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We consider decision problems for relations over finite and infinite words defined by finite automata. We prove that
the equivalence problem for binary deterministic rational relations over infinite words is undecidable in contrast to the
case of finite words, where the problem is decidable. Furthermore, we show that it is decidable in doubly exponential
time for an automatic relation over infinite words whether it is a recognizable relation. We also revisit this problem
in the context of finite words and improve the complexity of the decision procedure to single exponential time. The
procedure is based on a polynomial time regularity test for deterministic visibly pushdown automata, which is a result
of independent interest.
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1 Introduction
We consider in this paper algorithmic problems for relations over words that are defined by finite automata.
Relations over words extend the classical notion of formal languages. However, there are different ways
of extending the concept of regular language and finite automaton to the setting of relations. Instead
of processing a single input word, an automaton for relations has to read a tuple of input words. The
existing finite automaton models differ in the way how the components can interact while being read. In
the following, we briefly sketch the four main classes of automaton definable relations, and then describe
our contributions.

A (nondeterministic) finite transducer (see, e.g., Berstel (1979); Sakarovitch (2009)) has a standard
finite state control and at each time of a computation, a transition can consume the next input symbol
from any of the components without restriction (equivalently, one can label the transitions of a transducer
with tuples of finite words). The class of relations that are definable by finite transducers is referred to as
the class of rational relations. In the binary case, the first tape is often referred to as input, and the second
one as output tape. The class of rational relations is not closed under intersection and complement, and
many algorithmic problems, like universality, equivalence, intersection emptiness, are undecidable (for
details we refer to Rabin and Scott (1959)). A deterministic version of finite transducers defines the class
of deterministic rational relations (see Sakarovitch (2009)) with slightly better properties compared to the
nondeterministic version, in particular it has been shown by Bird (1973); Harju and Karhumäki (1991)
that the equivalence problem is decidable.
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Another important subclass of rational relations are the synchronized rational relations which have
been studied by Frougny and Sakarovitch (1993) and are defined by automata that synchronously read all
components in parallel (using a padding symbol for words of different length). These relations are often
referred to as automatic relations, a terminology that we also adopt, and basically have all the good proper-
ties of regular languages because synchronous transducers can be viewed as standard finite automata over
a product alphabet. These properties lead to applications of automatic relations in algorithmic model the-
ory as a finite way of representing infinite structures with decidable logical theories (so called automatic
structures, cf. Khoussainov and Nerode (1995); Blumensath and Grädel (2000)), and in regular model
checking, a verification technique for infinite state systems (cf. Abdulla (2012)).

Finally, there is the model of recognizable relations, which can be defined by a tuple of automata, one
for each component of the relation, that independently read their components and only synchronize on
their terminal states, i.e., the tuple of states at the end determines whether the input tuple is accepted.
Equivalently, one can define recognizable relations as finite unions of products of regular languages.
Recognizable relations play a role. For example, Bozzelli et al. (2015) use relations over words for
identifying equivalent plays in incomplete information games. The task is to compute a winning strategy
that does not distinguish between equivalent plays. While this problem is undecidable for automatic
relations, it is possible to synthesize strategies for recognizable equivalence relations. In view of such
results, it is an interesting question whether one can decide for a given relation whether it is recognizable.

All these four concepts of automaton definable relations can directly be adapted to infinite words using
the notion of ω-automata (see Thomas (1990) for background on ω-automata), leading to the classes of
(deterministic) ω-rational, ω-automatic, and ω-recognizable relations. Applications like automatic struc-
tures and regular model checking have been adapted to relations over infinite words, e.g. by Blumensath
and Grädel (2000); Boigelot et al. (2004), for instance for modeling systems with continuous parameters
represented by real numbers (which can be encoded as infinite words, see e.g. Boigelot et al. (2005)).

Our contributions are the following, where some background on the individual results is given below.
We note that (4) is not a result on relations over words. It is used in the proof of (3) but we state it explicitly
because we believe that it is an interesting result on its own.

(1) We show that the equivalence problem for binary deterministic ω-rational relations is undecidable,
already for the Büchi acceptance condition (which is weaker than parity or Muller acceptance condi-
tions in the case of deterministic automata).

(2) We show that it is decidable in doubly exponential time for an ω-automatic relation whether it is
ω-recognizable.

(3) We reconsider the complexity of deciding for a binary automatic relation whether it is recognizable,
and prove that it can be done in exponential time.

(4) We prove that the regularity problem for deterministic visibly pushdown automata — a model intro-
duced by Alur and Madhusudan (2004) — is decidable in polynomial time.

The algorithmic theory of deterministic ω-rational relations has not yet been studied in detail. We
think, however, that this class is worth studying in order to understand whether it can be used in applica-
tions that are studied for ω-automatic relations. One such scenario could be the synthesis of finite state
machines from (binary) ω-automatic relations. In this setting, an ω-automatic relation is viewed as a spec-
ification that relates input streams to possible output streams. The task is to automatically synthesize a
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Fig. 1: Illustration of decision status for the classes considered in this paper. An edge from class D to C either
indicates that it is open if it is decidable, given a relation R ∈ D, whether R ∈ C holds, or states the best known
upper bound for this decision problem. Deciding whether a rational or ω-rational relation is in one of the subclasses
is undecidable (Fischer and Rosenberg (1968),Lisovik (1979))

synchronous sequential transducer (producing one output letter for each input letter) that outputs a string
for each possible input such that the resulting pair is in the relation (for instance, Thomas (2009) provides
an overview of this kind of automata theoretic synthesis). It has recently been shown by Filiot et al. (2016)
that this synchronous synthesis problem can be lifted to the case of asynchronous automata if the relation
is deterministic rational. This shows that the class of deterministic rational relations has some interesting
properties, and motivates our study of the corresponding class over infinite words. Our contribution (1)
contrasts the decidability of equivalence for deterministic rational relations over finite words shown by
Bird (1973); Harju and Karhumäki (1991) and thus exhibits a difference between deterministic rational
relations over finite and over infinite words. We prove the undecidability by a reduction from the intersec-
tion emptiness problem for deterministic rational relations over finite words. The reduction is inspired by
a recent construction of Böhm et al. (2017) for proving the undecidability of equivalence for deterministic
Büchi one-counter automata.

Contributions (2) and (3) are about the effectiveness of the hierarchies formed by the four classes
of (ω-)rational, deterministic (ω-)rational, (ω-)automatic, and (ω-)recognizable relations. A systematic
overview and study on the effectiveness of this hierarchy for finite words is provided by Carton et al.
(2006): For a given rational relation it is undecidable whether it belongs to one of the other classes,
for deterministic rational and automatic relations it is decidable whether they are recognizable, and the
problem of deciding for a deterministic rational relation whether it is automatic is open. An illustration of
those results and our contributions 2 and 3 can be found in Figure 1.

The question of the effectiveness of the hierarchy for relations over infinite words has already been
posed by Thomas (1992) (where the ω-automatic relations are called Büchi recognizable ω-relations).
The undecidability results easily carry over from finite to infinite words. Our result (2) lifts one of the
two known decidability results for finite words to infinite words. The algorithm is based on a reduction
to a problem over finite words: Using a representation of ω-languages by finite encodings of ultimately
periodic words as demonstrated by Calbrix et al. (1993), we are able to reformulate the recognizability of
an ω-automatic relation in terms of slenderness of a finite number of languages of finite words. We adopt
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the term slender from Pǎun and Salomaa (1995). A language of finite words is called slender if there is
a bound k such that the language contains for each length at most k words of this length. By definition a
language is slender if and only if it has polynomial growth of order 0, which is decidable for context-free
languages in polynomial time due to Gawrychowski et al. (2008). We tighten the complexity bound for
the slenderness problem for nondeterministic finite automata by proving that it is NL-complete.

As mentioned above, the decidability of recognizability of an automatic relation has already been
proved by Carton et al. (2006). However, the exponential time complexity claimed in that paper does
not follow from the proof presented there. We illustrate this by a family Rn of automatic relations (see
Example 4), for which an intermediate automaton is exponentially larger than the automaton for Rn, and
the procedure from Carton et al. (2006) runs another exponential algorithm on this intermediate automa-
ton. So we revisit the problem and prove the exponential time upper bound for binary relations based
on the connection between binary rational relations and pushdown automata: For a relation R over finite
words, consider the language LR consisting of the words rev(u)#v for all (u, v) ∈ R, where rev(u)
denotes the reverse of u. It turns out that LR is linear context-free iff R is rational, LR is determinis-
tic context-free iff R is deterministic rational, and LR is regular iff R is recognizable (cf. Carton et al.
(2006)). Since LR is regular iffR is recognizable, the recognizability test for binary deterministic rational
relations reduces to the regularity test for deterministic pushdown automata, which has been shown to
be decidable by Stearns (1967). Valiant (1975) improved this decidability result for deterministic push-
down automata by proving a doubly exponential upper bound.(i) We adapt this technique to automatic
relations R and show that LR can in this case be defined by a visibly pushdown automaton (VPA) (see
Alur and Madhusudan (2004)), in which the stack operation (pop, push, skip) is determined by the input
symbol, and no ε-transitions are allowed. The deterministic VPA for LR is exponential in the size of the
automaton for R, and we prove that the regularity test can be done in polynomial time, our contribution
(4). We note that the polynomial time regularity test for visibly pushdown processes as presented by Srba
(2006) does not imply our result. The model used by Srba (2006) cannot use transitions that cause a pop
operation when the stack is empty. For our translation from automatic relations to VPAs we need these
kind of pop operations, which makes the model different and the decision procedure more involved (and
a reduction to the model of Srba (2006) by using new internal symbols to simulate pop operations on the
empty stack will not preserve regularity of the language, in general).

This paper is the full version of the conference paper of Löding and Spinrath (2017). In contrast to
the conference version, which only sketches proof ideas for the major results, it contains full proofs for
all (intermediate) results. Furthermore, Section 4 is enriched by an example which illustrates why the
exponential time complexity claimed by Carton et al. (2006) does not follow from their proof approach.
Also, we give an additional comment on the connection of the properties slenderness – which we exhibit to
show the decidability of recognizability for ω-automatic relations – and finiteness – used in the approach
of Carton et al. (2006) to show the decidability of recognizability of automatic relations.

The paper is structured as follows. In Section 2 we give the definitions of transducers, relations, and
visibly pushdown automata. In Section 3 we prove the undecidability of the equivalence problem for
deterministic ω-rational relations. Section 4 contains the decision procedure for recognizability of ω-
automatic relations, and Section 5 presents the polynomial time regularity test for deterministic VPAs
and its use for the recognizability test of automatic relations. Finally, we conclude in Section 6.

(i) Recognizability is decidable for deterministic rational relations of arbitrary arity as shown by Carton et al. (2006) but we are not
aware of a proof preserving the doubly exponential runtime.
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2 Preliminaries
We start by briefly introducing transducers and visibly pushdown automata as well as related terminology
as we need them for our results. For more details we refer to Sakarovitch (2009); Frougny and Sakarovitch
(1993); Thomas (1990) and Alur and Madhusudan (2004); Bárány et al. (2006), respectively.

We denote alphabets (i.e. finite non-empty sets) by Σ and Γ. Σ∗ and Σω are the sets of all finite and
infinite words over Σ, respectively. Furthermore, a k-ary (ω-)relation is a subset R ⊆ Σ∗1 × . . . × Σ∗k or
R ⊆ Σω

1 × . . . × Σω
k , respectively. A unary, i.e. 1-ary, (ω-)relation is called a (ω-)language. Usually we

denote languages by L,K, etc. and relations of higher or arbitrary arity by R,S, etc. The domain of a
relation R is the language

dom(R) := {w ∈ Σ∗1 | ∃(v2, . . . , vk) ∈ Σ∗2 × . . .× Σ∗k : (w, v2, . . . , vk) ∈ R}.

For an ω-relation R the domain is defined analogously.
Lastly, for a natural number n ∈ N we define n := {m | 1 ≤ m ≤ n}.

2.1 Finite Transducers and (ω-)Rational Relations
A transducer A is a tuple (Q,Σ1, . . . ,Σk, q0,∆, F ) where Q is the state set, Σi, 1 ≤ i ≤ k are (finite)
alphabets, q0 ∈ Q is the initial state, F ⊆ Q denotes the accepting states, and ∆ ⊆ Q×(Σ1∪{ε})× . . .×
(Σk ∪{ε})×Q is the transition relation. A is deterministic if there is a state partition Q = Q1 ∪ . . .∪Qk

such that ∆ can be interpreted as partial function δ :
⋃k

j=1(Qj × (Σj ∪ {ε})) → Q with the restriction
that if δ(q, ε) is defined then no δ(q, a), a 6= ε is defined. Note that the state determines which component
the transducer processes. A is complete if δ is total (up to the restriction for ε-transitions).

A run of A on a tuple u ∈ Σ∗1 × . . . × Σ∗k is a sequence ρ = p0 . . . pn ∈ Q∗ such that there is
a decomposition u = (a1,1, . . . , a1,k) . . . (an,1, . . . , an,k) where the ai,j are in Σj ∪ {ε} and for all
i ∈ {1, . . . , n} it holds that (pi−1, ai,1, . . . , ai,k, pi) ∈ ∆. The run of A on a tuple over infinite words
in Σω

1 × . . . × Σω
k is an infinite sequence p0p1 . . . ∈ Qω defined analogously to the case of finite words.

We use the shorthand notation A : p
u1/.../uk−−−−−−→ q or A : p

u−→ q to denote the existence of a run of A
on u = (u1, . . . , uk), uj ∈ Σ∗j starting in p and ending in q. Moreover, A : p

u−→
F
q denotes the existence

of a run from p to q which contains an accepting state. Concerning runs on tuples of infinite words we
deliberately extend this notation in the natural way and write p u−→ (q

vi−→ q)i≥0 or p u−→ (q
v−→ q)ω if both,

the run and the input tuple, permit it. A run on u is called accepting if it starts in the initial state q0 and
ends in an accepting state. Moreover, A accepts u if there is an accepting run starting of A on u. Then A
defines the relation R∗(A) ⊆ Σ∗1× . . .×Σ∗k containing precisely those tuples accepted byA. To enhance
the expressive power of deterministic transducers, the relation R∗(A) is defined as the relation of all u
such that A accepts u(#, . . . ,#) for some fresh fixed symbol # /∈

⋃k
j=1 Σj . The relations definable by

a (deterministic) transducer are called (deterministic) rational relations. For tuples over infinite words
u ∈ Σω

1 × . . .× Σω
k we utilize the Büchi condition (cf. Büchi (1962)). That is, a run ρ ∈ Qω is accepting

if it starts in the initial state q0 and a state f ∈ F occurs infinitely often in ρ. Then A accepts u if there
is an accepting run of A on u and Rω(A) ⊆ Σω

1 × . . .× Σω
k is the relation of all tuples of infinite words

accepted by A. We refer to A as Büchi transducer if we are interested in the relation of infinite words
defined by it. The class of ω-rational relations consists of all relations definable by Büchi transducers.

It is well-known that deterministic Büchi automata are not sufficient to capture the ω-regular languages
(see Thomas (1990)) which are the ω-rational relations of arity one. Therefore, we use another kind of
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transducer to define deterministic ω-rational relations: a deterministic parity transducer is a tuple A =
(Q,Σ1, . . . ,Σk, q0, δ,Ω) where the first k + 3 items are the same as for deterministic transducers and
Ω : Q → N is the priority function. A run is accepting if it starts in the initial state and the maximal
priority occurring infinitely often in the run is even (cf. Piterman (2006)).

A transducer is synchronous if for each pair (p, a1, . . . , ak, q), (q, b1, . . . , bk, r) of successive transi-
tions it holds that aj = ε implies bj = ε for all j ∈ {1, . . . , k}. Intuitively, a synchronous transducer is
a finite automaton over the vector alphabet Σ1 × . . . × Σk and, if it operates on tuples (u1, . . . , uk) of
finite words, the components uj may be of different length (i.e. if a uj has been processed completely, the
transducer may use transitions reading ε in the j-th component to process the remaining input in the other
components). In fact, synchronous transducers inherit the rich properties of finite automata – e.g., they are
closed under all Boolean operations and can be determinized. In particular, synchronous (nondeterminis-
tic) Büchi transducer and deterministic synchronous parity transducer can be effectively transformed into
each other (see Sakarovitch (2009); Frougny and Sakarovitch (1993); Piterman (2006)). Synchronous
(Büchi) transducers define the class of (ω-)automatic relations.

Finally, the last class of relations we consider are (ω-)recognizable relations. A relationR ⊆ Σ∗1×. . .×
Σ∗k (or R ⊆ Σω

1 × . . .× Σω
k ) is (ω-)recognizable if it is the finite union of direct products of (ω-)regular

languages — i.e. R =
⋃`

i=1 Li,1 × . . .× Li,k where the Li,j are (ω-)regular languages.
It is well-known that the classes of (ω-)recognizable, (ω-)automatic, deterministic (ω-)rational rela-

tions, and (ω-)rational relations form a strict hierarchy (see Sakarovitch (2009)).

2.2 Visibly Pushdown Automata

In Section 5, we use visibly pushdown automata (VPAs) which have been introduced by Alur and Mad-
husudan (2004). They operate on typed alphabets, called pushdown alphabets below, where the type of
input symbol determines the stack operation. Formally, a pushdown alphabet is an alphabet Σ consisting
of three disjoint parts — namely, a set Σc of call symbols enforcing a push operation, a set Σr of return
symbols enforcing a pop operation and internal symbols Σint which do not permit any stack operation. A
VPA is a tuple P = (P,Σ,Γ, p0,⊥,∆, F ) where P is a finite set of states, Σ = Σc ∪̇ Σr ∪̇ Σint is a finite
pushdown alphabet, Γ is the stack alphabet and ⊥ ∈ Γ is the stack bottom symbol, p0 ∈ P is the initial
state, ∆ ⊆ (P × Σc × P × (Γ \ {⊥})) ∪ (P × Σr × Γ× P ) ∪ (P × Σint × P ) is the transition relation,
and F is the set of accepting states.

A configuration of P is a pair in (p, α) ∈ P × (Γ \ {⊥})∗{⊥} where p is the current state of P
and α is the current stack content (α[0] is the top of the stack). Note that the stack bottom symbol ⊥
occurs precisely at the bottom of the stack. The stack whose only content is ⊥, is called the empty
stack. P can proceed from a configuration (p, α) to another configuration (q, β) via a ∈ Σ if a ∈ Σc

and there is a (p, a, q, γ) ∈ ∆ ∩ (P × Σc × P × (Γ \ {⊥})) such that β = γα (push operation),
a ∈ Σr and there is a (p, a, γ, q) ∈ ∆ ∩ (P × Σr × Γ × P ) such that α = γβ or γ = α = β = ⊥
— that is, the empty stack may be popped arbitrarily often (pop operation), or a ∈ Σint and there is a
(p, a, q) ∈ ∆ ∩ (P × Σint × P ) such that α = β (noop). A run of P on a word u = a1, . . . , an ∈ Σ∗ is
a sequence of configurations (p1, α1) . . . (pn+1, αn+1) connected by transitions using the corresponding
input letter. As for transducers we use the shorthand P : (p1, α1)

u−→ (pn+1, αn+1) to denote a run. A
run is accepting if it starts with the initial configuration (p0,⊥) and ends in a configuration (pf , αf ) with
pf ∈ F . We say that P accepts u if there is an accepting run of P on u and write L(P) for the language of
all words accepted by P . Furthermore, P accepts u from (p, α) if there is a run of P starting in (p, α) and
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ending in a configuration (pf , αf ) with pf ∈ F . We write L(p, α) for the set of all words accepted from
the configuration (p, α). Note that for the initial configuration (p0,⊥) we have that L(P) = L(p0,⊥).
Two configurations (p, α), (q, β) are P-equivalent if L(p, α) = L(q, β). We denote the P-equivalence
relation by ≈P . That is, (p, α) ≈P (q, β) if and only if L(p, α) = L(q, β). Lastly, a configuration (p, α)
is reachable if there is a run from (p0,⊥) to (p, α).

A deterministic VPA (DVPA) P is a VPA that can proceed to at most one configuration for each given
configuration and a ∈ Σ.

Viewing the call symbols as opening and the return symbols as closing parenthesis, one obtains a natural
notion of a return matching a call, and unmatched call or return symbols. Furthermore, we need the notion
of well-matched words (cf. Bárány et al. (2006)). The set of well-matched words over a pushdown alphabet
Σ is defined inductively by the following rules:

• Each w ∈ Σ∗int is a well-matched word.

• For each well-matched word w, c ∈ Σc and r ∈ Σr the word cwr is well-matched.

• Given two well-matched words w, v their concatenation wv is well-matched.

An important observation regarding well-matched words is that the behavior of P on a well-matched
word w is invariant under the stack content. That is, for any configurations (p, α), (p, β) we have that
P : (p, α)

w−→ (q, α) if and only if P : (p, β)
w−→ (q, β). In particular, this holds true for the empty

stack α = ⊥. Furthermore, every word u ∈ Σ∗ with P : (q0, α)
u−→ (pn+1, γn . . . γ1α) for some

γn, . . . , γ1 ∈ Γ \ {⊥}, n ≤ |u| can be uniquely decomposed into a prefix u′ ∈ Σ∗, well-matched words
w1, . . . , wn+1, and call symbols c1, . . . , cn ∈ Σc such that u = u′w1c1w2 . . . cnwn+1 and u′ is minimal
(in other words, u′ is the shortest prefix that contains unmatched return symbols). Moreover, there are
configurations

(p1, α), (p′1, γ1α), . . . , (pn, γn−1 . . . γ1α), (p′n, γn . . . γ1α)

such that
(p′i−1, γi−1 . . . γ1α)

wi−→ (pi, γi−1 . . . γ1α)
ci−→ (pi, γi . . . γ1α)

holds. That is, informally, the symbol ci is responsible for pushing γi onto the stack.
A similar unique decomposition is possible for words u popping a sequence γn . . . γ1 from the top of

the stack. In that case we have that the word u factorizes into u = wnrn . . . w1r1w0u
′ where the wj are

well-matched words, the ri are return symbols responsible for popping the γi, and u′ is a minimal suffix.

3 The Equivalence Problem for Deterministic Büchi Transducers
In this section we show that the equivalence for deterministic Büchi transducers is undecidable – in differ-
ence to its analogue for relations over finite words proven by Bird (1973); Harju and Karhumäki (1991).
Our proof is derived from a recent construction by Böhm et al. (2017) for proving that the equivalence
problem for one-counter Büchi automata is undecidable. We reduce the intersection emptiness problem
for relations over finite words to the equivalence problem for deterministic Büchi transducers.

Proposition 1 (Rabin and Scott (1959); Berstel (1979)). The intersection emptiness problem, asking for
two binary relations given by deterministic transducers A,B whether R∗(A) ∩ R∗(B) = ∅ holds, is
undecidable.
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qR0BR

qRa

qRr

. . .

. . .

. . .

AS

qS0BS

qSa

qSr

. . .

. . .

. . .

#/#

#/#

#/#

#/#

ε/ε

ε/ε

ε/ε

ε/ε

Fig. 2: Illustration of the transducers BR, BS . The labels #/# are just used for comprehensibility. In the formal
construction the # symbols are read in succession and the transducers may even read other symbols between them
(but only in the component where no # has been read yet).

Theorem 2. The equivalence problem for ω-rational relations of arity at least two is undecidable for
deterministic Büchi transducers.

Proof: We prove Theorem 2 by providing a many-one-reduction from the emptiness intersection problem
over finite relations to the equivalence problem for deterministic ω-rational relations. Then the claim
follows due to the undecidability of the emptiness intersection problem (cf. Proposition 1). Furthermore,
it suffices to provide the reduction for relations of arity k = 2. For k > 2 the claim follows by adding
dummy components to the relation.

Let AR, AS be deterministic transducers defining binary relations R and S over finite words, respec-
tively. More precisely, we let

AR = (QR,Σ1,Σ2, q
R
0 , δR, FR) and AS = (QS ,Σ1,Σ2, q

S
0 , δS , FS).

We construct deterministic Büchi transducers BR and BS such that

R ∩ S 6= ∅ ⇔ Rω(BR) 6= Rω(BS).

That is, each tuple in R ∩ S induces a witness for Rω(BR) 6= Rω(BS) and vice versa.
Recall that AR, AS accept a tuple (u, v) if there is an accepting run on (u, v)(#,#) (where # is an

endmarker symbol not contained in any alphabet involved). Then it is easy to see that we can assume that
the deterministic transducers AR and AS are in normal form according to Sakarovitch (2009): the initial
states qR0 and qS0 do not have incoming transitions and there are unique accepting states qRa and qSa as well
as rejecting states qRr and qSr that

1. are entered only by transitions labeled #, and

2. have no outgoing transitions.

That is, we have that FR = {qRa } and upon the end of any run AR is either in state qRa or qRr 6= qRa after
reading the endmarker # in both components. Analogously, the same applies for AS .

The construction of BR and BS is illustrated in Figure 2.
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Both Büchi transducers are almost the same except for the initial state: both consist of the union of the
transition structures of AR and AS complemented by transitions labeled ε/ε from qXa to qX0 and qXr to
qY0 for X,Y ∈ {R,S}, X 6= Y . That is, upon reaching a rejecting state ofAR orAS the new transducers
will switch to the initial state of the other subtransducer(ii) and upon reaching an accepting state they will
return to the initial state of the current subtransducer. The new accepting states are qRa , q

R
r , q

S
r . Note that

qSa is not accepting introducing an asymmetry. Finally, the initial state of BX is qX0 . Formally, we set

BR := (QB,Σ
′
1,Σ

′
2, q

R
0 , δB, FB) and BS := (QB,Σ

′
1,Σ

′
2, q

S
0 , δB, FB)

where

• QB := QR ∪̇ QS ,

• Σ′i := Σi ∪ {#}, i ∈ {1, 2}, and

• FB := {qRa , qRr , qSr }.

The transition relation δB is defined as follows:

δB(q, a) :=


δR(q, a), q ∈ QR \ {qRa , qRr }
δS(q, a), q ∈ QS \ {qSa , qSr }
δS(qS0 , a), q ∈ {qRr , qSa }
δR(qR0 , a), q ∈ {qSr , qRa }

Further on, we show the correctness of our construction. Pick a tuple (u, v) in R ∩ S. We have to
show that Rω(BR) 6= Rω(BS). Then the unique runs of AR and AS on (u#, v#) end in qRa and qSa ,
respectively:

AR : qR0
u#/v#−−−−−→ qRa and AS : qS0

u#/v#−−−−−→ qSa .

Recall that qRa and qSa have precisely the same transitions as qR0 and qS0 , respectively. Thus, they have
the same behavior. Hence, the unique runs of BR and BS on w := (u#, v#)ω , which are completely
determined by AR and AS , have the following shape:

BR : qR0
u#/v#−−−−−→

(
qRa

u#/v#−−−−−→ qRa

)ω

and BS : qS0
u#/v#−−−−−→

(
qSa

u#/v#−−−−−→ qSa

)ω

.

Since qRa ∈ FB, it follows that w ∈ Rω(BR). On the other hand, the run of BS stays completely in
the AS subtransducer and qSr does not occur in it. Assuming otherwise, AS would reject (u, v) which
would be a contradiction. But then no state in FB occurs in the run of BS (recall that in contrast to qRa the
state qSa is not in FB). Hence, w /∈ Rω(BS). Therefore, the induced unique run of BR on (u#, v#)ω is
accepting while the unique run of BS is rejecting. Thus, w ∈ Rω(BR) \ Rω(BS) and we can conclude
that Rω(BR) 6= Rω(BS) holds.

For the other direction, suppose Rω(BR) 6= Rω(BS) holds. Then there is a pair of infinite words (u, v)
that is rejected by one of the transducers, and accepted by the other. Recall that the accepting states of both
(ii) For our purpose, a subtransducer of B is a transducer obtained from B by removing states and transitions. Also, accepting states

do not have to be preserved. In particular,AR andAS are subtransducers of BR and BS by definition.
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BR and BS can only be entered by reading the #-symbol in both components. Hence, both components
of (u, v) have to contain infinitely often #, since one of the Büchi transducers accepts. More precisely,
the pair (u, v) can be written as

(u, v) = (u0, v0)(#,#)(u1, v1)(#,#) . . . ∈ Rω(BR)4Rω(BS), with (ui, vi) ∈ Σ∗1 × Σ∗2 ∀i ∈ N.

We claim that there is a p ∈ N such that (up, vp) ∈ R ∩ S. Then R ∩ S 6= ∅ follows immediately.
Let ρR and ρS be the unique runs of BR and BS , respectively. W.l.o.g. assume that BR rejects (u, v)

while BS accepts it. In the other case the reasoning is exactly the same with BR and BS exchanged.
Since ρR is not accepting, the states in FB occur only finitely often in ρR. On the other hand, the

endmarker # is read infinitely often. Thus, states in FB ∪ {qSa } occur infinitely often because they are
entered if and only if endmarkers have been read in both components. It follows that ρR stays in the AS

subtransducer from some point on and qSa occurs infinitely often in ρR. To be more precise, qSa occurs
precisely after reading the endmarker in both components and, afterwards, the run continues in AS . All
in all, the run is determined by run fragments

qR0
u0#u1#...uj−1#/v0#v1#...vj−1#−−−−−−−−−−−−−−−−−−−−−−→ qS0

uj#/vj#−−−−−−→ qSa and qSa
ui#/vi#−−−−−−→ qSa

for some j ∈ N and all i > j. Hence, it holds that

∃j ≥ 0 ∀i ≥ j : (ui, vi) ∈ S (?)

because AS and BR are deterministic and, by construction, qSa imitates qS0 .
Further on, it suffices to show that ρS (the unique accepting run of BS) stays in AR from some point

on. Then it follows analogously to the case for ρR that (?) holds for R and, thus, we have that (up, vp) ∈
R ∩ S for some p. First of all, ρS does not stay in AS from some point on. Otherwise, it would not be
accepting. Assume for the sake of contradiction that the run ρS switches infinitely often between the two
subtransducers, i.e. both qSr and qRr occur infinitely often in the run. It follows that ρS contains infinitely
many fragments of the form

qRr
ui#/vi#−−−−−−→ qSr or qSa

ui#/vi#−−−−−−→ qSr

where all intermediate states are in QS . Thus, because qRr and qSa behave in the same way as qS0 by
construction and AS is deterministic, we have that

∀j ≥ 0 ∃i ≥ j : (ui, vi) /∈ S.

But this is a direct contradiction to (?). Hence, ρS stays in theAR subtransducer from some point on, and
similarly to the case for ρR above, it follows that

∃j ≥ 0 ∀i ≥ j : (ui, vi) ∈ R. (??)

Let p ∈ N the maximum of the existentially quantified j’s in (?) and (??). Then we have that (up, vp) ∈
R ∩ S 6= ∅.

All in all, we have shown that R ∩ S 6= ∅ ⇔ Rω(BR) 6= Rω(BS) holds and, thus, the correctness of
our reduction.

We note that our reduction is rather generic an could be applied to other classes of automata for which
the intersection emptiness problem on finite words is undecidable.
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4 Deciding Recognizability of ω-Automatic Relations
Our aim in this section is to decide ω-recognizability of ω-automatic relations in doubly exponential
time. That is, given a deterministic synchronous transducer, decide whether it defines an ω-recognizable
relation. The proof approach is based on an algorithm for relations over finite words given by Carton
et al. (2006) which we briefly discuss in Subsection 4.1. Afterwards, in Subsection 4.2, we present our
main result of this section. In Subsection 4.3, we comment on a connection between Carton et al. (2006)’s
original proof and our (alternative) approach for infinite words.

4.1 Revision: Deciding Recognizability of Automatic Relations
Let R be an (ω-)automatic relation of arity k. For each j ≤ k we define the equivalence relation

Ej := {((u1, . . . , uj), (v1, . . . , vj)) | ∀wj+1, . . . , wk :

(u1, . . . , uj , wj+1, . . . , wk) ∈ R⇔ (v1, . . . , vj , wj+1, . . . , wk) ∈ R}.

Then the key to decide (ω-)recognizability is the following result which has been proven by Carton et al.
(2006) for relations over finite words and is easily extensible to infinite words:

Lemma 3 (Carton et al. (2006)). Let R be an (ω-)automatic relation of arity k. Then for all 1 ≤ j ≤ k
the equivalence relation Ej has finite index if and only if R is (ω-)recognizable.

Here we shall adapt the proof of Carton et al. (2006) to ω-automatic relations.

Proof: ⇒: Assume R 6= ∅ is ω-recognizable. Then we have that R =
⋃`

i=1 Li,1× . . .×Li,k for some ω-
regular languages Li,n ⊆ Σω

n . Pick words ui ∈ Li,1 for all i ∈ {1, . . . , `}. Then each word in Σω
1 is either

equivalent w.r.t. E1 to one of these ui or belongs to the equivalence class Σω
1 \ dom(R). Thus, E1 has

finite index. The proof forEj , j > 1 works similarly by picking tuples (ui,1, . . . , ui,j) ∈ Li,1× . . .×Li,j .
⇐: Assume all Ej have finite index. We show the claim by induction over k. For the base case of a

1-ary ω-rational relation the claim is trivial. Suppose that k ≥ 2. We prove that R can be written as finite
union of direct products of ω-regular languages. Then it follows by definition that R is recognizable.
Recall that dom(R) is ω-regular. Hence, we can pick an ultimately periodic word u1 ∈ dom(R) (cf.
Büchi (1962)). Clearly, {u1} × Σω

1 is ω-automatic. Furthermore, since ω-automatic relations are closed
under intersection (and E1 itself is ω-automatic) it holds that

E1 ∩ ({u1} × Σω
1 ) = {u1} × {w ∈ Σω

1 | (u1, w) ∈ E1} = {u1} × [u1]E1

is ω-automatic. In particular, it follows that the equivalence class of u1, denoted [u1]E1 , is ω-regular.
Moreover, each {u1} × Σω

2 × . . .× Σω
k is ω-recognizable. Hence, the relation

R|u1 := {(x2, . . . , xk) | (u1, x2, . . . , xk) ∈ R} ⊆ Σω
2 × . . .× Σω

k

is ω-automatic. By iteratively applying this reasoning to dom(R)\[u1]E1
we obtain a sequence u1, u2, . . .

such that all ui are pairwise non-equivalent ultimately periodic representatives. Since E1 has finite index
by assumption, this sequence is finite. Observe that this implies that R can be written as the finite union
R =

⋃`
i=1[ui]E1

× R|ui
. Recall that the R|ui

are ω-automatic. Hence, it suffices to show that for each
R|u1

the induced equivalence relations have all finite index. Then the claim follows by the induction
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hypothesis. For this purpose, observe that an equivalence class of some Ej is solely determined by a set
of possible outputs. More precisely, for T := R|u1

and all 2 ≤ j ≤ k we have that

T |v2,...,vj = {(vj+1, . . . , vk) | (v2, . . . , vk) ∈ T}
= {(vj+1, . . . , vk) | (ui, v2, . . . , vk) ∈ R} = R|ui,v2,...,vj .

Therefore, it follows by the definition of the Ej that for all R|ui
the induced equivalence relations have

all finite index.

Based on that lemma, the recognizability test presented by Carton et al. (2006) proceeds as follows. It
is shown that each Ej is an automatic equivalence relation by constructing a synchronous transducer for
Ej . It remains to decide for an automatic equivalence relation whether it is of finite index. This can be
achieved by constructing a synchronous transducer that accepts a set of representatives of the equivalence
classes of Ej (based on a length-lexicographic ordering). Then Ej has finite index if and only if this set
of representatives is finite, which can be decided in polynomial time.

It is unclear whether this approach can be used to obtain an exponential time upper bound for the
recognizability test.(iii) One can construct a family (Rn)n∈N of automatic binary relations Rn defined by
a deterministic synchronous transducer of size O(n2) such that every synchronous transducer defining
E1 has size (at least) exponential in n (cf. Example 4). It is unclear whether it is possible to decide in
polynomial time for such a transducer whether the equivalence relation it defines is of finite index. For
this reason, we revisit the problem for finite words in Section 5 and provide an exponential time upper
bound for binary relations using a different approach.

Example 4. We construct for any n ∈ N an automatic (binary) relation Rn in terms of a deterministic
synchronous transducer of size O(n2) such that every synchronous transducer defining E1 has size (at
least) exponential in n. Let n ∈ N and Σ := {0, 1}. Consider the relation

Rn := {(u#v, t) | u, v, t ∈ Σn, |t|1 ≤ 1, ∀0 ≤ i < n : t[i] = 1→ u[i] = v[i]}

That is, Rn consists of tuples (u#v, t) where u, v and t are bit strings of length n and t contains at most
one 1. Moreover, the occurrence of this 1 (if present) marks a position where u and v are equal.

A deterministic synchronous transducer An can define Rn with the help of two finite counters ranging
over {0, . . . , n} as follows: the first counter measures the length of u and t and the second counter
determines the position of the 1-symbol in the second component t (if present). Initially, both counters
are increased by one on each transition ofAn. Whether the second component is malformed (i.e. contains
two 1’s), is verifiable with a single control bit in the state space. Also, An can remember the bit indicated
by a 1 in the second component with a single bit in the state space and stop the second counter (containing
the correct position of the 1). Up on reaching the separator # in the first component, An resets the first
counter (assuming the input has been well-formed so far; otherwise, it rejects) and utilizes it to verify the
length of v. Moreover, it decreases the second counter on each transition. If 0 is reached it has found the
position i in v marked by the second component and can compare v[i] with u[i] which has been saved
in the state space. Finally, the case that the second counter does not stop (i.e. there is no 1 in the second
component) can be handled with another control bit in the state space. An has to store both counters plus

(iii) Carton et al. (2006) mainly focused on decidability, and they agree that the proof as presented in that paper does not yield an
exponential time upper bound.
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finitely many control/memory bits (whose number is independent of n) in the state space. Hence, Rn is
definable by a deterministic synchronous transducer of size O(n2).

It remains to show that every transducer defining E1 has size exponential in n. For each input u#v ∈
Σn{#}Σn it holds that(iv)

R|u#v = R(u#v) = {0i10n−i−1 | 0 ≤ i < n, (u⊕ v)[i] = 0} ∪ {0n}.

It suffices to show that every transducer recognizing

E′1 := E1 ∩
(
Σn{#}Σn

)2
=

{(u#v, u′#v′) | u, v, u′, v′ ∈ Σn ∧ ∀ 0 ≤ i < n : (u⊕ v)[i] = (u′ ⊕ v′)[i]}

has size exponential in n. This holds because
(
Σn{#}Σn

)2
is definable by a deterministic synchronous

transducer of size O(n). Note that the existence of a synchronous transducer of sub-exponential size for
E1 would imply the existence of one for the intersection. Furthermore, observe that we cut out all pairs
of malformed inputs x ∈ (Σ ∪ {#})∗ — i.e. with R(x) = ∅. For the sake of contradiction, suppose
there is synchronous transducer Bn = (Q,Σ,Σ, q0,∆, F ) defining E′1 with |Q| < 2n. By the pigeonhole
principle there are i ∈ n, p ∈ Q and u, u′, x, x′, v, v′, y, y′ ∈ Σn such that (u⊕ u′)[i] 6= (x⊕ x′)[i] and

Bn : q0
u#/u′#−−−−−→ p

v/v′−−−→ F as well as Bn : q0
x#/x′#−−−−−→ p

y/y′−−−→ F.

In particular, u#v and u′#v′ as well as x#y and x′#y′ are equivalent. Moreover, x#v and x′#v′ are
equivalent, too, since B permits an accepting run. W.l.o.g. we have that (u⊕u′)[i] = 0 and (x⊕x′)[i] = 1.
That is, u[i] = u′[i] and x[i] 6= x′[i]. Thus, (u⊕v)[i] = (u′⊕v)[i] = (u′⊕v′)[i]. We deduce v[i] = v′[i].
Then, similarly to the previous reasoning, we have that (x ⊕ v)[i] = (x ⊕ v′)[i] = (x′ ⊕ v′)[i]. But
this yields x[i] = x′[i] which is a contradiction to (x ⊕ x′)[i] = 1. Thus, every deterministic transducer
defining E′j has size at least 2n which proves our claim.

4.2 From Indices of Equivalence Relations to Slenderness of Languages
We now turn to the case of infinite words. The relationEj can be shown to be ω-automatic, similarly to the
case of finite words. However, it is not possible, in general, for a given ω-automatic relation to define a set
of representatives by means of a synchronous transducer, as shown by Kuske and Lohrey (2006): There
exists a binary ω-automatic equivalence relation such that there is no ω-regular set of representatives of
the equivalence classes.

Here is how we proceed instead. The first step is similar to the approach of Carton et al. (2006): We
construct synchronous transducers for the complements Ej of the equivalence relations Ej in polynomial
time (starting from a deterministic transducer for R). We then provide a decision procedure to decide for
a given transducer for Ej whether the index of Ej is finite in doubly exponential time. This procedure is
based on an encoding of ultimately periodic words by finite words.

First observe that a tuple in Σω
1 × . . . × Σω

j can be seen as an infinite word over Σ = Σ1 × . . . × Σj

(this is not the case for tuples over finite words, since the words may be of different length). Hence, we
can view each Ej as a binary equivalence relation E ⊆ Σω × Σω . For this reason, we only work with
binary relations in the following.
(iv) u⊕ v shall denote the bitwise XOR operation on u and v.
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We start by showing that for deciding whetherE has finite index it suffices to consider sets of ultimately
periodic representatives uivωi such that the periods |vi| and prefix lengths |ui| are the same, respectively,
for all the representatives (Lemma 6). In the second step E is transformed into an automatic equivalence
relation E# over finite words using encodings of ultimately periodic words as finite words, where a word
uvω is encoded by u#v as done by Calbrix et al. (1993) (Definition 8 and Lemma 9). Since E# is an
automatic relation over finite words, it is possible to obtain a finite automaton for a set of representatives
of E#. Finally, we reduce the decision problem whether E has finite index to deciding slenderness
(see Definition 5 below) for polynomially many languages derived from the set of representatives of E#

(Lemmas 12 & 13). Therefore, by proving that deciding slenderness for (nondeterministic) finite automata
is NL-complete (Lemma 14) we obtain our result.

Definition 5 (Pǎun and Salomaa (1995)). A language L ⊂ Σ∗ is slender if there exists a k < ω such that
for all ` < ω it holds that |L ∩ Σ`| < k.

We now formalize the ideas sketched above.

Lemma 6. Let E ⊆ Σω ×Σω be an ω-automatic equivalence relation. Then E has not finite index if and
only if for each k > 0 there are

u1, . . . , uk, v1, . . . vk ∈ Σ∗ with |ui| = |uj | and |vi| = |vj | for all 1 ≤ i ≤ j ≤ k

such that (uiv
ω
i , ujv

ω
j ) /∈ E for all 1 ≤ i < j ≤ k.

To prove Lemma 6 we first show the following, slightly weaker, version of it:

Lemma 7. Let E ⊆ Σω × Σω be a ω-automatic equivalence relation. Then E has not finite index if
and only if there are infinitely many (pairwise different) equivalence classes of E containing an ultimately
periodic representative.

Proof: ⇐: Indeed, if E has finite index then there are only finitely many equivalence classes of E
(containing an ultimately periodic word) by definition.
⇒: Suppose there are only finitely many equivalence classes of E containing an ultimately periodic

word. Let C1, . . . , Cn be those equivalence classes and u1v
ω
1 , . . . , unv

ω
n be ultimately periodic words

such that uivωi is in Ci for all 1 ≤ i ≤ n. Each Ci is ω-regular language, since it holds that

Ci = dom({(w, uivωi ) ∈ E | w ∈ Σω}) = dom(E ∩ (Σω × {uivωi })),

ω-automatic relations are closed under intersection and projection, and {ui, vωi } × Σω is clearly ω-
automatic (in terms of automata, we can obtain an automaton for Ci by fixing the second input tape
of a synchronous transducer for E to uivωi ).

Therefore, the (finite) union C of the Ci and its complement Σω \ C are also ω-regular. If Σω \ C is
non-empty, it contains an ultimately periodic word due to Büchi (1962). But this would contradict the
assumption that the Ci are all equivalence classes of E containing an ultimately periodic word. Thus, the
complement of C is empty. It follows that C1, . . . , Cn are all equivalence classes of E, and, hence, E has
finite index.

Proof of Lemma 6: ⇐: We prove the claim by contraposition. Suppose E has finite index. Let m0 :=
index(E) < ω. Then for each collection of words u1, . . . , um, v1, . . . vm ∈ Σ∗ with |ui| = |uj | = ` and
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|vi| = |vj | = p such that all uivωi are pairwise non-equivalent, we have that m ≤ m0. Otherwise, there
would be more than m0 equivalence classes which is a contradiction.
⇒: Suppose E has not finite index. Let m > 0. Due to Lemma 7 there are infinitely many pairwise

non-equivalent (w.r.t. E) ultimately periodic words. Hence, we can pick ultimately periodic words wi =
uiv

ω
i , i ∈ m which are pairwise non-equivalent. That is, (uiv

ω
i , ujv

ω
j ) /∈ E for all indices 1 ≤ i <

j ≤ m. We rewrite these ultimately periodic words such that they meet the conditions of the claim.
W.l.o.g. we have that |u1| ≥ |ui| for all i ∈ m. We define u′1 := u1 as well as v′1 := v1. Moreover,
for each i ∈ m \ {1} let pi := b |u1|−|ui|

|vi| c. Furthermore, consider the factorization vi = v̂iṽi where
|v̂i| = (|u1|−|ui|) mod |vi|. Note that |u1|−|ui| ≥ 0, since |u1| ≥ |ui|. Lastly, we define u′i := uiv

pi

i v̂i.
Then it holds that

|u′i| = |ui| + pi|vi| + |v̂i|

= |ui| + b |u1| − |ui|
|vi|

c|vi| + ((|u1| − |ui|) mod |vi|)

= |ui| +
[
|u1| − |ui| − ((|u1| − |ui|) mod |vi|)

]
+ ((|u1| − |ui|) mod |vi|)

= |ui| + |u1| − |ui|
= |u1|

Therefore, we have that |u′i| = |u1| = |u′j | for all 1 ≤ i < j ≤ m. Moreover,

uiv
ω
i = uiv

pi

i v̂iṽi(v̂iṽi)
ω = u′iṽi(v̂iṽi)

ω = u′i(ṽiv̂i)
ω.

Thus, by defining v′i := ṽiv̂i we derive pairs u′i, v
′
i ∈ Σ∗ such that wi = u′i(v

′
i)

ω and |u′i| = |u′j | for all
1 ≤ i < j ≤ m.

It remains to rewrite the v′i such that all periods have the same length. For that purpose, let ` :=
lcm(|v′1|, . . . , |v′k|), `i = `

|v′i|
, and define v′′i := (v′i)

`i for all i ∈ m. Then u′i(v
′
i)

ω = u′i(v
′′
i )ω = uiv

ω
i

and |v′′i | = |v′i| `
|v′i|

= `. Hence, the pairs u′i, v
′′
i ∈ Σ∗ satisfy the conditions of the claim.

We proceed by transformingE into an automatic equivalence relationE# and showing that it is possible
to compute in exponential time a synchronous transducer for it, given a synchronous Büchi transducer for
E.

Definition 8. Let E ⊆ Σω ×Σω be an ω-automatic equivalence relation. Furthermore, let Γ := Σ∪{#}
for a fresh symbol # /∈ Σ. Then the relation E# ⊆ Γ∗ × Γ∗ is defined by

E# := {(u#v, x#y) | u, v, x, y ∈ Σ∗, |u| = |x|, |v| = |y|, (uvω, xyω) ∈ E}.

Lemma 9. Let E ⊆ Σω × Σω be an ω-automatic equivalence relation and A a synchronous Büchi
transducer defining the complement E of E. Then, given A, one can construct a synchronous transducer
A# defining E# in exponential time in the size of A. In particular, E# is an automatic relation and A#

has size exponential in A.

For the proof of Lemma 9, we introduce the notion of transition profiles, which also play a central
role in the original complementation proof for Büchi automata, as described, e.g., in (Thomas, 1990,
Section 2).
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Definition 10 (transition profile). LetA = (Q,Σ, q0,∆, F ) be a (nondeterministic) Büchi automaton and
w ∈ Σ∗. A transition profile over A is a directed labeled graph τ = (Q,E) where E ⊆ Q× {1, F} ×Q.
The transition profile τ(w) = (Q,Ew) induced by w is the transition profile where Ew contains an
edge from p to q if and only if p w−→ q, and this edge is labeled with F if and only if p w−→

F
q. Finally,

TP (A) := {τ(w) | w ∈ Σ∗} denotes the set of all transition profiles over A induced by a word w ∈ Σ∗.

It is well-known that for all words v, w the transition profile τ(vw) is determined by the transition
profiles τ(v) and τ(w). In particular, (TP (A), ·) with τ(v) · τ(w) = τ(vw) is a monoid with neutral
element τ(ε). The following lemma is a simple observation that directly follows from the definition of
transition profiles.

Lemma 11 (Breuers et al. (2012)). Let A = (Q,Σ, q0,∆, F ) be a Büchi automaton and uvω ∈ Σω be
an ultimately periodic word. Then uvω ∈ L(A) if and only if there is a p ∈ Q such that there is an edge
from q0 to p in τ(u) and in τ(v) a cycle with an F labeled edge is reachable from p.

Proof of Lemma 9: Let A be given by A = (Q,Σ,Σ, q0,∆, F ). We have to construct a synchronous
transducer A# defining E#. Informally, on an input (u, u′)(#,#)(v, v′) it works as follows. While
reading (u, u′) the transducer A# computes the transition profile(v) τ(u, u′). After skipping (#,#) it
proceeds by computing the transition profile τ(v, v′) while remembering τ(u, u′). In the end,A# accepts
if and only if for all states p ∈ Q either in τ(v, v′) no cycle with an edge labeled F (vi) is reachable from p
or there is no edge from q0 to p in τ(u, u′).

More formally, we define A# := (Q#,Σ,Σ, τ(ε), δ#, F#) where

Q# = TP (A) ∪ (TP (A)× TP (A)) and,

F# = {(τ, τ ′) ∈ TP (A)2 | ∀p ∈ Q :


in τ there is no edge from q0 to p, or
in τ ′ no cycle with an edge labeled F

is reachable from p

}.

The states τ ∈ TP (A) are used to read the (u, u′) prefix of the input while states (τ, τ ′) are used to
process the (v, v′) postfix. Thereby, τ is the current transition profile computed by A for (u, u′) and τ ′ is
the current transition profile for (v, v′). Accordingly, the transition relation is defined as follows:

∆# :={(τ, (a, b), τ ′) | τ, τ ′ ∈ TP (A), τ ′ = τ · τ(a, b), a, b ∈ Σ}
{(τ, (#,#), (τ, τ(ε))) | τ ∈ TP (A)}
{((τ, τ ′), (a, b), (τ, τ ′′)) | τ, τ ′ ∈ TP (A), τ ′′ = τ ′ · t(a, b), a, b ∈ Σ}

Complexity: We have that |Q#| = |TP (A)| + |TP (A)|2 ∈ O(|TP (A)|2). Furthermore, a transition
profile can be described by a function τ : Q × Q → {0, 1, F}— i.e. there is no edge, there is an edge
without label, or there is an edge labeled F from p to q if (p, q) is mapped to 0, 1, or F , respectively.
Thus, |TP (A)| = 3|Q|

2

. In addition, given a transition profile τ the conditions in the definition of F# and
∆# can be decided in polynomial time by a nested depth first search on τ . Hence, A# can be computed
in exponential time given A.
(v) Since A is a synchronous transducer we can view it as an Büchi automaton over the alphabet Σ × Σ which allows us to utilize

transition profiles.
(vi) Recall that in transitions profiles (unlike transducers) edges may be labeled with F , cf. Definition 10.
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Correctness: Obviously, A# rejects any malformed input pair (e.g. if u and u′ have different length)
because no transitions are defined for the cases (#, a), (a,#), (ε, a), (a, ε), a ∈ Σ (or F# ∩ TP (A) = ∅
in the case that no # occurs). On the other hand, consider a well-formed input pair (u, u′)(#,#)(v, v′)
with |u| = |u′| and |v| = |v′|. Recall that (TP (A), ·) is a monoid. Hence, the run of A# on (u, u′) is
unique and ends in τ(u, u′) (the initial state is the neutral element τ(ε)). Furthermore, like in the case
of the prefix (u, u′) the run of A# on the suffix (v, v′) starting in (τ(u, u′), τ(ε)) is unique and ends in
(τ(u, u′), τ(v, v′)). Thus, by the definition of F#, the transducer A# accepts (u, u′)(#,#)(v, v′) if and
only if |u| = |u′|, |v| = |v′| and for all p ∈ Q there is no edge from q0 to p in τ(u, u′) or in τ(v, v′) no
cycle with an edge labeled F is reachable from p. With Lemma 11, it follows thatA# accepts if and only
if |u| = |u′|, |v| = |v′| and (uvω, u′v′ω) /∈ E. In conclusion, R∗(A#) = E#.

With a synchronous transducer for E# at hand, we can compute a synchronous transducer defining a
set of unique representatives of E# similarly to the approach of Carton et al. (2006) which we outlined
in Section 4.1, specifically to the step described in the paragraph following the proof of Lemma 3. For
convenience, we will denote the set of representatives obtained by this construction by L#(E) (although
it is not unique in general). We can now readjust Lemma 6 to E# (or, more precisely, L#(E)).

Lemma 12. Let E ⊆ Σω × Σω be an ω-automatic equivalence relation. Then E has finite index if and
only if there is a k < ω such that for all m,n > 0 : |L#(E) ∩ Σn{#}Σm| ≤ k.

Proof: We prove both directions by contraposition. Suppose E does not have finite index. We have to
show that for all k > 0 there are m,n > 0 such that |L#(E) ∩ Σn{#}Σm| > k holds. Let k > 0. Due
to Lemma 6 there are k + 1 many pairs (ui, vi) ∈ Σ∗ × Σ∗ with |ui| = |uj | =: n and |vi| = |vj | =: m
for all 1 ≤ i < j ≤ k + 1 such that (ui, uj)(vi, vj)

ω /∈ E. It follows that (ui#vi, uj#vj) /∈ E# for each
1 ≤ i < j ≤ k + 1. W.l.o.g. we can choose the (ui, vi) as the lexicographical smallest pairs with this
property. We claim that ui#vi ∈ L#(E) for all i ∈ k + 1. Assume that there is a i ∈ k + 1 such that
ui#vi /∈ L#(E). Then there are words x, y ∈ Σ∗ such that (x#y, ui#vi) ∈ E# and x#y <lex ui#vi.
In particular, |x| = |ui| = |uj | and |y| = |vi| = |vj | for all j ∈ k + 1. But then, (x#y, uj#vj) /∈ E#

because E# is an equivalence relation. This is a contradiction to the minimality (w.r.t. the lexicographical
order) of ui#vi. Hence,

|L#(E) ∩ {u#v | |u| = n, |v| = m}| ≥ |L#(E) ∩ {ui#vi | 1 ≤ i ≤ k + 1}| = k + 1 > k.

On the contrary, assume that ∀k > 0 ∃m,n > 0 : |L#(E) ∩ Σn{#}Σm| > k does hold. Again, let
k > 0. Then there arem,n > 0 such that for each Lm,n := L#(E)∩Σn{#}Σm it holds that |Lm,n| > k.
Thus, there are pairwise different pairs (ui, vi) such that ui#vi ∈ Lm,n for 1 ≤ i ≤ k. Moreover, by
definition we have that |ui| = |uj | = n and |vi| = |vj | = m for all 1 ≤ i < j ≤ k. We claim that for
each i 6= j we have that (uiv

ω
i , ujv

ω
j ) /∈ E. Otherwise, there are i, j such that (ui#vi, uj#vj) ∈ E# and

(uj#vj , ui#vi) ∈ E# since E# is symmetric. But then, because both ui#vi and uj#vj are in L#(E),
we have that ui#vi 6<lex uj#vj and uj#vj 6<lex ui#vi. This is a contradiction. Therefore, we conclude
that E does not have finite index due to Lemma 6.

Note that the condition in Lemma 12 is similar to slenderness but not equivalent to the statement that
L#(E) is slender. For instance, consider the language L given by the regular expression a∗#b∗. For any
m,n > 0 we have that |L ∩ Σn{#}Σm| = |{an#bm}| ≤ 1. But L is not slender: Let ` > 0. Then
a`−1−i#bi ∈ L∩Σ` for all 0 ≤ i < `. Hence, |L∩Σ`| ≥ ` and, thus, L cannot be slender. However, the
next result shows that there is a strong connection between the condition in Lemma 12 and slenderness.
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Lemma 13. Let L be a language of the form L =
⋃

(i,j)∈I Li{#}Lj where I ⊂ N2 is a finite index set
and Li, Lj ⊆ (Σ\{#})∗ are non-empty regular languages for each pair (i, j) ∈ I . Then there is a k < ω
such that for all m,n ≥ 0 : |L ∩ Σn{#}Σm| ≤ k if and only if for all (i, j) ∈ I it holds that Li and Lj

are slender.

Proof: It holds that

∃k ∀m,n ≥ 0 |L ∩ Σn{#}Σm| ≤ k (1)

⇔ ∃k ∀m,n ≥ 0 |
⋃

(i,j)∈I

(Li{#}Lj ∩ Σn{#}Σm)| ≤ k (2)

⇔ ∃k ∀m,n ≥ 0
∑

(i,j)∈I

|Li{#}Lj ∩ Σn{#}Σm| ≤ k (3)

⇔
(
∃ki,j

)
(i,j)∈I ∀m,n ≥ 0

∧
(i,j)∈I

|Li{#}Lj ∩ Σn{#}Σm| ≤ ki,j (4)

⇔
(
∃ki,j

)
(i,j)∈I

∧
(i,j)∈I

∀m,n ≥ 0 |Li{#}Lj ∩ Σn{#}Σm| ≤ ki,j (5)

⇔
∧

(i,j)∈I

∃ki,j ∀m,n ≥ 0 |Li{#}Lj ∩ Σn{#}Σm| ≤ ki,j (6)

Note that (2) ⇒ (3) does hold since I is finite. Furthermore, (4) ⇒ (5) and (5) ⇒ (6) do hold because ∀
distributes over ∧ and the locality principle, respectively.

Further on, we show that (6) holds if and only if for all (i, j) ∈ I it holds that Li and Lj are slender.
⇐: We prove the claim by contraposition. Suppose Li or Lj for some (i, j) ∈ I is not slender, say Li

(for the case that Lj is not slender the reasoning is analogous). Then ∀k∃m : |Li ∩ Σm| > k. Let k > 0
and m such that |Li ∩ Σm| > k. Pick v ∈ Lj 6= ∅ and define n := |v|. Note that by the choice of n we
have that |Lj ∩ Σn| ≥ 1. Clearly, it holds that |Li{#}Lj | = |Li||Lj |. Moreover, since Li and Lj do not
contain any word with the letter # and both languages are non-empty by assumption, it follows that

|Li{#}Lj ∩ Σn{#}Σm| = |Li ∩ Σn||Lj ∩ Σm| > k · 1 ≥ k.

Thus, ∀k∃m,n ≥ 0|Li{#}Lj ∩ Σn{#}Σm| > k. Hence, (6) does not hold.
⇒: Let (i, j) ∈ I . By assumption Li and Lj are slender. Thus, there are ki, kj > 0 such that
|Li ∩ Σn| ≤ ki and |Lj ∩ Σm| ≤ kj for all m,n ≥ 0. It follows that for all m,n ≥ 0 :

|Li{#}Lj ∩ Σn{#}Σm| = |Li ∩ Σn||Lj ∩ Σm| ≤ kikj =: k.

Hence, (6) does hold, and thus, the lemma is proved.

The last ingredient we need is the decidability of slenderness in polynomial time. Lemma 14 can be
shown analogously to the proof given by Tao (2006) where it is shown that the finiteness problem for
Büchi automata is NL-complete. Indeed, there is a strong connection between these two problems which
we shall briefly revisit in Subsection 4.3.

Lemma 14. Deciding slenderness for (nondeterministic) finite automata is NL-complete.
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Proof: The proof of this lemma corresponds essentially to the proof given by Tao (2006) for NL-
completeness of the finiteness problem for Büchi automata. However, there are some minor but critical
technical differences.

We prove that the non-slenderness problem, i.e. whether for a given automatonA the languageL∗(A) is
not slender, is NL-complete. Then the NL-completeness of the slenderness problem follows immediately
because NL = CONL (cf. Szelepcsényi (1988)).

To show NL-hardness it suffices to provide a many-one reduction from the reachability problem for
directed graphs which is complete for NL. Given a directed graph G and two nodes s, t of G we obtain an
automaton AG over the alphabet {a, b} by labeling each edge of G with a and declaring s and t to be the
initial state and the (sole) accepting state, respectively. Furthermore, we add two transitions (s, a, s) and
(s, b, s). Then AG recognizes the non-slender language {a, b}∗L for some L ⊆ {a}∗ if and only if t is
reachable from s in G, and, otherwise, ∅.

Let A = (Q,Σ, q0,∆, F ) be the given automaton. We claim that L∗(A) is not slender if and only if
there are q, p1, p2 ∈ Q and f1, f2 ∈ F such that

1. q0
w0−−→ q and q w−→ q for some w0 ∈ Σ∗ and w ∈ Σ+,

2. there are u1, u2 ∈ Σ+ with u1[i] 6= u2[i] for an index i ≤ min(|u1|, |u2|), q u1−→ p1, and q u2−→ p2,
and

3. there are w1, w2 ∈ Σ+, v1, v2 ∈ Σ∗ : p1
w1−−→ p1

v1−→ f1 and p2
w2−−→ p2

v2−→ f2.

Suppose our claim holds. Then membership in NL because the conditions can easily verified by a non-
deterministic logspace Turing machine (all conditions boil down to reachability, u1[i] 6= u2[i] can be
asserted on the fly in a parallel search).

It remains to prove the claim. Suppose conditions 1,2, 3 hold. Then either u1 or u2 is not a prefix of
wω , say w.l.o.g. u1. Furthermore, we can assume that |w1| = |w|. Otherwise, by repeating each word
until the least common multiple of their lengths is reached we get words satisfying this property. Hence,
for all i, j the labelings of the accepting runs

q0
w0−−→ q

wi

−→ q
u1−→ p1

wj
1−−→ p1

v1−→ f1

are pairwise different. Thus, L∗(A) is not slender (for all solutions of i + j = n for a fixed n a unique
word in L∗(A) is obtained and all these words have the same length).

On the contrary, suppose L∗(A) is not slender. Consider the set of states

P := {q ∈ Q | ∃f ∈ F ∃w ∈ Σ+ : q0 → q
w−→ q → f}.

If P is empty then L∗(A) is finite, and, thus, slender which is a contradiction. Assume for the sake of
contradiction that for no q ∈ P there are p1, p2, f1, f2 as above satisfying, together with q, the conditions
1,2, 3. Let q ∈ P and f ∈ F,wq ∈ Σ+ be witnessing the membership of q ∈ P . By choosing
p2 := q, f2 := f and u2 := wq we have that there is no u1 which is not a prefix of wω and leads
from q to a productive state p1 that is reachable from itself (via a non-empty word w2). Let Aq be the
automaton A with initial state q. We conclude that L∗(Aq) ⊆ {wq}∗Zq where Zq is a finite language.
Moreover, since P contains all productive states with a self-loop it follows that, up to finitely many
words, L∗(A) ⊆

⋃
q∈P Xq{wq}∗Zq . Finally, observe that Xq can be assumed to be finite. Otherwise,
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q is reachable from another state in q′ ∈ P and, thus, L∗(Aq)Zq is subsumed by L∗(Aq′)Zq′ . Then it
is immediate that

⋃
q∈P Xq{wq}∗Zq is a slender language. It follows that L∗(A) is slender which is a

contradiction.

Finally, we can combine our results to obtain the main result of this section. Firstly, we state our
approach to check whether an automatic equivalence has finite index and, afterwards, join it with the
approach of Carton et al. (2006).

Theorem 15. Let E ⊆ Σω×Σω be an ω-automatic equivalence relation andA# be a (nondeterministic)
synchronous transducer defining E#. Then it is decidable in single exponential time whether E has finite
index.

Proof: Let <lex denote some (fixed) lexicographical ordering on (Σ ∪ {#})∗. We claim that the follow-
ing algorithm decides, given a synchronous transducer A# defining E#, whether E has finite index in
exponential time.

1. Construct a synchronous transducer defining E<
# := {(u#v, u′#v′) ∈ E# | u#v <lex u

′#v′}.

2. Project E<
# to the second component and obtain a transducer defining

P# := {u#v ∈ Σ∗{#}Σ∗ | ∃u′, v′ ∈ Σ∗ : u′#v′ <lex u#v ∧ (u′#v′, u#v) ∈ E#}.

3. Construct an automaton B# = (Q,Σ ∪ {#},∆, q0, F ) for L#(E) = P# ∩ Σ∗{#}Σ∗.

4. Construct automata for the factors Lq0p and LqF of the decomposition

L#(E) =
⋃

(p,#,q)∈∆

Lq0p{#}LqF ,

of L#(E) where

Lq0p := {u ∈ Σ∗ | B# : q0
u−→ p} and LqF := {v ∈ Σ∗ | B# : q

v−→ F}.

5. For each (p,#, q) such that Lq0p 6= ∅ and LqF 6= ∅, check if Lq0p and LqF are slender. If all
checked languages are slender return yes (E has finite index), otherwise no.

Complexity: Obtaining a transducer for E<
# given A# is immediate. It can be checked on the fly

by a modification of A# that rejects once it encounters a tuple (x, y) of letters witnessing u#v 6<lex
u′#v′. Note that the condition |u#v| = |u′#v′| is already verified by A#. Projection and intersection of
synchronous transducers can be achieved in polynomial time while the complementation of a synchronous
transducer is achievable in exponential time. Hence, B# is exponential in the size of A#. Further on,
automata for Lq0p and LqF can easily be obtained from B in polynomial time. Furthermore, there are
only polynomial many — to be more precise, at most |Q|2 many — such languages Lq0p and LqF and
emptiness as well as slenderness in the last step can be checked in polynomial time due to Lemma 14. All
in all, the given decision procedure runs in single exponential time.

Correctness: Indeed, B# defines a set of representatives of E#: it accepts precisely the words u#v
such that there is no lexicographically smaller word u′#v′ which is equivalent to u#v (cf. Carton et al.
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(2006)). By Lemma 12 E has finite index if and only if there is a k < ω such that for all m,n > 0 :
|L#(E) ∩ Σn{#}Σm| ≤ k. If Lq0p = ∅ or LqF = ∅ for some (p,#, q) ∈ ∆ the segment Lq0p{#}LqF

can be removed from the union L#(E) =
⋃

(p,#,q)∈∆ Lq0p{#}LqF without altering the language. The
remaining union (i.e. with all those segments removed) satisfies the condition of Lemma 13. It follows that
E has finite index if and only if there is a k < ω such that for all m,n > 0 : |L#(E) ∩ Σn{#}Σm| ≤ k
if and only if for each (p,#, q) such that Lq0p 6= ∅ and LqF 6= ∅ it holds that Lq0p and LqF are slender.
Thus, the decision procedure is correct.

Theorem 16. Given a complete deterministic synchronous parity transducer A it is decidable in double
exponential time whether Rω(A) is ω-recognizable.

Proof: Due to Carton et al. (2006) we can obtain synchronous Büchi transducers for the ω-automatic
equivalence relations Ej w.r.t. R := Rω(A) for all 1 ≤ j ≤ k in polynomial time. For the sake of com-
pleteness we will briefly sketch the construction. Let R′ := {(uj+1, . . . , uk, u1, . . . , uj) | (u1, . . . , uk) ∈
R}. That is, R′ is obtained from R by swapping the first j entries and the k − j last entries of each tuple.
Clearly, R′ is ω-automatic. Hence, we can obtain transducers for R and R′ in polynomial time, since R is
given by a complete synchronous deterministic parity transducer. Furthermore, let ◦j be the composition
operation on k-ary relations linking the last k − j entries of a tuple with the first k − j entries. That is,
if (u1, . . . , uj , wj+1, wk) ∈ S and (wj+1, wk, v1, . . . , vj) ∈ T then (u1, . . . , uj , v1, . . . , vj) ∈ S ◦j T .
Finally, observe that Ej = R ◦j R′ ∪R ◦j R′. Note that this step is achievable in polynomial time, since
we are constructing a transducer for Ej and not Ej (the transducers defining the compositions R ◦j R′
and R ◦j R′ are nondeterministic).

Further on, observe that we can understand an equivalence relation Ej over Σω
1 × . . . × Σω

j as an
equivalence relation over Σω with Σω =

(
Σ1 × . . . × Σj

)ω ≈ Σω
1 × . . . × Σω

j . Fix j ∈ k. Then a
transducer that defines E# w.r.t. E := Ej is constructible in single exponential time due to Lemma 9
given a transducer for Ej . By Lemma 3, we have that R is recognizable if and only if all Ej have finite
index. The latter is decidable for E := Ej in single exponential time given a transducer for E# due to
Theorem 15.

Thus, it is decidable in double exponential time whether Rω(A) is ω-recognizable.

4.3 Slenderness vs. Finiteness
As mentioned above, we state the connection between the slenderness problem for regular languages and
the finiteness problem for Büchi automata. Recall that the algorithm given by Carton et al. (2006) for
deciding recognizability of automatic relations checks in the end whether the (regular) set of representa-
tives of an equivalence relation is finite. The decision procedure given in Theorem 16 for recognizability
of ω-automatic relations instead checks for slenderness. We say that an automaton is trimmed w.r.t. the
Büchi condition if for each state of the automaton there is a non-empty word leading to an accepting state.

Lemma 17. Let A be an automaton trimmed w.r.t. the Büchi condition. Then Lω(A) is finite if and only
if L∗(A) is slender.

Proof: Suppose Lω(A) is finite. Since A is trimmed w.r.t. the Büchi condition, each word w ∈ L∗(A) is
a prefix of some word in Lω(A) because each (finite) run of A can be extended to an infinite run visiting
infinitely many accepting states. Thus, for each ` < ω there are at most k := |Lω(A)| < ω many words
of length `. Hence, L∗(A) is slender.
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Assume Lω(A) is infinite and let k < ω. It suffices to show that there are more than k pairwise different
words of the same length ` in L∗(A). Then L∗(A) cannot be slender. Since A has only finitely many
states and Lω(A) is infinite we can find an ` < ω, a state q of A, and k + 1 infinite words α0, . . . , αk in
Lω(A) such that for 0 ≤ i ≤ k the prefixes αi[0, `] are pairwise different and an accepting run ofA on αi

is in state q after processing the prefix αi[0, `]. Let w be a finite word leading from q into some accepting
state of A. Note that w exists because A is trimmed w.r.t. the Büchi condition. Then the words αi[0, `]w
are all pairwise different but of the same length and in L∗(A).

5 Deciding Recognizability of Automatic Relations
In Section 4.1 we have sketched the approach presented by Carton et al. (2006) for deciding recognizabil-
ity of an automatic relation. In this section we revisit the problem to obtain an exponential time upper
bound for the case of binary relations. The procedure is based on a reduction to the regularity problem for
VPAs (Lemma 21). The other main contribution in this section, which is interesting on its own, is a poly-
nomial time algorithm to solve the regularity problem for DVPAs. We start by describing the regularity
test.

5.1 Deciding Regularity for Deterministic Visibly Pushdown Automata
We start by briefly discussing why the polynomial time regularity test for visibly pushdown processes as
presented by Srba (2006) does not imply our result. The model used by Srba (2006) cannot use transitions
that cause a pop operation when the stack is empty. One can try to circumvent this problem by introducing
new internal symbols that simulate pop-operations on the empty stack: For each r ∈ Σ introduce a
new internal symbol ar, and modify the DVPA such that it can read ar instead of r when the stack is
empty (we do not detail such a construction because it is straight forward). This yields a DVPA without
pop-operations on the empty stack. However, this operation changes the accepted language, and this
change does not preserve regularity, in general. To see this, consider the following example with one call
symbol c and one return symbol r. The VPA has two states qc and qr, where qc is initial, and both states
are final. The stack alphabet is {γ,⊥}, and the transitions are (qc, c, qc, γ), (qc, r, γ, qr), (qr, r, γ, qr),
(qr, r,⊥, qr). This DVPA accepts the regular language c∗r∗. Obviously, there is no DVPA that accepts
the same language without pop-operations on the empty stack. The transformation into a DVPA without
pop-operations on the empty stack, as described above, introduces a new internal symbol ar and results
in a DVPA accepting all words of the form cnrm with m ≤ n, or of the form cnrna∗r . This language is
not regular anymore, showing that such a transformation cannot be used in the context of a regularity test.

We now proceed with the description of our polynomial time regularity test for DVPAs. It is based on
the following result, which states that in a DVPA accepting a regular language, all configurations, that
only differ “deep inside” the stack, are equivalent.

Lemma 18. LetP be a DVPA with n states. ThenL(P) is regular if and only if all pairs (p, αβ), (p, αβ′)
of reachable configurations of P with |α| ≥ n3 + 1 are P-equivalent.

Proof: Let P = (P,Σ,Γ, p0,⊥,∆, F ) be a deterministic visibly pushdown automaton. Furthermore, we
set n := |P | and m := n3 + 1.
⇐: Suppose all pairs (p, αβ), (p, αβ′) of reachable configurations of P with |α| ≥ m are P-equivalent.

Let C ⊆ (P × (Γ \ {⊥})∗{⊥}) be the set of reachable configurations of P . Then C/≈P is finite, since
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each reachable configuration of the form (p, αβ) is P-equivalent to a reachable configuration (p, αβ′)
with |β′| ≤ |β| minimal. Therefore, L(P) is regular. A witnessing finite automaton is the canonical
quotient automaton over the set of all reachable configurations given by

A≈P = (C/≈P ,Σ, [q0,⊥]≈P ,∆/≈P , F/≈P )

where F/≈P = {[p, α]≈P ∈ C/≈P | p ∈ F} and ∆≈P contains a transition ([p, α]≈P , a, [q, β]≈P ) if and
only if P can proceed from (p, α) to some (q′, β′) ∈ [q, β]≈P via a.
⇒: SupposeL(P) is regular. Then there is a complete deterministic automatonAwith state set S defin-

ing L(P). For the sake of contradiction, assume there are two reachable configurations (p, αβ), (p, αβ′)
with |α| ≥ m that are not P-equivalent (obviously, this implies that β 6= β′). We claim that for each
` ∈ N there is a pair (p`, α`), (p`, β`) of reachable, non-equivalent configurations such that for each
x ∈ L(p`, α`)4L(p`, β`) we have that |x| > `. In other words, there are configurations that can only be
separated by words of length at least ` for each ` ∈ N. We postpone the proof of this claim and show that it
is a contradiction to L(P) being regular first. Let u, v be words witnessing the reachability of (p`, α`) and
(p`, β`) for some ` ∈ N. Furthermore, let su, sv ∈ S be the unique states that are reached by A reading u
and v, respectively (starting in the initial state). Finally, w.l.o.g. pick a word x` ∈ L(p`, α`) \L(p`, β`) of
minimal length. Note that |x`| ≥ `. Then A ends up in an accepting state reading x` starting from su but
in a non-accepting state reading x` starting from sv because L(A) = L(P). But then there is a word y`
of length at most |S|2 such that A ends up in an accepting state reading y` starting from su but in a non-
accepting state reading y` starting from sv . Moreover, y` ∈ L(p`, α`) \ L(p`, β`) because L(A) = L(P)
and both automata are deterministic. This is a contradiction to the choice of x` for a sufficient large `.

It remains to construct the configurations (p`, α`) and (p`, β`). Let u, v ∈ Σ∗ be words witnessing
the reachability of (p, αβ) and (p, αβ′), respectively. Furthermore, let w ∈ Σ∗ be a witness for the
non-equivalence of these configurations. W.l.o.g. w ∈ L(p, αβ) \ L(p, αβ′). That is, uw ∈ L(P) but
vw /∈ L(P) because P is deterministic. Since α is on the top of the stack of both configurations and the
state component is the same, we have that |w| ≥ |α| ≥ m (P has to pop α from the stack while reading
w which requires m return symbols in w; otherwise, the runs cannot differ). More precisely, there are
well-matched words w1, . . . , wm and r1, . . . , rm such that w = wmrm . . . w1r1w

′ for some w′ ∈ Σ∗.
Similarly, u = u′cu1u2 . . . umc

u
mum+1 and v = v′cv1v2 . . . vmc

v
mvm+1 where the ui, vi are well-matched

words, cui , c
v
i are call symbols and u′, v′ are words responsible for the lower stack contents β and β′, re-

spectively. All in all, the runs ofP on uw and vw have the following shape (α = γn . . . γ1, f ∈ F , e /∈ F ):

(p0,⊥) (p1, β) (p′1, γ1β) (p2, γ1β) . . . (p′m, γn . . . γ1β) (p, αβ)

(qm, αβ) (q′m, γm−1 . . . γ1β) . . . (q1, γ1β) (q′1, β) (f, λ)

(p0,⊥) (s1, β
′) (s′1, γ1β

′) (s2, γ1β
′) . . . (s′m, γn . . . γ1β

′) (p, αβ′)

(qm, αβ
′) (q′m, γm−1 . . . γ1β

′) . . . (q1, γ1β
′) (q′1, β

′) (e, ρ)

u′ cu1 u2 cu2 cum um+1

wm rm wm−1 w1 r1 z′

v′ cv1 v2 cv2 cvm vm+1

wm rm wm−1 w1 r1 z′

Observe that the symbol pushed by the transitions originating in pi or si is popped from the transi-
tion originating in qi. Since P has n states, there are n3 possible valuations for a triple (pi, si, qi).
On the other hand, there are m = n3 + 1 many triples (pi, si, qi) in the outlined run. It follows that
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there are indices 1 ≤ i < j ≤ m such that (pi, si, qi) = (pj , sj , qj). Let ` > 0. By repeating
the path fragments identified by i and j we obtain that the configurations (p, α`β) and (p, α`β

′) with
α` := γm . . . γj(γj−1 . . . γi)

`γi−1 . . . γ1 are reachable. The reachability is witnessed by the words

u` = u′cu1u2 . . . ui(c
u
i ui+1 . . . uj)

`cuj uj+1 . . . um+1

and v` = v′cv1v2 . . . vi(c
v
i vi+1 . . . vj)

`cvjvj+1 . . . vm+1.

Moreover, (p, α`β) and (p, α`β
′) are not P-equivalent because the word

wmrm . . . wjrjwj−1(rj−1 . . . riwi−1)`ri−1 . . . r1z
′

separates them. We conclude the proof by the observation that (p, α`β) and (p, α`β
′) cannot be separated

by any word of length less than `, since |α`| ≥ `.

Theorem 19. It is decidable in polynomial time whether a given DVPA defines a regular language.

In the proof of Theorem 19 we will make extensive use of the following well-known result for pushdown
systems:

Proposition 20 (Bouajjani et al. (1997)). Let P = (P,Σ,Γ, p0,⊥,∆, F ) be a pushdown automaton and
C ⊆ P (Γ \ {⊥})∗{⊥} be a regular set of configurations. Then the set

POST∗P(C) := {c ∈ P (Γ \ {⊥})∗{⊥} | ∃d ∈ C, u ∈ Σ∗ : P : d
u−→ c}

of reachable configurations from C is regular. Moreover, an automaton defining POST∗P(C) can be effec-
tively computed in polynomial time given P and an automaton defining C.

Proof of Theorem 19: Let P = (P,Σ,Γ, p0,⊥,∆, F ) be the given deterministic visibly pushdown
automaton. We construct a synchronous transducer accepting distinct pairs (p, αβ), (p, αβ′) of configu-
rations falsifying the condition of Lemma 18. That is,

1. Both (p, αβ) and (p, αβ′) are reachable from (p0,⊥),

2. |α| ≥ |P |3 + 1 (the |P |3 + 1 topmost stack symbols are equal) and both configurations have the
same state component, and

3. they are not P-equivalent.

It suffices to construct synchronous transducers in polynomial time inP verifying 1, 2, and 3, respectively.
Then the claim follows because the intersection of synchronous transducers is computable in polynomial
time. Furthermore, the obtained transducer defines the empty relation ∅ if and only if L(P) is regular
due to Lemma 18. The emptiness problem for synchronous transducer is decidable in polynomial time in
terms of a graph search.

Let C := POST∗P({(p0,⊥)}) be the set of reachable configurations. Due to Proposition 20 an automaton
defining C is computable in polynomial time. Thus, a synchronous transducer defining C×C is effectively
obtainable in polynomial time, too (take two copies of the automaton for C and let them run in parallel).
C × C contains exactly all pairs of configurations satisfying 1. Constructing a synchronous transducer
verifying 2 is trivial. Its size is in O(|P |3).
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It remains to construct a synchronous transducer verifying 3. The idea is to guess a separating word and
simulate P in parallel starting in the two configurations given as input to A. For that purpose, it will be
crucial to show that it suffices to guess only the return symbols of a separating word which are responsible
for popping symbols from the stacks (instead of the whole separating word).

By definition, two configurations (p, αβ), (p, αβ′) are not P-equivalent if and only if there is a word
z ∈ L(p, αβ)4L(p, αβ′) separating the configurations. Moreover, a separating word z can be decom-
posed into z = w1r1w2r2 . . . wmrmz

′ where the wi are well-matched words, the ri ∈ Σr are return
symbols and z′ does not contain an unmatched return symbol (i.e. z′’s structure is similar to a well-
matched word but may contain additional call symbols). Note that the return symbols ri are the only
symbols in z allowing P to access the given stack contents αβ and αβ′, respectively. Furthermore, it
holds that m ≥ |α|. Otherwise, z can certainly not separate the given configurations. On the other hand,
m ≤ |αβ| or m ≤ |αβ′| does not hold necessarily. Indeed, P may pop the empty stack while processing
z. We implement a nondeterministic synchronous transducer A that guesses z and verifies that it sepa-
rates the given configurations. For that purpose, it is only necessary to consider the return symbols ri in
combination with the input. In particular, it is not necessary to simulate P step by step on the infixes wi.

The transducer A will maintain a pair of states (q, s) of P . Intuitively, the states q and s occur in runs
of P starting in (p, αβ) and (p, αβ′) on a separating word. Furthermore, A may proceed from (q, s) to
(q′, s′) if there is a well-matched word w and return symbol r such that P can proceed from q to q′ and s
to s′ via wr and the topmost stack symbol, respectively. Note that in contrast to a full simulation, states
in the run of P are skipped — i.e. precisely those states occurring in the run fragment on a well-matched
word. The first pair of states is given by the input configurations (here (p, p)). Since P’s behavior on the
well-matched words wi is invariant under the stack contents which are the input of A, the simulation of
P on w boils down to a reachability analysis of configurations. Moreover, the reachability analysis can
be done at construction time. Recall that a synchronous transducer have to satisfy the property that no
transition labeled (a′, b′), b′ 6= ε can be taken after a transition labeled (a, ε); the same applies to the first
component. Therefore, A needs two control bits to handle the cases where |β| 6= |β′| and P is popping
the empty stack (which has to be done by ε-transitions of A). That is,

A = (({q0, qf} ∪ P × P )× {0, 1}2, P ∪ Γ, (q0, 0, 0),∆A, {qf} × {0, 1}2).

The two control bits in the state space shall indicate that a transition of the form (a, ε) or (ε, a), respec-
tively, has already been used. The accepting states — i.e. the first component is qf — are used to indicate
that the transducer guessed the postfix z′ of z which does not contain unmatched returns. Afterwards,
A must not simulate P any further — hence, the accepting states are effectively sink states. Recall that
for terms t1, t2 the indicator function defined by δ(t1 = t2) evaluates to 1 if t1 = t2 and to 0, otherwise.
Given two valuation i, j of the two control bits and µ, ν ∈ Γ∪{ε}we use the following shorthand notation
to set the values i′, j′ of the control bits in the next state:

VALID(i, j, µ, ν, i′, j′) holds if and only if

1. i′ = δ(µ = ε),

2. j′ = δ(ν = ε),

3. if i = 1 then µ = ε, and

4. if j = 1 then ν = ε.
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Note that once a control bit is set to 1 it cannot be reset to 0. The transition relation of A is the union
∆A := ∆aux ∪∆r ∪∆z′ . The sets ∆aux,∆r, and ∆z′ are defined as follows.

∆aux := {((q0, 0, 0), (p, p), (p, p, 0, 0)) | p ∈ P}
∪ {((qf , i, j), (µ, ν), (qf , i

′, j′)) | µ, ν ∈ Γ ∪ {ε}, VALID(i, j, µ, ν, i′, j′)}

Starting in q0 the transducer initializes the states of P . Furthermore, once it is in the state qf the remaining
input can be read. Recall that the guessed word z may not pop the whole stacks of the configurations.
Hence, it may be necessary to skip the remaining input. The main transitions guess a pair w, r to pop a
symbol from the stack:

∆r := {((p, q, i, j), µ, ν, (p′, q′, i′, j′)) | µ, ν ∈ Γ ∪ {ε}, VALID(i, j, µ, ν, i′, j′),

∃r ∈ Σr, w ∈ Σ∗ well-matched : P : (p, µ⊥)
wr−−→ (p′,⊥), (q, ν⊥)

wr−−→ (q′,⊥)}.

Finally, the transducer can guess the trailing part z′ of z which has no unmatched returns. Since it is
the last part of the runs of P and z separates the given configurations it has to lead to states p′, q′ with
p′ ∈ F ⇔ q′ /∈ F . Note that z′ = ε and p′ = p, q′ = q is a valid choice. Thus, there is no need to
introduce transitions in ∆r leading to accepting states.

∆z′ := {((p, q, i, j), µ, ν, (qf , i′, j′)) | µ, ν ∈ Γ ∪ {ε}, VALID(i, j, µ, ν, i′, j′),

∃p′, q′ ∈ P ∃λ, ρ ∈ (Γ \ {⊥})∗{⊥} ∃z′ ∈ Σ∗ : z′ has no unmatched returns, and

p′ ∈ F ⇔ q′ /∈ F,P : (p,⊥)
z′−→ (p′, λ),P : (q,⊥)

z′−→ (q′, ρ)}.

The correctness follows immediately from the fact that P’s behavior on the wi as well as z′ is invariant
under the stack content and the decomposition z = w1r1 . . . wmrmz

′. Indeed, the input (pαβ, pαβ′) is
accepted by A if and only if there is a word z = w1r1 . . . wmrmz

′ such that P : (p, αβ)
z−→ (p′, λ) and

P : (p, αβ′)
z−→ (q′, ρ) for some stack contents λ, ρ and (p′, q′) ∈ F × (P \F )∪ (P \F )×F if and only

if (p, αβ) 6≈P (p, αβ′).
Clearly, A has size polynomial in P but we have to show that the transition relation can be computed

in polynomial time. For that purpose we consider the visibly pushdown automaton

P2 := (P × P,Σ,Γ× Γ, (p0, p0), (⊥,⊥),∆2, F × F )

where

∆2 := {((p, q), c, (p′, q′), (µ, ν)) | (p, c, p′, µ), (q, c, q′, ν) ∈ ∆}
{((p, q), r, (µ, ν), (p′, q′)) | (p, r, µ, p′), (q, r, ν, q′) ∈ ∆ ∧ µ, ν 6= ⊥}
{((p, q), a, (p′, q′)) | (p, a, p′), (q, a, q′) ∈ ∆}.

Informally, P2 simulates two copies of P on the same input. Note that we forbid to pop the empty
stack by purging the respective transitions. Also, no conflict arises while using the stack because the pop
and push behavior is controlled by the common input word. P can proceed from (p, ζ) to (p′, ζ) via a
well-matched wordw if and only if it can proceed from (p,⊥) to (p′,⊥) without popping the empty stack.
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Since P2 cannot pop the empty stack, P can proceed from p to p′ and from q to q′ via a well-matched
word w if and only if the configuration ((p′, q′), (⊥,⊥)) is reachable from ((p, q), (⊥,⊥)) by P2. The
set of all these configurations can be determined by checking whether

(p′, q′)(⊥,⊥) ∈ POST∗P2({(p, q)(⊥,⊥)})

holds. In turn, an automaton defining POST∗P2({(p, q)(⊥,⊥)}) can be computed in polynomial time for
each pair (p, q) due to Proposition 20. Also, there are only |P |4 many possible values for p, q, p′, q′.
Moreover, P : (p, µ⊥)

wr−−→ (p′′,⊥) holds for a well-matched word w and r ∈ Σr if and only if

P : (p, µ⊥)
w−→ (p′, µ⊥)

r−→ (p′′,⊥)

for any µ ∈ Γ ∪ {ε} and r ∈ Σr. Again there are only polynomial many combinations (in |P |, |Σ| and
|Γ|). Altogether, we conclude that ∆r can be effectively obtained in polynomial time. The transition set
∆z′ can be computed similarly. Since the guessed words z′ are not well-matched but do not touch the
existing stack content (they do not have unmatched returns), it has to be verified whether

(p′, q′)ζ ∈ POST∗P2({(p, q)(⊥,⊥)}) for some ζ ∈
(
(Γ \ {⊥}){⊥}

)2
.

This is achievable in polynomial time by a graph search because Proposition 20 provides an automaton
defining POST∗P2({(p, q)(⊥,⊥)}) of polynomial size for each pair of states (p, q).

5.2 Deciding Recognizability of Binary Automatic Relations
With the regularity test for DVPAs established we turn towards our second objective which is to decide
recognizability of binary automatic relations. Recall that for a word u we denote its reversal by rev(u).

Lemma 21. Let R ⊆ Σ∗1 × Σ∗2 with Σ1 ∩ Σ2 = ∅ be an automatic relation and # /∈ Σ1 ∪ Σ2 be
a fresh symbol. Furthermore, let A be a (nondeterministic) synchronous transducer defining R. Then
LR := {rev(u)#v | (u, v) ∈ R} is definable by a DVPA whose size is single exponential in |A|.

Proof: LetA = (Q,Σ1,Σ2, q0,∆, F ) be the given synchronous transducer. W.l.o.g. we assert thatA does
not have any transitions labeled (ε, ε). Otherwise, they can be eliminated in polynomial time using the
well-known standard ε-elimination procedure for ε-automata. The basic idea is to push rev(u) to the stack
and use the stack as the read-only input tape to simulate A on (u, v). For that purpose, Σ1 becomes the
set of call symbols to push rev(u) to the stack and Σ2 becomes the set of return symbols to be able to read
letters of u and v simultaneously. Unfortunately, if rev(u) is longer than v then the pushdown automaton
is not able to simulate transitions labeled (a, ε) because there are no return symbols left. In other words,
u cannot be read to the end if u is longer than v. To solve this problem the pushdown automaton performs
a reverse powerset construction on rev(u) while pushing it to the stack using only transitions of the form
(p, a, ε, q) and stores the states on the stack — i.e. it starts with the set of accepting states and computes
the set of states from which the current set of states is reachable by a transition labeled (a, ε) where a
is supposed to be pushed to the stack. That way it knows whether the transducer A could proceed to
an accepting state using the remaining part of rev(u) and transitions labeled (a, ε) once v has been read
completely. Note that a reverse powerset construction yields an exponential blow-up even for deterministic
transducers. Therefore, it is pointless to determinize A first. Instead, the ”normal” forward powerset
construction is incorporated into the construction such that the resulting visibly pushdown automaton is
deterministic.
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Formally, let P := (2Q ∪̇ (2Q × 2Q),Σ,Γ, F, (ε, F ),∆P , FP) where

• Σ = Σc ∪̇ Σr ∪̇ Σint with Σc := Σ1, Σr := Σ2 and Σint := {#},

• Γ := (Σc ∪ {ε})× 2Q,

• FP := {(P, S) ∈ 2Q × 2Q | P ∩ S 6= ∅},

The states in 2Q are used while pushing rev(u) to the stack and perform the reverse powerset construction.
Similarly, states in 2Q×2Q are used to recover the constructed subsets of the reverse powerset construction
(second component) and to perform the ”normal” powerset construction (first component). Furthermore,
note that the bottom stack symbol is (ε, F ) indicating that rev(u) has been read completely and that the
transducer should be in an accepting state. Further on, the transition relation of P is defined by

∆P := {(S, c, S′, (c, S)) | c ∈ Σc, S ∈ 2Q, S′ = {s′ | ∃s ∈ S : (s′, c, ε, s) ∈ ∆}}
∪ {(P,#, ({q0}, P )) | P ∈ 2Q}
∪ {((P, S), r, (c, S′), (P ′, S′)) | P, S, S′ ∈ 2Q, r ∈ Σr, c ∈ Σc ∪ {ε},

P ′ = {p′ | ∃p ∈ P : (p, c, r, p′) ∈ ∆}}

It is easy to see that P is deterministic. Moreover, for u = a1 . . . an the stack content has the form
(a1, S1) . . . (an, Sn)(ε, F ) when P reads the #-symbol. Furthermore, it holds thatA : si

(ai+1...an,ε)−−−−−−−−→ F
for precisely each si ∈ Si, 1 ≤ i ≤ n. In other words, A accepts the remaining part of u on the stack
precisely from all states in Si. In particular, this claim holds for the case u = ε by the choice of the start
state F . Suppose |v| ≥ |u|. Then the pushdown automaton P simulates A on (u, v) and ends up in a
state (P, F ) where P is the set of states reachable by A given the input (u, v) (powerset construction).
Note that the second component is F because the stack has been cleared and the start state is F (in the
case |v| = |u|) and the bottom stack symbol is (ε, F ) (in the case |v| > |u|). Thus, P accepts if and only
if P ∩ F 6= ∅. It follows that P accepts rev(u)#v if and only if A accepts (u, v) in the case |v| ≥ |u|.
If |v| < |u| then P ends up in a state (P, S). Let m := |v|. Then P is the set of states reachable by A
given the input (a1 . . . am, v) analogously to the case |v| ≥ |u|. Furthermore, by our previous observation
S is the set of states from which A accepts (am+1 . . . , an, ε). Thus, P accepts rev(u)#v if and only if
P ∩ S 6= ∅ if and only if there is an accepting run of A on (u, v).

Since LR is regular if and only if R is a recognizable relation as shown by Carton et al. (2006), we
obtain the second result of this section as corollary of Theorem 19 and Lemma 21.

Corollary 22. Let A be a (possibly nondeterministic) synchronous transducer defining a binary relation.
Then it is decidable in single exponential time whether R∗(A) is recognizable.

Proof: W.l.o.g.A defines a binary relationR ⊆ Σ1×Σ2 where Σ1∩Σ2 = ∅. Otherwise, alphabet symbols
can easily be renamed in one of the components. Due to Lemma 21 we can obtain a deterministic visibly
pushdown automaton defining LR = {rev(u)#v | (u, v) ∈ R} in single exponential time. Furthermore,
by Theorem 19 it can be decided in polynomial time whether LR is regular. Hence, it suffices to show
that LR is regular if and only if R is recognizable. Then the claim follows immediately.

Suppose R is recognizable. Then R can be written as R =
⋃m

i=1 Li ×Ki for some regular languages
Li andKi. Thus, LR =

⋃m
i=1 rev(Li){#}Ki is regular. On the contrary, assume that LR is regular. Then
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there is a finite automaton B = (Q,Σ1∪Σ2∪{#}, q0,∆, F ) defining LR. Let Lq0q := {w | B : q0
w−→ q}

and LqF := {w | B : q
w−→ F} for q ∈ Q. Then we can write LR as LR =

⋃
(p,#,q)∈∆ Lq0p{#}LqF .

Furthermore, for all these Lq0p, LqF 6= ∅ (where (p,#, q) ∈ ∆) we have that Lq0p ⊆ Σ∗1 and LqF ⊆ Σ∗2.
It follows that R =

⋃
(p,#,q)∈∆ rev(Lq0p)× LqF is recognizable.

6 Conclusion
The undecidability of the equivalence problem for deterministic ω-rational relations presented in Section 3
exhibits an interesting difference between deterministic transducers on finite and on infinite words. We
believe that it is worth to further study the algorithmic theory of this class of relations. For example, the
decidability of recognizability for a given deterministic ω-rational relation is an open question. The tech-
nique based on the connection between binary rational relations and context-free languages as presented
in Section 5 that is used by Carton et al. (2006) for deciding recognizability of deterministic rational re-
lations cannot be (directly) adapted. First of all, the idea of pushing the first component on the stack and
then simulating the transducer while reading the second component fails because this would require an
infinite stack. Furthermore, the regularity problem for deterministic ω-pushdown automata is not known
to be decidable (only for the subclass of deterministic weak Büchi automata Löding and Repke (2012)
were able to show decidability).

It would also be interesting to understand whether the decidability of the synthesis problem (see the
introduction) for deterministic rational relations over finite words recently proved by Filiot et al. (2016)
can be transferred to infinite words.

For the recognizability problem of (ω-)automatic relations we have shown decidability with a doubly
exponential time algorithm for infinite words. We also provided a singly exponential time algorithm for
the binary case over finite words (improving the complexity of the approach of Carton et al. (2006) as
explained in Section 4). It remains open whether the singly exponential time algorithm can be extended
to automatic relations of arbitrary arity. Also, it is open whether there are matching lower complexity
bounds.

The connection between automatic relations and VPAs raises the question, whether extensions of VPAs
studied in the literature (as for example by Caucal (2006)) can be used to identify interesting subclasses of
relations between the (ω-)automatic and deterministic (ω-)rational relations. The problem of identifying
such classes for the case of infinite words has already been posed by Thomas (1992).
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V. Bárány, C. Löding, and O. Serre. Regularity problems for visibly pushdown languages. In Annual
Symposium on Theoretical Aspects of Computer Science, pages 420–431. Springer, 2006.

J. Berstel. Transductions and Context-Free Languages. Stuttgart, 1979.

M. Bird. The equivalence problem for deterministic two-tape automata. Journal of Computer and System
Sciences, 7(2):218–236, 1973.
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J. R. Büchi. On a decision method in restricted second order arithmetic. In E. Nagel, editor, Logic,
Methodology, and Philosophy of Science: Proceedings of the 1960 International Congress, pages 1–
11. Stanford University Press, 1962.

H. Calbrix, M. Nivat, and A. Podelski. Ultimately periodic words of rational ω-languages. In International
Conference on Mathematical Foundations of Programming Semantics, pages 554–566. Springer, 1993.

O. Carton, C. Choffrut, and S. Grigorieff. Decision problems among the main subfamilies of rational
relations. RAIRO-Theoretical Informatics and Applications, 40(02):255–275, 2006.

http://drops.dagstuhl.de/opus/volltexte/2017/7019
http://drops.dagstuhl.de/opus/volltexte/2017/7019
http://dx.doi.org/10.1007/978-3-540-24730-2_41
http://dx.doi.org/10.1007/978-3-540-24730-2_41
http://doi.acm.org/10.1145/1071596.1071601
http://doi.acm.org/10.1145/1071596.1071601
http://dx.doi.org/10.1016/j.ic.2015.03.012


Decision Problems for Subclasses of Rational Relations 31

D. Caucal. Synchronization of pushdown automata. In Developments in Language Theory, 10th In-
ternational Conference, DLT 2006, Santa Barbara, CA, USA, June 26-29, 2006, Proceedings, vol-
ume 4036 of Lecture Notes in Computer Science, pages 120–132. Springer, 2006. URL http:
//dx.doi.org/10.1007/11779148_12.
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