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On the asymptotic enumeration of accessible
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We simplify the known formula for the asymptotic estimate of the number of deterministic and accessible automata
with n states over a k-letter alphabet. The proof relies on the theory of Lagrange inversion applied in the context of
generalized binomial series.
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1  Main result

Let A, be the set of non-isomorphic accessible (also called initially connected) complete and deterministic
automata with n states over a k-letter alphabet. By using suitable combinatorial transformations, [Bassino
and Nicaud| (2007) prove that the order of magnitude of the cardinality of 4, is related to the Stirling
number of the second kind {k;‘ } Then they reformulate the asymptotic estimate of |.4,, | due to|Korshunov
(1978) in terms of this Stirling number. Our purpose is to state a simplification of this formula.

First we need to recall a few definitions. For m, n non-negative integers, the Stirling number of the
second kind, denoted by {;ﬂb} is the number of ways of partitioning a set of n elements into m non-empty
subsets. Let W denote the principal branch of the so-called Lambert W function (which is the inverse of
the function z — x e®). See|Graham et al.| (1994) and |Corless et al.| (1996)) for more details about these
definitions. Also define the constants
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Except for vy, these constants are considered in [Bassino and Nicaud|(2007). Notice that vy, is the unique
root in (0, 1) of the function ¢y, (v) = kv + log (1 — v) and it satisfies v, > (k — 1)/k. See Figure[l]
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Fig. 1: Graph of ¢ (v) = kv + log (1 — v).

The next result, due to Bassino and Nicaud| (2007), reformulates in terms of the Stirling numbers the
asymptotic estimate for |.A,,| previously obtained by Korshunov|(1978).

Theorem 1 (Bassino and Nicaud| (2007)) The number | A,,| of accessible complete and deterministic au-
tomata with n states over a k-letter alphabet satisfies

k
|A,| ~ Ekn2"{ ”}
n

where
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Our main result presents a simplified formula for Ej.

Theorem 2 For any k > 2,

(k-1

Uk

E=k-

Remark 1 We observe that 0 < Ey < 1 forall k > 2. Since the principal branch of W is analytic at 0,
we have that

lim k(v — 1) = lim Wo(—ke™ ) = Wy (0) = 0.
k—o0 k— o0

Consequently, lim vy = 1 and
k—o0

1) 41
lim By = lim PO DAL
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Table[l|exhibits the approximate values of vy, and Ey, fork =2,...,T.
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k 2 3 4 5 6 7
v | 0.796812 0.940480 0.980173 0.993023 0.997484 0.999082
Ej | 0744999 0.873426 0939315 0.971895 0.987386 0.994488

Tab. 1: Values of vi and Ey.

2 Proof of Theorem

The proof relies on the theory of Lagrange series, which constitutes a fundamental tool for the solution of
implicit equations and for the reversion of series. We refer to|/Henricil (1988)) for an extensive treatment of
this subject. To recall the two basic forms of Lagrange series, suppose that the dependence between the
variables y and z is implicitly given by the equation

z
p(2)

where ¢ is a regular function in a neighborhood of the point z = 0 and ¢(0) # 0. If f is a regular function
in a neighborhood of z = 0, then

y:
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where the primes denote derivatives.

To prove Theorem 2] we study a classical application of this theory, namely, the solutions of Prob-
lems 212 and 216 in |Polya and Szegd| (1998, Chapter 5 of Part III). Let @ and b be real numbers and
consider the equation 1 — x + yx® = 0, thatis, y = (z — 1) 27°. We define z =  — 1 and apply the
formulae in (T)) with ¢(2) = (1 + 2)® and f(z) = (1 + 2)®. Notice that

1{d”(f’(z)[so(z)]r)] 1[dr-1(a(l+z)a+‘”’—1)] _ a (Hl,?ﬂ)’
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Hence, () yields
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with y = (x — 1) 2~°. Next, we consider the case b > 1 and investigate the neighborhood in R of the
point z = 1 in which (2) and (3) hold.
For a = 1, the power series appearing in

T

— (br+1
By(y) :=Z(Tr >bry+1 o)

r=0

is called the generalized binomial series. Thus, B, is the solution of the functional equation x(y) =
1+ yx(y)® that satisfies #(0) = 1. Moreover, (2)) and (3) can be rewritten as

Bb(y)a:iajbr<atbr>yr ond %:ictbr)yr'

r=0 r=0

In|Graham et al.| (1994, Sections 5.4 and 7.5), B, is introduced as a formal power series, these properties
are proved and used to derive some combinatorial identities. See also|Heggie and Nicklason| (1996) for a
representation of the function By as a contour integral in the complex plane.

Now let b > 1 be fixed. We are interested in studying the set of values of x for which the identity
By((z — 1) 27°) = = holds. To this end, we observe that by the ratio test the series in (@) converges for
ly| < R, where

b—1 b—1
R := 7( ) .
pb
Lemma 1 There exists T, € (1/2,1) such that
By((z—1)z7%) =z
forallz € (Zp,b(b—1)71).

Proof: It is not difficult to show that the function g, (z) = (2—1) 2~ is continuous and strictly increasing
in the interval (0, (b — 1)~1). The result follows since g,(b(b —1)71) = R, g,(1) = 0 and |g,(1/2)| >
1> R. O

Consequently, identities (2) and (3)) are valid for every x € (Zp, b (b —1)71).
Now define o, = (Z;) ! € (1,2). From Lemma[l| we obtain the following result.

Lemma 2 Foranyv € ((b—1)/b,0),

1 = a a+br\ , 1 = (a+br
v“_za—i—br( r >y and U“[bv—(b—l)]_z< r )y,

r=0 r=0

withy = (1 —v)v"~ L,

Proof: For each v € ((b — 1)/b, ), define z = 1/v, so x € (Tp,b(b—1)"!) and (z — 1)2~b =
(1 —v) v*~L. The result follows from (2)) and (3). 0
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We are ready to prove our main result.

Proof of Theorem 2t Note that

15, — k" (eCZ— 1) 1 :
k (1 — i) vy

-1

Defining y, = (1 — vg) vy ', we conclude from Lemmathat the numerator of E}, equals

o0 (o)
1/ kr 1 kr+1 1
1 — h = — = —
+;r<r—l>yk ;kr—i—l( r )yk v
whereas the denominator simplifies to
i (kr) L= 1
kL= 7 77 a\
=\ kvg—(E—=1)

The result follows. O
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