G)$ is a minimum total dominating set or γ_{t}-set of G. For a graph G, let $\sharp \gamma_{t}(G)$ be the number of minimum total dominating sets of G.

Providing a negative answer to a question of Fricke et al. [6], Bien [2] showed that trees with domination number γ can have more than 2^{γ} minimum dominating sets. In fact, Bień's example allows to construct forests with domination number γ that have up to 2.0598^{γ} minimum dominating sets. In [1] Alvarado et al. showed that every forest with domination number γ has at most 2.4606^{γ} minimum dominating sets, and they conjectured that every tree with domination number γ has $O\left(\frac{\gamma 2^{\gamma}}{\ln \gamma}\right)$ minimum dominating sets.

[^0]In the present paper we consider analogous problems for total domination, which turns out to behave quite differently. As shown by the star $K_{1, n-1}$ which has total domination number 2 but $n-1$ minimum total dominating sets, the number of minimum total dominating sets of a tree is not bounded in terms of its total domination number alone, but in terms of both the order and the total domination number. In Figure 1 we illustrate what we believe to be the structure of trees T with given order n at least 2 and total domination number γ_{t} that maximize $\sharp \gamma_{t}(T)$.

Fig. 1: For the tree $T_{\text {even }}$ on the left, we have $k=\frac{\gamma_{t}}{2}, 1 \leq \ell_{1}, \ldots, \ell_{k}$, and $\left(\ell_{1}+1\right)+\ldots+\left(\ell_{k}+1\right)=n-k$, while for the tree $T_{\text {odd }}$ on the right, we have $k=\frac{\gamma_{t}-1}{2}, 1 \leq \ell_{1}, \ldots, \ell_{k}$, and $\left(\ell_{1}+1\right)+\ldots+\left(\ell_{k}+1\right)=n-k-2$.

If γ_{t} is even, say $\gamma_{t}=2 k$, then the tree $T_{\text {even }}$ in the left of Figure 1 satisfies

$$
\sharp \gamma_{t}\left(T_{\text {even }}\right)=\prod_{i=1}^{k}\left(\ell_{i}+1\right) \leq\left(\frac{n-\frac{\gamma_{t}}{2}}{\frac{\gamma t}{2}}\right)^{\frac{\gamma t}{2}},
$$

where we use that the geometric mean is at most the arithmetic mean. Similarly, if γ_{t} is odd, say $\gamma_{t}=$ $2 k+1$, then the tree $T_{\text {odd }}$ in the right of Figure 1 satisfies

$$
\sharp \gamma_{t}\left(T_{\mathrm{odd}}\right)=\sum_{i=1}^{k}\left(\prod_{j=1}^{i-1} \ell_{j} \prod_{j=i+1}^{k}\left(\ell_{j}+1\right)\right) \leq k\left(\frac{n-k-4}{k-1}\right)^{k-1}=\left(\frac{\gamma_{t}-1}{2}\right)\left(\frac{n-\left(\frac{\gamma_{t}+7}{2}\right)}{\frac{\gamma_{t}-3}{2}}\right)^{\frac{\gamma_{t}-3}{2}}
$$

In view of these estimates, we pose the following.
Conjecture 1. If a tree T has order n at least 2 and total domination number γ_{t}, then

$$
\sharp \gamma_{t}(T) \leq\left(\frac{n-\frac{\gamma_{t}}{2}}{\frac{\gamma_{t}}{2}}\right)^{\frac{\gamma_{t}}{2}}
$$

As our first result, we show that Conjecture 1 holds up to a constant factor for bounded values of γ_{t}. More precisely, we show the following.
Theorem 2. If a forest F has order n, no isolated vertex, and total domination number γ_{t}, then

$$
\sharp \gamma_{t}(F) \leq(8 \sqrt{e})^{\gamma_{t}}\left(\frac{n-\frac{\gamma_{t}}{2}}{\frac{\gamma_{t}}{2}}\right)^{\frac{\gamma_{t}}{2}}
$$

The well known estimate $1+x \leq e^{x}$ implies

$$
\left(\frac{n-\frac{\gamma_{t}}{2}}{\frac{\gamma_{t}}{2}}\right)^{\frac{\gamma_{t}}{2}}=\left(1+\frac{n-\gamma_{t}}{\frac{\gamma_{t}}{2}}\right)^{\frac{\gamma_{t}}{2}} \leq e^{n-\gamma_{t}}
$$

In the following theorem we can show an upper bound that is a little better. But since $1+x \ll e^{x}$ for large x, the estimate is not good for fixed γ_{t} and large values of n. In this case Theorems 2 and 4 give better upper bounds.
Theorem 3. If a forest F has order n, no isolated vertex, and total domination number γ_{t}, then

$$
\sharp \gamma_{t}(F) \leq(1+\sqrt{2})^{n-\gamma_{t}},
$$

with equality if and only if every component of F is K_{2}.
Note that Theorem 3 is only tight for $\gamma_{t}=n$, which corresponds to the fact that $1+x=e^{x}$ only for $x=0$. For n divisible by 5 , the disjoint union of $\frac{n}{5}$ stars of order 5 yields a forest F with $\sharp \gamma_{t}(F)=4^{\frac{n}{5}} \approx$ 1.3195^{n}. Our third result comes close to that value.
Theorem 4. If a forest F has order n and no isolated vertex, then $\sharp \gamma_{t}(F) \leq 1.4865^{n}$.
Before we proceed to the proofs of our results, we mention some related research. Connolly et al. [4] gave bounds on the maximum number of minimum dominating sets for general graphs. The maximum number of minimal dominating sets was studied by Fomin et al. [5], and the maximum number of general dominating sets by Wagner [12] and Skupień [11], and by Bród and Skupień [3] for trees. Krzywkowski and Wagner [9] study the maximum number of total dominating sets for general graphs and trees. For similar research concerning independent sets we refer to $[10,13,14]$.

The next section contains the proofs of our results. We use standard graph theoretical terminology and notation. An endvertex is a vertex of degree at most 1 , and a support vertex is a vertex that is adjacent to an endvertex.

2 Proofs

For the proof of Theorem 2, we need the following lemma.
Lemma 5. If T is a tree of order n at least 2 , and B is a set of vertices of T such that
(i) $|B \cap\{u, v\}| \leq 1$ for every $u v \in E(T)$, and
(ii) $\left.\mid B \cap N_{T}(u)\right\} \mid \leq 1$ for every $u \in V(T)$,
then $|B| \leq \frac{n}{2}$.
Proof: The proof is by induction on n. If T is a star, then (i) and (ii) imply $|B| \leq 1 \leq \frac{n}{2}$. Now, let T be a tree that is not a star; in particular, $n \geq 4$. Let $u v w \ldots$ be a longest path in T. By (i) and (ii), we have $\left|B \cap\left(N_{T}[v] \backslash\{w\}\right)\right| \leq 1$. By induction applied to the tree $T^{\prime}=T-\left(N_{T}[v] \backslash\{w\}\right)$ and the set $B^{\prime}=B \cap V\left(T^{\prime}\right)$, we obtain $|B| \leq\left|B^{\prime}\right|+\left|B \cap\left(N_{T}[v] \backslash\{w\}\right)\right| \leq \frac{n\left(T^{\prime}\right)}{2}+1 \leq \frac{n}{2}$.

We are now in a position to present the proof of Theorem 2.

Proof of Theorem 2: Let F be a forest of order n and total domination number γ_{t} such that $\sharp \gamma_{t}(F)$ is as large as possible. Let D be a γ_{t}-set of F. Let F^{\prime} arise by removing from F all endvertices of F that do not belong to D. For every $u \in D$, let $L(u)=N_{F}(u) \backslash N_{F^{\prime}}(u)$ and $\ell(u)=|L(u)|$, that is, $L(u)$ is the set of neighbors of u in D that are endvertices of F that do not belong to D. We call a vertex u in D big if $\ell(u) \geq 2$, and we assume that - subject to the above conditions - the forest F and the set D are chosen such that the number k of big vertices is as small as possible.
Claim 1. No two big vertices are adjacent.
Proof of Claim 1: Suppose, for a contradiction, that u and v are adjacent big vertices. Let L^{\prime} be a set of $\ell(u)-1$ vertices in $L(u)$, and let $F^{\prime}=F-\left\{u x: x \in L^{\prime}\right\}+\left\{v x: x \in L^{\prime}\right\}$, that is, we shift $\ell(u)-1$ neighbors of u in $L(u)$ to v. Clearly, the vertices u and v both belong to every γ_{t}-set of F and also to every γ_{t}-set of F^{\prime}. This easily implies that a set of vertices of F is a γ_{t}-set of F if and only if it is a γ_{t}-set of F^{\prime}. It follows that D is a γ_{t}-set of F^{\prime} and that $\sharp \gamma_{t}(F)=\sharp \gamma_{t}\left(F^{\prime}\right)$. Since F^{\prime} and D lead to less than k big vertices, we obtain a contradiction to the choice of F and D.

Claim 2. No two big vertices have a common neighbor in D.
Proof of Claim 2: Suppose, for a contradiction, that u and w are big vertices with a common neighbor v in D. Let

- \sharp_{u} be the number of γ_{t}-sets of F that contain a vertex from $L(u)$,
- \sharp_{w} be the number of γ_{t}-sets of F that contain a vertex from $L(w)$, and
- $\sharp \bar{u}, \bar{w}$ be the number of γ_{t}-sets of F that contain no vertex from $L(u) \cup L(w)$.

In view of v, no γ_{t}-set of F contains a vertex from both sets $L(u)$ and $L(w)$, which implies

$$
\sharp \gamma_{t}(F)=\sharp u+\not \sharp_{w}+\sharp \bar{u}, \bar{w} .
$$

Note that $\frac{\sharp_{u}}{\ell(u)}$ is the number of subsets of $V(F) \backslash L(u)$ that can be extended to a γ_{t}-set of F by adding one vertex from $L(u)$. By symmetry, we may assume that $\frac{\sharp u}{\ell(u)} \leq \frac{\sharp w}{\ell(w)}$. Again, let L^{\prime} be a set of $\ell(u)-1$ vertices in $L(u)$, and let $F^{\prime}=F-\left\{u x: x \in L^{\prime}\right\}+\left\{w x: x \in L^{\prime}\right\}$. Similarly as before, the vertices u and w both belong to every γ_{t}-set of F and also to every γ_{t}-set of F^{\prime}. It follows that D is a γ_{t}-set of F^{\prime}, and that

$$
\sharp \gamma_{t}\left(F^{\prime}\right)=\frac{\sharp u}{\ell(u)}+\frac{\sharp w}{\ell(w)}(\ell(u)+\ell(w)-1)+\sharp \bar{u}, \bar{w} \geq \sharp u+\sharp w+\sharp \bar{u}, \bar{w}=\sharp \gamma_{t}(F) .
$$

Since F^{\prime} and D lead to less than k big vertices, this contradicts the choice of F and D.
Claim 3. $k \leq \frac{\gamma_{t}}{2}$.
Proof of Claim 3: This follows immediately by applying Lemma 5 to each component of $F[D]$, choosing B as the set of big vertices in that component.

Let $n^{\prime}=n\left(F^{\prime}\right)$, let V_{1}^{\prime} be the set of endvertices of F^{\prime}, let $n_{1}^{\prime}=\left|V_{1}^{\prime}\right|$, and let m be the number of edges of F^{\prime} between D and $V\left(F^{\prime}\right) \backslash D$. Since the vertices in V_{1}^{\prime} are either endvertices of F that belong to D or are adjacent to an endvertex of F, we obtain that $V_{1}^{\prime} \subseteq D$. Since D is a total dominating set, we obtain

$$
\begin{equation*}
n^{\prime}-\gamma_{t}=\left|V\left(F^{\prime}\right) \backslash D\right| \leq m \leq \sum_{u \in D}\left(d_{F^{\prime}}(u)-1\right) \tag{1}
\end{equation*}
$$

Since F^{\prime} is a forest with, say, κ components,

$$
\begin{aligned}
n_{1}^{\prime} & =2 \kappa+\sum_{u \in V\left(F^{\prime}\right): d_{F^{\prime}}(u) \geq 2}\left(d_{F^{\prime}}(u)-2\right) \\
& \geq \sum_{u \in D: d_{F^{\prime}}(u) \geq 2}\left(d_{F^{\prime}}(u)-2\right) \\
& =\sum_{u \in D: d_{F^{\prime}}(u) \geq 2} d_{F^{\prime}}(u)-2\left(\gamma_{t}-n_{1}^{\prime}\right)
\end{aligned}
$$

which implies

$$
\begin{equation*}
2 \gamma_{t}-n_{1}^{\prime} \geq \sum_{u \in D: d_{F^{\prime}}(u) \geq 2} d_{F^{\prime}}(u) \tag{2}
\end{equation*}
$$

Now, we obtain

$$
\begin{equation*}
n^{\prime} \stackrel{(1)}{\leq} \sum_{u \in D} d_{F^{\prime}}(u)=\sum_{u \in D: d_{F^{\prime}}(u) \geq 2} d_{F^{\prime}}(u)+n_{1}^{\prime} \stackrel{(2)}{\leq} 2 \gamma_{t} \tag{3}
\end{equation*}
$$

Let u_{1}, \ldots, u_{k} be the big vertices. By (3), the forest $F^{\prime \prime}=F-\bigcup_{i=1}^{k} L\left(u_{i}\right)$ has order at most $3 \gamma_{t}$. Let $D^{\prime \prime}$ be a set of vertices of $F^{\prime \prime}$ that is a subset of some γ_{t}-set D of F. For every $i \in\{1, \ldots, k\}$, if u_{i} has a neighbor in $D^{\prime \prime}$, then D contains no vertex from $L\left(u_{i}\right)$, otherwise, the set D contains exactly one vertex from $L\left(u_{i}\right)$. This implies that each of the $2^{n\left(F^{\prime \prime}\right)}$ subsets of $V\left(F^{\prime \prime}\right)$ can be extended to a γ_{t}-set of F in at most $\prod_{i=1}^{k} \ell\left(u_{i}\right)$ many ways.

Since
(i) $n\left(F^{\prime \prime}\right) \leq 3 \gamma_{t}$,
(ii) the geometric mean is less or equal the arithmetic mean,
(iii) $\sum_{i=1}^{k} \ell\left(u_{i}\right)=n-n\left(F^{\prime \prime}\right) \leq n-\gamma_{t} \leq n-\frac{\gamma_{t}}{2}$,
(iv) $\left(1+\frac{\frac{\gamma t}{2}-k}{k}\right)^{k} \leq e^{\frac{\gamma t}{2}-k} \leq e^{\frac{\gamma t}{2}}$, and
(v) $\frac{\frac{\gamma_{t}}{2}}{n-\frac{\gamma_{t}}{2}} \leq 1$,
we obtain

$$
\begin{aligned}
& \sharp \gamma_{t}(F) \quad \leq \quad 2^{n\left(F^{\prime \prime}\right)} \prod_{i=1}^{k} \ell\left(u_{i}\right) \\
& \stackrel{(i)}{\leq} \quad 2^{3 \gamma_{t}} \prod_{i=1}^{k} \ell\left(u_{i}\right) \\
& \stackrel{(i i)}{\leq} \quad 2^{3 \gamma_{t}}\left(\frac{1}{k} \sum_{i=1}^{k} \ell\left(u_{i}\right)\right)^{k} \\
& \stackrel{(\text { iiii) }}{\leq} \quad 2^{3 \gamma_{t}}\left(\frac{n-\frac{\gamma_{t}}{2}}{k}\right)^{k} \\
& =\quad 2^{3 \gamma_{t}}\left(1+\frac{\frac{\gamma_{t}}{2}-k}{k}\right)^{k}\left(\frac{\frac{\gamma_{t}}{2}}{n-\frac{\gamma_{t}}{2}}\right)^{\frac{\gamma_{t}-k}{2}-k}\left(\frac{n-\frac{\gamma_{t}}{2}}{\frac{\gamma_{t}}{2}}\right)^{\frac{\gamma_{t}}{2}} \\
& \stackrel{(i v)}{\leq} \quad 2^{3 \gamma_{t}} e^{\frac{\gamma_{t}}{2}}\left(\frac{\frac{\gamma_{t}}{2}}{n-\frac{\gamma_{t}}{2}}\right)^{\frac{\gamma_{t}}{2}-k}\left(\frac{n-\frac{\gamma_{t}}{2}}{\frac{\gamma_{t}}{2}}\right)^{\frac{\gamma_{t}}{2}} \\
& \stackrel{\text { Claim } 3,(v)}{\leq} 2^{3 \gamma_{t}} e^{\frac{\gamma_{t}}{2}}\left(\frac{n-\frac{\gamma_{t}}{2}}{\frac{\gamma_{t}}{2}}\right)^{\frac{\gamma t}{2}} \\
& =(8 \sqrt{e})^{\gamma_{t}}\left(\frac{n-\frac{\gamma t}{2}}{\frac{\gamma_{t}}{2}}\right)^{\frac{\gamma t}{2}} \text {, }
\end{aligned}
$$

which completes the proof.
There is clearly some room for lowering $8 \sqrt{e}$ to a smaller constant. Since the dependence on γ_{t} would still be exponential, we did not exploit this for the sake of simplicity. It would be interesting to see whether the bound can be improved to

$$
\left(1+o\left(\frac{n}{\gamma_{t}}\right)\right)\left(\frac{n-\frac{\gamma_{t}}{2}}{\frac{\gamma_{t}}{2}}\right)^{\frac{\gamma_{t}}{2}}
$$

Note that Theorem 2 implies

$$
\sharp \gamma_{t}(T) \leq\left(\frac{n-\frac{\gamma_{t}}{2}}{\frac{\gamma_{t}}{2}}\right)^{\frac{\gamma_{t}}{2}+o\left(\frac{n}{\gamma_{t}}\right)}
$$

We proceed to our next proof.
Proof of Theorem 3: We proceed by induction on n. If $n=2$, then $F=K_{2}, \gamma_{t}=2$, and $\sharp \gamma_{t}(F)=1=$ $(1+\sqrt{2})^{0}=(1+\sqrt{2})^{n-\gamma_{t}}$. Now, let $n \geq 3$.
Claim 1. If F contains a component T that is a star, then $\sharp \gamma_{t}(F) \leq(1+\sqrt{2})^{n-\gamma_{t}}$, with strict inequality if T has order at least 3 .

Proof of Claim 1: Suppose that F contains a component T that is a star. Thus, $T=K_{1, t}$ for some $t \geq 1$. The forest $F^{\prime}=F-V(T)$ has order $n^{\prime}=n-t-1$, no isolated vertex, and total domination number
$\gamma_{t}^{\prime}=\gamma_{t}-2$. By induction, we obtain

$$
\begin{aligned}
\sharp \gamma_{t}(F) & =t \cdot \sharp \gamma_{t}\left(F^{\prime}\right) \leq t(1+\sqrt{2})^{n^{\prime}-\gamma_{t}^{\prime}}=t(1+\sqrt{2})^{n-t-1-\left(\gamma_{t}-2\right)} \\
& =(1+\sqrt{2})^{n-\gamma_{t}}\left(t(1+\sqrt{2})^{1-t}\right) \leq(1+\sqrt{2})^{n-\gamma_{t}},
\end{aligned}
$$

where we use $t(1+\sqrt{2})^{1-t} \leq 1$ for $t=1$ and $t \geq 2$. Furthermore, if $t \geq 2$, then $t(1+\sqrt{2})^{1-t}<1$, in which case $\sharp \gamma_{t}(F)<(1+\sqrt{2})^{n-\gamma_{t}}$.

Claim 2. If F contains a component T of diameter 3 , then $\sharp \gamma_{t}(F)<(1+\sqrt{2})^{n-\gamma_{t}}$.
Proof of Claim 2: Suppose that F contains a component T of diameter 3. Note that T has a unique minimum total dominating set. The forest $F^{\prime}=F-V(T)$ has order $n^{\prime} \leq n-4$, no isolated vertex, and total domination number $\gamma_{t}^{\prime}=\gamma_{t}-2$. By induction, we obtain

$$
\sharp \gamma_{t}(F)=\sharp \gamma_{t}\left(F^{\prime}\right) \leq(1+\sqrt{2})^{n^{\prime}-\gamma_{t}^{\prime}} \leq(1+\sqrt{2})^{n-\gamma_{t}-2}<(1+\sqrt{2})^{n-\gamma_{t}} .
$$

By Claim 1 and Claim 2, we may assume that there is a component of F that has diameter at least 4, for otherwise the desired result follows. Let T be such a component of F. Let $u v w x y \ldots r$ be a longest path in T, and consider T as rooted in r. For a vertex z of T, let V_{z} be the set that contains z and all its descendants.
Claim 3. If $d_{F}(w) \geq 3$, then $\sharp \gamma_{t}(F)<(1+\sqrt{2})^{n-\gamma_{t}}$.
Proof of Claim 3: Suppose that $d_{F}(w) \geq 3$, which implies that w belongs to every γ_{t}-set of F, because either w is a support vertex or w is the only neighbor of two support vertices, that is no leaf. Let v^{\prime} be a child of w distinct from v. Let $F^{\prime}=F-V_{v^{\prime}}$. If v^{\prime} is an endvertex, then F^{\prime} has order $n^{\prime}=n-1$, no isolated vertex, and total domination number $\gamma_{t}^{\prime}=\gamma_{t}$. By induction, we obtain

$$
\sharp \gamma_{t}(F) \leq \sharp \gamma_{t}\left(F^{\prime}\right) \leq(1+\sqrt{2})^{n^{\prime}-\gamma_{t}^{\prime}}=(1+\sqrt{2})^{n-\gamma_{t}-1}<(1+\sqrt{2})^{n-\gamma_{t}} .
$$

If v^{\prime} is not an endvertex, then F^{\prime} has order $n^{\prime} \leq n-2$, no isolated vertex, and total domination number $\gamma_{t}^{\prime}=\gamma_{t}-1$. Note that if T is a minimum total dominating set of $F, T-\{v\}$ is a total dominating set of F^{\prime}, since v^{\prime} is a support vertex and v and w are part of every minimum total dominating set of F. By induction, we obtain

$$
\sharp \gamma_{t}(F) \leq \sharp \gamma_{t}\left(F^{\prime}\right) \leq(1+\sqrt{2})^{n^{\prime}-\gamma_{t}^{\prime}} \leq(1+\sqrt{2})^{n-\gamma_{t}-1}<(1+\sqrt{2})^{n-\gamma_{t}} .
$$

In both cases, $\sharp \gamma_{t}(F)<(1+\sqrt{2})^{n-\gamma_{t}}$.
By Claim 3, we may assume that $d_{F}(w)=2$, for otherwise the desired result holds.
Claim 4. If $d_{F}(v) \geq 3$, then $\sharp \gamma_{t}(F)<(1+\sqrt{2})^{n-\gamma_{t}}$.
Proof of Claim 4: Suppose that $\ell=d_{F}(v)-1 \geq 2$. Let $F^{\prime}=F-V_{w}, F^{\prime \prime}=F-\left(N_{F}(v) \backslash\{w\}\right)$, and $F^{\prime \prime \prime}=F-\left(V_{w} \cup\{x\}\right)$. See Figure 2 for an illustration.

The forest F^{\prime}
The forest $F^{\prime \prime}$
The forest $F^{\prime \prime \prime}$

Fig. 2: The important details of the forests $F, F^{\prime}, F^{\prime \prime}$ and $F^{\prime \prime \prime}$.

- There are at most $\ell \cdot \sharp \gamma_{t}\left(F^{\prime}\right)$ many γ_{t}-sets of F that contain v and a child of v but do not contain w. Furthermore, if such a γ_{t}-set exists, then F^{\prime} has order $n^{\prime}=n-\ell-2$, no isolated vertex, and total domination number $\gamma_{t}^{\prime}=\gamma_{t}-2$.
- There are at most $\sharp \gamma_{t}\left(F^{\prime \prime}\right)$ many γ_{t}-sets of F that contain v, w, and x. Furthermore, if such a γ_{t}-set exists, then $F^{\prime \prime}$ has order $n^{\prime \prime}=n-\ell$, no isolated vertex, and total domination number $\gamma_{t}^{\prime \prime}=\gamma_{t}-1$.
- There are at most $\sharp \gamma_{t}\left(F^{\prime \prime \prime}\right)$ many γ_{t}-sets of F that contain both v and w but do not contain x. Furthermore, if such a γ_{t}-set exists, then $F^{\prime \prime \prime}$ has order $n^{\prime \prime \prime}=n-\ell-3$, no isolated vertex, and total domination number $\gamma_{t}^{\prime \prime \prime}=\gamma_{t}-2$.

Since all γ_{t}-sets of F are of one of the three considered types, we obtain, by induction,

$$
\begin{aligned}
\sharp \gamma_{t}(F) & \leq \ell \cdot \sharp \gamma_{t}\left(F^{\prime}\right)+\sharp \gamma_{t}\left(F^{\prime \prime}\right)+\sharp \gamma_{t}\left(F^{\prime \prime \prime}\right) \\
& \leq \ell(1+\sqrt{2})^{n-\ell-2-\left(\gamma_{t}-2\right)}+(1+\sqrt{2})^{n-\ell-\left(\gamma_{t}-1\right)}+(1+\sqrt{2})^{n-\ell-3-\left(\gamma_{t}-2\right)} \\
& =(1+\sqrt{2})^{n-\gamma_{t}}(1+\sqrt{2})^{-\ell-1}\left(\ell(1+\sqrt{2})+(1+\sqrt{2})^{2}+1\right) \\
& <(1+\sqrt{2})^{n-\gamma_{t}},
\end{aligned}
$$

where we use $\ell(1+\sqrt{2})+(1+\sqrt{2})^{2}+1<(1+\sqrt{2})^{\ell+1}$ for all $\ell \geq 2$.
By Claim 4, we may assume that $d_{F}(v)=2$, for otherwise the desired result holds.
Claim 5. If x is a support vertex, then $\sharp \gamma_{t}(F)<(1+\sqrt{2})^{n-\gamma_{t}}$.
Proof of Claim 5: Suppose that x is a support vertex, which implies that v and x belong to every γ_{t}-set of F. Let $F^{\prime}=F-V_{w}$ and $F^{\prime \prime}=F-\left(N_{F}[v] \cup N_{F}[x]\right)$.

- There are at most $\forall \gamma_{t}\left(F^{\prime}\right)$ many γ_{t}-sets of F that contain u but do not contain w. Furthermore, if such a γ_{t}-set exists, then F^{\prime} has order $n^{\prime}=n-3$, no isolated vertex, and total domination number $\gamma_{t}^{\prime}=\gamma_{t}-2$.
- There are at most $\sharp \gamma_{t}\left(F^{\prime}\right)$ many γ_{t}-sets of F that contain w and at least one other neighbour of x. Furthermore, if such a γ_{t}-set exists, then F^{\prime} has order $n^{\prime}=n-3$, no isolated vertex, and total domination number $\gamma_{t}^{\prime}=\gamma_{t}-2$.
- There are at most $\sharp \gamma_{t}\left(F^{\prime \prime}\right)$ many γ_{t}-sets of F that contain w and no other neighbour of x. Furthermore, if such a γ_{t}-set exists, then $F^{\prime \prime}$ has order $n^{\prime \prime} \leq n-5$, no isolated vertex, and total domination number $\gamma_{t}^{\prime \prime}=\gamma_{t}-3$.

Since all γ_{t}-sets of F are of one of the three considered types, we obtain, by induction,

$$
\begin{aligned}
\sharp \gamma_{t}(F) & \leq 2 \sharp \gamma_{t}\left(F^{\prime}\right)+\sharp \gamma_{t}\left(F^{\prime \prime}\right)<2(1+\sqrt{2})^{n-3-\left(\gamma_{t}-2\right)}+(1+\sqrt{2})^{n-5-\left(\gamma_{t}-3\right)} \\
& =(1+\sqrt{2})^{n-\gamma_{t}}(1+\sqrt{2})^{-2}(2(1+\sqrt{2})+1)=(1+\sqrt{2})^{n-\gamma_{t}},
\end{aligned}
$$

where we use $2(1+\sqrt{2})+1=(1+\sqrt{2})^{2}$. Note that in F^{\prime} there is a component that contains a path of length two, in particular not every component of F^{\prime} is a K_{2}.

By Claim 5, we may assume that x is not a support vertex, for otherwise the desired result holds.
Claim 6. If x has a child that is a support vertex, then $\sharp \gamma_{t}(F)<(1+\sqrt{2})^{n-\gamma_{t}}$.
Proof of Claim 6: Suppose that x has a child w^{\prime} that is a support vertex. Clearly, the vertex w^{\prime} is distinct from w and belongs to every γ_{t}-set of F. The forest $F^{\prime}=F-V_{w}$ has order $n^{\prime}=n-3$, no isolated vertex, and total domination number $\gamma_{t}^{\prime}=\gamma_{t}-2$. By induction, we obtain

$$
\sharp \gamma_{t}(F)=2 \sharp \gamma_{t}\left(F^{\prime}\right) \leq 2(1+\sqrt{2})^{n-3-\left(\gamma_{t}-2\right)}=(1+\sqrt{2})^{n-\gamma_{t}} 2(1+\sqrt{2})^{-1}<(1+\sqrt{2})^{n-\gamma_{t}} \text {, }
$$

where we use $2<(1+\sqrt{2})$.
By Claim 6, we may assume that no child of x is a support vertex, for otherwise the desired result holds. Together with Claims 3 and 4, we may assume that the subforest of F induced by V_{x} arises from a star $K_{1, q}$ for some $q \geq 1$ by subdividing every edge twice. Let $F^{\prime}=F-V_{x}, F^{\prime \prime}=F-\left(V_{x} \cup\{y\}\right)$, and $F^{\prime \prime \prime}=F-\left(V_{x} \cup N_{F}[y]\right)$.

- There are at most $2^{q} \sharp \gamma_{t}\left(F^{\prime}\right)$ many γ_{t}-sets of F that do not contain x. Furthermore, if such a $\gamma_{t^{-}}$ set exists, then F^{\prime} has order $n^{\prime}=n-3 q-1$, no isolated vertex, and total domination number $\gamma_{t}^{\prime}=\gamma_{t}-2 q$.
- There are at most $\left(2^{q}-1\right) \sharp \gamma_{t}\left(F^{\prime \prime}\right)$ many γ_{t}-sets of F that contain x but do not contain y. Furthermore, if such a γ_{t}-set exists, then $F^{\prime \prime}$ has order $n^{\prime \prime}=n-3 q-2$, no isolated vertex, and total domination number $\gamma_{t}^{\prime \prime}=\gamma_{t}-2 q-1$.
- There are at most $2^{q} \sharp \gamma_{t}\left(F^{\prime \prime \prime}\right)$ many γ_{t}-sets of F that contain both x and y. Furthermore, if such a γ_{t}-set exists, then $F^{\prime \prime \prime}$ has order $n^{\prime \prime \prime} \leq n-3 q-3$, no isolated vertex, and total domination number $\gamma_{t}^{\prime \prime \prime}=\gamma_{t}-2 q-2$.

Since all γ_{t}-sets of F are of one of the three considered types, we obtain, by induction,

$$
\begin{aligned}
\sharp \gamma_{t}(F) \leq & 2^{q} \sharp \gamma_{t}\left(F^{\prime}\right)+\left(2^{q}-1\right) \sharp \gamma_{t}\left(F^{\prime \prime}\right)+2^{q} \sharp \gamma_{t}\left(F^{\prime \prime \prime}\right) \\
\leq & 2^{q}(1+\sqrt{2})^{n-3 q-1-\left(\gamma_{t}-2 q\right)} \\
& +\left(2^{q}-1\right)(1+\sqrt{2})^{n-3 q-2-\left(\gamma_{t}-2 q-1\right)} \\
& +2^{q}(1+\sqrt{2})^{n-3 q-3-\left(\gamma_{t}-2 q-2\right)} \\
= & (1+\sqrt{2})^{n-\gamma_{t}}(1+\sqrt{2})^{-q-1}\left(2^{q}+2^{q}-1+2^{q}\right) \\
< & (1+\sqrt{2})^{n-\gamma_{t}},
\end{aligned}
$$

where we use $3 \cdot 2^{q}-1<(1+\sqrt{2})^{q+1}$ for all $q \geq 1$. This completes the proof of Theorem 3 .
We proceed to the proof of Theorem 4, which uses exactly the same approach as Theorem 3.
Proof of Theorem 4: By induction on n, we show that $\sharp \gamma_{t}(F) \leq \beta^{n}$, where β is the unique positive real solution of the equation $2 \beta+\beta^{3}+1=\beta^{5}$, that is, $\beta \approx 1.4865$. If $n=2$, then $F=K_{2}$ and $\sharp \gamma_{t}(F)=1<\beta^{2}$. Now, let $n \geq 3$.
Claim 1. If F contains a component T that is a star, then $\forall \gamma_{t}(F) \leq \beta^{n}$.
Proof of Claim 1: Suppose that F contains a component T that is a star. Thus, $T=K_{1, t}$ for some $t \geq 1$. The forest $F^{\prime}=F-V(T)$ has order $n^{\prime}=n-t-1$ and no isolated vertex. By induction, we obtain $\sharp \gamma_{t}(F)=t \cdot \sharp \gamma_{t}\left(F^{\prime}\right) \leq t \beta^{n-t-1} \leq \beta^{n}$, where we use $t \leq \beta^{t+1}$.
Claim 2. If F contains a component T of diameter 3 , then $\sharp \gamma_{t}(F) \leq \beta^{n}$.
Proof of Claim 2: Suppose that F contains a component T of diameter 3. The forest $F^{\prime}=F-V(T)$ has order $n^{\prime} \leq n-4$ and no isolated vertex. By induction, we obtain $\sharp \gamma_{t}(F)=\sharp \gamma_{t}\left(F^{\prime}\right) \leq \beta^{n^{\prime}}<\beta^{n}$.

By Claim 1 and Claim 2, we may assume that every component of F has diameter at least 4, for otherwise the desired result follows. Let T be an arbitrary component of F. Let $u v w x y \ldots r$ be a longest path in T, and consider T as rooted in r. For a vertex z of T, let V_{z} be the set that contains z and all its descendants.
Claim 3. If $d_{F}(w) \geq 3$, then $\sharp \gamma_{t}(F) \leq \beta^{n}$.
Proof of Claim 3: Suppose that $d_{F}(w) \geq 3$, which implies that w belongs to every γ_{t}-set of F. Let v^{\prime} be a child of w distinct from v. The forest $F^{\prime}=F-V_{v^{\prime}}$ has order $n^{\prime}<n$ and no isolated vertex. Since $\sharp \gamma_{t}(F) \leq \sharp \gamma_{t}\left(F^{\prime}\right)$, we obtain, by induction, $\sharp \gamma_{t}(F) \leq \sharp \gamma_{t}\left(F^{\prime}\right) \leq \beta^{n^{\prime}}<\beta^{n}$.

By Claim 3, we may assume that $d_{F}(w)=2$, for otherwise the desired result holds.
Claim 4. If $d_{F}(v) \geq 3$, then $\sharp \gamma_{t}(F) \leq \beta^{n}$.
Proof of Claim 4: Suppose that $\ell=d_{F}(v)-1 \geq 2$. Arguing exactly as in the proof of Claim 4 in the proof of Theorem 3 using the forests $F^{\prime}, F^{\prime \prime}$, and $F^{\prime \prime \prime}$, we obtain, by induction,

$$
\begin{aligned}
\sharp \gamma_{t}(F) & \leq \ell \cdot \sharp \gamma_{t}\left(F^{\prime}\right)+\sharp \gamma_{t}\left(F^{\prime \prime}\right)+\sharp \gamma_{t}\left(F^{\prime \prime \prime}\right) \\
& \leq \ell \beta^{n-\ell-2}+\beta^{n-\ell}+\beta^{n-\ell-3} \\
& =\beta^{n} \beta^{-\ell-3}\left(\ell \beta+\beta^{3}+1\right) \\
& \leq \beta^{n},
\end{aligned}
$$

where we use $\ell \beta+\beta^{3}+1 \leq \beta^{\ell+3}$ for all $\ell \geq 2$; in fact, this inequality is the reason for the specific choice of β.

By Claim 4, we may assume that $d_{F}(v)=2$, for otherwise the desired result holds.
Claim 5. If x is a support vertex, then $\sharp \gamma_{t}(F) \leq \beta^{n}$.
Proof of Claim 5: Suppose that x is a support vertex. Arguing exactly as in the proof of Claim 5 in the proof of Theorem 3 using the forests F^{\prime} and $F^{\prime \prime}$, we obtain, by induction,

$$
\sharp \gamma_{t}(F) \leq 2 \sharp \gamma_{t}\left(F^{\prime}\right)+\sharp \gamma_{t}\left(F^{\prime \prime}\right) \leq 2 \beta^{n-3}+\beta^{n-5}=\beta^{n} \beta^{-5}\left(2 \beta^{2}+1\right) \leq \beta^{n}
$$

where we use $2 \beta^{2}+1 \leq \beta^{5}$.
By Claim 5, we may assume that x is not a support vertex, for otherwise the desired result holds.
Claim 6. If x has a child that is a support vertex, then $\sharp \gamma_{t}(F) \leq \beta^{n}$.
Proof of Claim 6: Suppose that x has a child w^{\prime} that is a support vertex. Arguing exactly as in the proof of Claim 6 in the proof of Theorem 3 using the forest F^{\prime}, we obtain, by induction,

$$
\sharp \gamma_{t}(F)=2 \sharp \gamma_{t}\left(F^{\prime}\right) \leq 2 \beta^{n-3}=\beta^{n} 2 \beta^{-3} \leq \beta^{n},
$$

where we use $2<\beta^{3}$.
Now, arguing exactly as at the end of the proof of Theorem 3 using the forests $F^{\prime}, F^{\prime \prime}$, and $F^{\prime \prime \prime}$, we obtain, by induction,

$$
\begin{aligned}
\sharp \gamma_{t}(F) & \leq 2^{q} \sharp \gamma_{t}\left(F^{\prime}\right)+\left(2^{q}-1\right) \sharp \gamma_{t}\left(F^{\prime \prime}\right)+2^{q} \sharp \gamma_{t}\left(F^{\prime \prime \prime}\right) \\
& \leq 2^{q} \beta^{n-3 q-1}+\left(2^{q}-1\right) \beta^{n-3 q-2}+2^{q} \beta^{n-3 q-3} \\
& =\beta^{n} \beta^{-3 q-3}\left(2^{q} \beta^{2}+\left(2^{q}-1\right) \beta+2^{q}\right) \\
& \leq \beta^{n} \beta^{-3 q-3} 2^{q}\left(\beta^{2}+\beta+1\right) \\
& \leq \beta^{n},
\end{aligned}
$$

where we use $2^{q}\left(\beta^{2}+\beta+1\right) \leq \beta^{3 q+3}$ for all $q \geq 1$.

References

[1] J.D. Alvarado, S. Dantas, E. Mohr, and D. Rautenbach, On the maximum number of minimum dominating sets in forests, Discrete Mathematics 342 (2019) 934-942.
[2] A. Bień, Properties of gamma graphs of trees, presentation at the 17th Workshop on Graph Theory Colourings, Independence and Domination (CID 2017), Piechowice, Poland.
[3] D. Bród and Z. Skupień, Trees with extremal numbers of dominating sets, The Australasian Journal of Combinatorics 35 (2006) 273-290.
[4] S. Connolly, Z. Gabor, A. Godbole, B. Kay, and T. Kelly, Bounds on the maximum number of minimum dominating sets, Discrete Mathematics 339 (2016) 1537-1542.
[5] F.V. Fomin, F. Grandoni, A.V. Pyatkin, and A.A. Stepanov, Bounding the number of minimal dominating sets: a measure and conquer approach, Lecture Notes in Computer Science 3827 (2005) 573-582.
[6] G.H. Fricke, S.M. Hedetniemi, S.T. Hedetniemi, and K.R. Hutson, γ-graphs of graphs, Discussiones Mathematicae Graph Theory 31 (2011) 517-531.
[7] T.W. Haynes, S.T. Hedetniemi, and P. Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc., New York, 1998.
[8] M.A. Henning and A. Yeo, Total Domination in Graphs, Springer 2013.
[9] M. Krzywkowski and S. Wagner, Graphs with few total dominating sets, Discrete Mathematics 341 (2018) 997-1009.
[10] K.M. Koh, C.Y Goh, and F.M. Dong, The maximum number of maximal independent sets in unicyclic connected graphs, Discrete Mathematics 308 (2008) 3761-3769.
[11] Z. Skupien, Majorization and the minimum number of dominating sets, Discrete Applied Mathematics 165 (2014) 295-302.
[12] S. Wagner, A note on the number of dominating sets of a graph, Utilitas Mathematica 92 (2013) 25-31.
[13] I. Włoch, Trees with extremal numbers of maximal independent sets including the set of leaves, Discrete Mathematics 308 (2008) 4768-4772.
[14] J. Zito, The structure and maximum number of maximum independent sets in trees, Journal of Graph Theory 15 (1991) 207-221.

[^0]: *Research supported in part by the University of Johannesburg.
 ISSN 1365-8050 © 2019 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

