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In this paper, we study the complexity of the selection of a graph discretization order with a stepwise linear cost
function. Finding such vertex ordering has been proved to be an essential step to solve discretizable distance geometry
problems (DDGPs). DDGPs constitute a class of graph realization problems where the vertices can be ordered in such
a way that the search space of possible positions becomes discrete, usually represented by a binary tree. In particular,
it is useful to find discretization orders that minimize an indicator of the size of the search tree. Our stepwise linear
cost function generalizes this situation and allows to discriminate the vertices into three categories depending on the
number of adjacent predecessors of each vertex in the order and on two parameters K and U . We provide a complete
study of NP-completeness for fixed values of K and U . Our main result is that the problem is NP-complete in general
for all values of K and U such that U ≥ K + 1 and U ≥ 2. A consequence of this result is that the minimization of
vertices with exactly K adjacent predecessors in a discretization order is also NP-complete.
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1 Introduction
1.1 Preliminaries
We consider an undirected graph G := (V,E), where V := {1, . . . , |V |}. A vertex ordering of G is a
bijective numbering of the set of vertices σ : V → {1, . . . , |V |}. Function σ defines a total order over V :
for v ∈ V , σ(v) provides the position of v in the vertex ordering and σ−1(i) is the vertex with position i
in σ. For a given graph, the set of vertex orderings is Π and it holds that |Π| = |V |!.

A vertex v ∈ V is called a neighbor of u ∈ V if and only if {u, v} ∈ E and we denote δ(v) the
neighbors of v, while d(v) := |δ(v)| is the degree of v. The set of predecessors of v ∈ V , denoted as
Pv (σ), includes every vertex u ∈ V such that σ(u) < σ(v). A vertex u ∈ V is then called a reference of
v ∈ V if and only if {u, v} ∈ E and σ(u) < σ(v). The set of references of v is denoted as Rv (σ). In
other words, a reference is an adjacent predecessor and it holds that Rv (σ) = Pv (σ) ∩ δ(v).

The vertex ordering problem is the problem of finding a permutation of the vertices minimizing some
objective function. The difference from one ordering problem to another relies on the nature of the ob-
jective function and additional constraints depending on the desired applications. One of the particular
applications motivating this paper is the discretization of the distance geometry problem (DGP).
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1.2 The discretizable distance geometry problem
An instance of the DGP is described by a weighted graph (V,E, d) where d : E 7→ R+ is a distance
function, and a dimension K ∈ Z+. The problem consists in finding an embedding x : V 7→ RK such
that ‖x(u)− x(v)‖2 = d(u, v),∀{u, v} ∈ E. The DGP naturally appears for instance when searching
for the 3D-conformation of a molecule when all we know is a sparse set of pairwise distances between
its atoms (Hendrickson (1995)). The DGP is NP-hard in general (see Saxe (1979)), and it has received a
vivid attention recently (see, e.g., Liberti et al. (2008); Lavor et al. (2012b); Liberti et al. (2014a); Omer
and Gonçalves (2017), or Liberti and Lavor (2017) for a recent introduction).

Cassioli et al. (2015) show that the DGP can be solved by enumeration if we can find a discretization
order of the graph, which they formally define as follows.

Definition 1. Let G = (V,E) be a simple undirected graph and K ∈ Z+ such that K ≤ |V |. A
discretization order of G is a vertex ordering σ, such that:

1. the subgraph induced by {σ−1(1), . . . , σ−1(K)} is complete, and

2. for all v ∈ V such that σ(v) > K, |Rv (σ)| ≥ K.

The problem of finding a discretization order of a graph G is called Discretization vertex order prob-
lem(i) (DVOP) in the literature (see Lavor et al. (2012a)). When there exists a discretization order of G, the
set of solutions is discrete (and finite) and can be enumerated efficiently using a branch-and-prune (BP)
algorithm (Liberti et al. (2008); Lavor et al. (2012b)). In this case, the level k of the BP tree is associated
with the vertex v ∈ V such that σ(v) = k: the nodes of level k enumerate the potential positions of v
in RK . It has been shown that under reasonable assumptions on d, a vertex with K references whose
positions in RK are already known can be located in at most two different positions, whereas a vertex
with K + 1 or more references has at most one possible position in RK .

The difficulty is that the potential realizations of the vertices are not computed during the search for
a discretization order. For a given discretization, Liberti et al. (2014b) have shown that an analysis of
symmetry can yield an estimation of the number of feasible nodes at a level of the BP tree, but branches
might also be pruned once potential realizations are computed. As a consequence, the exact knowledge
of the number of nodes in the BP tree cannot, in general, be deduced from a discretization order without
numerous computations.

As a compromise, Omer and Gonçalves (2017) define a simple indicator of the size of the BP tree for a
given discretization order σ. For this, they define a double vertex as a vertex that has exactly K references
in σ (because the vertex may be assigned to two different positions). In contrast, a vertex with more than
K references is a single vertex. Since double vertices are responsible for the growth of the BP tree, the
first approach is to minimize their number. The decision problem associated with the minimization of
double vertices has been called Minimum double order problem (MDOP) by Omer and Gonçalves (2017).
It is defined formally as follows.

(i) The problem is also sometimes called Trilateration ordering problem (TOP), see e.g. Cassioli et al. (2015).
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MINIMUM DOUBLE ORDER PROBLEM (MDOP)

Input: A simple undirected graph G = (V,E), two integers K ≤ |V | and N .

Question: Is there a discretization order of V such that the number of double vertices is smaller or
equal to N ?

1.3 Contributions and Outline
All in all, finding a discretization order, σ, that minimizes the number of double vertices is an ordering
problem over a simple undirected graph, which discriminates in some sense three classes of vertices

1. indispensable vertices: the initial clique, {σ−1(1), . . . , σ−1(K)},

2. desirable vertices: single vertices, {v : |Rv (σ)| ≥ K + 1}, and

3. undesirable vertices: double vertices, {v : |Rv (σ)| = K}.

This problem has already been treated numerically by Omer and Gonçalves (2017), where the authors
developed cutting plane algorithms to solve an integer programming formulation of the problem. In
particular, they observed that although several different methods have been tested, none could find optimal
solutions of instances with more than 100 vertices in less than one hour. Despite these experiments, they
did not establish any result about the theoretical complexity of MDOP.

Lavor et al. (2012a) argue that DVOP is trivially NP-complete because the first K vertices in the dis-
cretization order must form a clique. Since DVOP is a particular case of MDOP, it is straightforward that
the latter is NP-complete in general. The limit of this result is that K is not a parameter that is expected to
take large values in DGP. Since it stands for the dimension of a molecule conformation, it will in general
be equal to 2 or 3. As a consequence, we should be more interested in complexity results where the value
of K is fixed. For K fixed, Lavor et al. (2012a) show that DVOP is in P by exhibiting a greedy algorithm
that solves the problem in polynomial time. In contrast, close variants of DVOP are NP-complete even
for K fixed. For instance, Cassioli et al. (2015) study the variant of DVOP where every vertex with order
≥ K + 1 is adjacent to its K contiguous predecessors. They named this variant Contiguous trilateration
order problem, and showed that it is NP-complete for any positive fixed value of K.

The main contribution of this article is in the study of the complexity of MDOP for any positive and
fixed value of K. For this, we consider a generalization of MDOP that emphasizes the specificity of the
problem. We extend the problem by introducing one new parameter U ≥ K that will allow for a hierarchy
in the undesirable vertices. The set of feasible orders remains the same, but the objective function will
not only penalize the vertices with exactly K references but also those with K + 1 to U − 1 references
whenever U ≥ K + 2. More precisely, let σ be a feasible order, i.e., {σ−1(1), . . . , σ−1(K)} forms a
clique and |Rv (σ)| ≥ K for all v such that σ(v) ≥ K + 1, and for all v ∈ V , let

fσ (v) := max {0, U − |Rv (σ)|} (1)

be the number of references of v below U . We then wish to minimize the objective

FK,U (σ) :=
∑

σ(v)≥K

fσ (v) , (2)
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which is a stepwise-linear function of the numbers of references in σ. Observe that for U = K + 1, we
fall back to MDOP. We name the associated decision problem Stepwise linear minimum vertex ordering
(SLVO). In the rest of the article, the parameters K and U are respectively called minimum and critical
numbers of references. The restriction of SLVO where the parameters are fixed to values K and U is
denoted as SLVO(K,U). For simplicity, we will use the same notations for the optimization problems
associated with MDOP, SLVO and SLVO(K,U) as long as it is not ambiguous.

STEPWISE LINEAR MINIMUM VERTEX ORDERING (SLVO)

Input: A simple undirected graph G = (V,E), three integers K ≤ |V |, K ≤ U ≤ |V | and N .

Question: Is there a discretization order of G, σ, such that FK,U (σ) ≤ N ?

In our view, SLVO emphasizes better that the difficulty of the problem lies in the breakpoints defined
by U in the objective function. It also offers some perspectives of new applications. For instance, a web
social network that wishes to create some new community or service will be interested in the optimization
of their advertisement campaign. Given that people are more likely to join a community already joined
by several friends of them, the order in which emails or notifications are sent is of importance. In this
context, the initial clique may stand for influential personalities who support the community, and the
minimum number of references represents a threshold under which the community would lose credit. The
cost for not reaching the critical number of references can be associated with incentives such as special
offers for users who need to be convinced. Although this application is still fictional, our opinion is that
the framework is wide enough to welcome others.

The rest of the paper is organized as follows. The main contributions of this paper are the complexity
results presented in Section 2 and Section 3. In particular, our main result is that, even with fixed K and
U , SLVO is NP-complete whenever U ≥ max{K + 1, 2}. On the other hand, the problem is polynomial
if K = U or U ≤ 1. We conclude the article with a discussion about perspectives in the development of
solution algorithms and the study of approximation algorithms in Section 4.

2 Polynomial versions of SLVO(K,U)
Some specific instances of SLVO(K,U) can be solved in polynomial time. As already mentioned, DVOP is
in P when K is fixed. The extension of this result to SLVO is in the study of the problem with fixed K and
U such that U = K (i.e., SLVO(K,K)). In this case, the objective function FK,U (σ) is vanishing for any
vertex ordering σ, so SLVO(K,K) is tantamount to finding a discretization order. As shown by Lavor et al.
(2012a), this can be done in polynomial time using Algorithm 1, whose execution time is in O(|V |K ×
(|E| |V |2)). If U = K step 11 of the algorithm is not useful. Actually, the algorithm can stop as soon as
a discretization order is found.

Theorem 1. SLVO(K,K) is in P for all K ∈ Z+.

This result is of particular importance for the discretizable DGP, since it states that once the initial
clique is given, it can be known in polynomial time whether the problem has a solution or not. The greedy
algorithm suggested by Lavor et al. (2012a) has also been used in practice by Omer and Gonçalves (2017).
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1 for all K-cliques, C, of G do
2 Set the rank of the vertices of C to 1, . . . ,K;
3 O := C, k := K;
4 while a vertex has not been ordered do
5 Let i be a vertex of V \O with maximum number of adjacent vertices in O;
6 if i has less than K adjacent vertices in O then
7 treat the next clique;
8 Assign rank k + 1 to i;
9 O := O ∪ {i};

10 k := k + 1;
11 Update the best discretization order found so far.;
12 If |O| < |V | for all initial cliques, then no discretization order exists. Otherwise, return the best

discretization order found so far.
Algorithm 1: Greedy Algorithm.

Its use as an approximation algorithm is discussed in Section 4.

Theorem 2. SLVO(0,1) is in P.

Proof: Setting K = 0 and U = 1 yields any permutation of the vertices, σ, is a discretization order,
while fσ (v) = 1 if and only if vertex v has no reference in σ. For any k ≥ 1, if a vertex is not in
the same connected component as {σ(1), . . . , σ(k)}, then it does not have any reference among them.
Consequently, the minimum cost of a discretization order is at least equal to the number of connected
components in G. Reciprocally, one can readily build a vertex with total cost exactly equal to the number
of connected components by ordering those components one after the other. Hence, minimizing the
objective function is equivalent to counting the number of connected components of G, which can be
achieved in polynomial time.

3 NP-complete cases
The following results state that it is sufficient to search for the smallest values of K and U such that
SLVO(K,U) is NP-complete. The proof is divided into two lemmata respectively for increasing K and U .

Lemma 1. Let K,U ∈ Z+ such that U ≥ K + 1. If SLVO(K,U) is NP-complete, then SLVO(K+P,U+P)
is also NP-complete for all P ∈ Z+.

Proof: Let K,U ∈ Z+, U ≥ K + 1, and let the graph G = (V,E) and the positive integer N constitute
an arbitrary instance of SLVO(K,U). For P ∈ Z+, we build an instance of SLVO(K+P,U+P) defined by
GP = (V ∪ VP , E ∪ EP ) and N , where:

• the subgraph of GP induced by VP is a P -clique;

• there is one edge between each vertex of V and each vertex of VP .
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More formally,

VP = {|V |+ 1, . . . , |V |+ P}, and EP = {{u, v} : u, v ∈ VP , u 6= v} ∪ {{u, v} : u ∈ V, v ∈ VP }.

Assume that G admits a discretization order, σ. Then we can build a vertex order, σP , of GP , by posi-
tioning the vertices of VP first followed by those of V in the order given by σ, i.e.

σP (VP ) = {1, . . . , P}, and σP (v) = σ(v) + P,∀v ∈ V.

One can verify that the subgraph of GP induced by {σ−1
P (1), . . . , σ−1(K + P )} is a clique, because σ is

discretization order, and that
|Rv (σP )| = |Rv (σ)|+ P, ∀v ∈ V,

which means that FK,U (σ) = FK+P,U+P (σP ).
Reciprocally, for any vertex order σP of GP , we can build a vertex order, σ, of G by removing the

elements of VP from σP . The number of references of each vertex of V in this new order is at most
reduced by P . It follows that if σP is a discretization order, then σ is a discretization order of G such that
fσ (v) ≤ fσP

(v) ,∀v ∈ V .
Finally, the above shows that (G,N) is a YES instance of SLVO(K,U) if and only if (GP , N) is a YES

instance of SLVO(K+P,U+P), which concludes the proof.

The above result does not specify the impact of an arbitrary increase in the value of U (in particular,
one that is larger than the increase in the value ofK). A closer look at the proof of Lemma 1 indicates that
its last part would not generalize in this case. To illustrate this, consider SLVO(K,U) and SLVO(K,U+P)
(instead of SLVO(K+P,U+P)) and the two instances (G,N) and (GP , N) considered in the above proof.
The difficulty is that a discretization order in GP , σP , would not necessarily yield a discretization order,
σ, in G by simply removing the vertices that are not in G. Indeed, this operation decreases by up to P the
number of references, which does not need to be greater than K in σP . Hence some vertices may have
less than K references in σ.

Nevertheless, if K = 0, every argument used in the proof of Lemma 1 remains valid if we wish to
reduce SLVO(0,U+P) from SLVO(0,U). This justifies the following result.

Lemma 2. Let U ∈ Z+. If SLVO(0,U) is NP-complete, then SLVO(0,U+P) is also NP-complete for all
P ∈ Z+.

In the previous section, we have proved that SLVO(K,U) is in P for K = U and for K = 0, U = 1.
We are thus left with the question of the complexity of SLVO(0,2) and SLVO(1,2). Indeed, if those two
problems are NP-complete, Lemmata 1 and 2 show that SLVO(K,U) is NP-complete for all K,U ∈ Z+

such that U ≥ 2 and U ≥ K + 1. We start with the study of SLVO(1,2).

Theorem 3. SLVO(1,2) is NP-complete.

We will show the theorem by polynomial reduction from 3-SAT, which is one of the 21 NP-complete
problems of Karp (1972). We consider an instance, (c, x) of 3-SAT defined by the set of clauses c =
{c1, . . . , cm} defined over boolean variables x = {x1, . . . , xn, xn+1, . . . , x2n}, where xn+i stands for
the negation of xi for all i ∈ {1, . . . , n}. For j = 1, . . . ,m, we denote, j1, j2 and j3 the indices of the
three terms of clause cj , i.e., cj = xj1 ∨ xj2 ∨ xj3 . For i ∈ (1, . . . , n), we also denote as C(i) the set of
clauses that involve xi or xi+n.
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Y1,1 Y1,2 Y1,3 Y2,1 Y2,2 Y2,3 Y3,1 Y3,2 Y3,3

XiX ′i Xi+n X ′i+n

B0
i

B1
i

B2,1
i

B2,2
i

C3C1 C2

Fig. 1: Part of the graph corresponding to xi and xi+n for i ∈ {1, . . . , n}. The dotted lines stand for edges that
connect a vertex to O. In this case, C(i) = {c1, c2, c3}, xi is in first position in c1 and in second position in c2, and
the negation of xi appears in third position in c3.

Remark 1. We assume without loss of generality that there is no clause with a variable and its opposite
and that all the variables appear in at least one clause.

We then proceed as follows to transform (c, x) into an instance (G,n) of SLVO(1,2). The set of vertices
of G = (V,E) is the union of six different sets V = X ∪ X ′ ∪ C ∪ Y ∪ {O} ∪ B, where X and X ′

correspond to the variables, C and Y correspond to the clauses and their terms, and {O} and B are
artificial vertices required for the validity of the reduction. An illustration of the part of G related to some
variable xi, i ∈ {1, . . . , n} is given in Figure 1. The exact rules that lead to the construction of G are as
follows.

• X ∪X ′: for each variable xi, i = 1, . . . , 2n, one pair of vertices (Xi, X
′
i) ∈ X ×X ′, connected with

one edge.

• C ∪ Y : for each clause cj one vertex Cj ∈ C and three vertices Yj,1, Yj,2, Yj,3 ∈ Y that stand for the
three terms of the clause: three edges connect Yj,1 , Yj,2 , and Yj,3 to Cj , and two edges connect Yj,k
to Xjk and X ′jk for k = 1, . . . , 3.

• B: for all i ∈ {1, . . . , n}, one gadget {B0
i } ∪Bi, such that Bi induces a binary tree rooted at B1

i and
whose leaves are connected to at most two vertices of C(i) each such that two leaves do not connect
to a same clause. Vertex B0

i is connected only to B1
i , Xi and Xi+n.

• {O}: one vertex, which will be used as the initial clique. Vertex O is connected to every vertex of X ,
X ′ and C. For all i ∈ {1, . . . , n}, O is also connected to B1

i and to the vertices of the Bi that are
connected to exactly one vertex of C(i).
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Observe that the number of vertices in gadget Bi is at most twice larger than the number of clauses in
C(i) because it is a binary tree whose number of leaves is less than the number of clauses in C(i). It is
then straightforward to verify that the transformation from (c, x) to (G,n) is polynomial.

In the proofs and discussions below, it is more convenient to focus once and for all on discretization
orders of G started with O. We thus extend G with another gadget connected only to O. The gadget is
composed of n+ 1 levels including n+ 1 vertices each, Op,q , 1 ≤ p ≤ n+ 1, 1 ≤ q ≤ n+ 1, and one last
level containing two vertices On+2,1 and On+2,2. The first level is totally connected to O and the last one
is totally connected to On+2,1 and On+2,2. The other levels are connected only to those directly above
and below so that each vertex has two neighbors above and two neighbors below. The gadget is illustrated
in Figure 2. The graph obtained as the union of G and this gadget is denoted as GO.

O

O1,2 O1,3 O1,n O1,n+1O1,1

O2,2 O2,3 O2,n O2,n+1O2,1

On+1,2 On+1,3 On+1,n On+1,n+1On+1,1

On+2,1 On+2,2

Fig. 2: Illustration of the gadget rooted at O.

Proposition 1. There is a discretization order of GO with cost at most n + 1 if and only if there is a
discretization order of G with cost at most n starting with O.

Proof: Let σ be a discretization order ofG such that σ(1) = O andF1,2 (σ) ≤ n. We build a discretization
order, σO, of GO by setting σO(On+2,1) = 1, σO(On+2,2) = 2 and by inserting the levels one by one in
the order from n+ 1 to 1. We then set all the vertices of G in σO in the same order as that given by σ. In
σO: On+2,2 is the only vertex of the gadget with a non-vanishing cost;O has more than two references; the
other vertices ofG keep as many references as in σ. As a consequence, F1,2

(
σO
)

= F1,2 (σ)+1 ≤ n+1.
Reciprocally, let σO be a discretization order of GO such that F1,2

(
σO
)
≤ n+ 1. A recurrence on the

levels of the gadget shows that if (σO)−1(1) does not belong to the gadget rooted atO, then the constraints
on the number of references of σO(On+2,1) and σO(On+2,2) can only be satisfied if at least n+1 vertices
of the gadget have exactly one reference. Since the second vertex of σO also has a non-vanishing cost,
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this is in contradiction with F1,2

(
σO
)
≤ n+ 1. We deduce that (σO)−1(1) belongs to the gadget, hence

we can simply remove the gadget from σO to get a discretization order of G with cost at most n.

Since we will only be interested in discretization orders of GO with cost n+ 1, this result indicates that
we can simply drop the gadget rooted at O and consider discretization orders of G with cost n and whose
first vertex is O. In the remainder, we thus focus on G and set σ(O) = 1 for every discretization order σ
of G. This allows to push the analysis of discretization orders of G further.

1. Let σ be a discretization order of G that starts with O (i.e., σ(O) = 1). For i = 1, . . . , 2n, Xi and X ′i
are neighbors and they are both adjacent toO. Since σ(O) = 1,Xi andX ′i have at least one reference,
and the one with higher position in σ has at least two references. Since there is no possible benefit
in having more than two references, this means that Xi and X ′i can always take contiguous positions
at a minimum cost discretization order. The relative position of the two vertices will not make any
difference in the number of references of their neighbors, but it might impact their costs. Indeed, the
second among Xi and X ′i in the order will always have a zero cost, because it has two references, but
the first one may have only O as reference. Notice now that every neighbor of X ′i is also adjacent to
Xi, but Xi has one extra neighbor, B0

i . This means that Xi can only have more references than X ′i
(other than one another). We get that it can only be beneficial to set Xi first among the two in the
order, i.e., σ(X ′i) = σ(Xi) + 1.

2. Now, considering any vertex order where σ(O) = 1 and σ(X ′i) = σ(Xi) + 1, we can propagate the
deductions to any vertex Yj,k such that jk = i. This vertex is adjacent toXi andX ′i , so their contiguity
involves that either they are both references of Yj,k or Yj,k is a reference of both. Given that Yj,k has
only three neighbors (Cj is the third), the latter would involve that fσ (Yj,k) ≥ 1. Even if Xi has no
other reference than O and Yj,k, it would still not increase the total cost if Yj,k was set after Xi and
X ′i instead. Indeed, the cost of Xi would increase to 1 but that of Yj,k would decrease to 0.

The preliminary analysis shows that we can focus the search for a solution of (G,n) to the discretization
orders σ such that σ(O) = 1, σ(X ′i) = σ(Xi) + 1,∀i, and σ(Yj,k) > σ(X ′i) = σ(Xi) + 1 for all i, j, k
such that jk = i. Given that Xi has no other neighbor than O, X ′i , {Yj,k}jk=i and B0

i , it will have a zero
cost in σ if and only if σ(B0

i ) < σ(Xi).

Lemma 3. Let σ be a discretization order of G such that σ(1) = O and F1,2 (σ) = n. Then, there exists
a discretization order of G, σ̄, such that σ̄(1) = O and

1. F1,2 (σ̄) = n;

2. σ̄(X ′i) = σ̄(Xi) + 1 for all i ∈ {1, . . . , 2n};

3. σ̄(Yj,k) > σ̄(Xi) for all i, j, k such that jk = i;

4. for all i ∈ {1, . . . , n}, fσ̄ (Xi) = 1 or fσ̄ (Xi+n) = 1.

Proof: From the discussion preceding the lemma, we have seen that if σ is a discretization order ofG such
that σ(1) = O and F1,2 (σ) = n, there is another discretization order, σ̄, with cost F1,2 (σ̄) ≤ F1,2 (σ)
such that σ̄(O) = 1 and

• σ̄(X ′i) = σ̄(Xi) + 1,∀i = 1, . . . , 2n;
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• σ̄(Yj,k) > σ̄(Xi) for all i, j, k such that jk = i.

Now, assume that there is some i ∈ {1, . . . , n} such that Xi and Xi+n both have two references.
Given that Xi has no other neighbor than O, X ′i , {Yj,k}jk=i and B0

i , the properties of σ̄ imply that
σ̄(B0

i ) < σ̄(Xi). The same argument applied to Xi+n yields σ̄(B0
i ) < σ̄(Xi+n). It follows that B0

i can
have only one reference in σ̄ (i.e., B1

i ). All in all, we get that for all i ∈ {1, . . . , n}, fσ̄ (Xi) = 1 or
fσ̄ (Xi+n) = 1 or fσ̄

(
B0
i

)
= 1. Observing that F1,2 (σ̄) = n, we can even further state that

fσ̄ (Xi) + fσ̄ (Xi+n) + fσ̄
(
B0
i

)
= 1,∀i ∈ {1, . . . , n},

and that every other vertex has at least two references.
Assume that fσ̄

(
B0
i

)
= 1: we just discussed that in this case σ̄(B0

i ) < σ̄(Xi) and σ̄(B0
i ) < σ̄(Xi+n).

We can prove by induction on the binary tree Bi that we necessarily have σ̄(B0
i ) > σ̄(Cj), ∀Cj ∈ C(i).

Combined with the property that σ̄(Yj,k) > σ̄(Xi) for all i, j, k such that jk = i, we get that σ̄(Cj) <
σ̄(Yj,k) for all Cj ∈ C(i) and k = 1, 2, 3. This leads to Cj having only O as a reference, a contradiction.
As a consequence, we know that for all i ∈ {1, . . . , n} either fσ̄ (Xi) = 1 or fσ̄ (Xi+1n) = 1.

Proof of Theorem 3: We consider an instance (c, x) of 3-SAT and the corresponding instance (G,n) of
SLVO(1,2), as described above. We prove the theorem by showing that (c, x) is satisfiable if and only if
there is a discretization order of G, σ, such that σ(O) = 1 and F1,2 (σ̄) = n.

Assume first that (c, x) is satisfiable and let x̄ be a feasible solution. From this solution, we construct a
vertex order ofG, σ, where σ(O) = 1 and for i ∈ {1, . . . , n}, σ(Xi) = 2i, σ(X ′i) = 2i+1 if x̄i = TRUE,
and σ(Xi+n) = 2i, σ(X ′i+n) = 2i + 1 if x̄i = FALSE. We then insert in σ the vertices of Y that cor-
respond to the variables of x set to TRUE in x̄. Every vertex of C is then inserted in the vertex order,
followed by all those of B. One can verify that up to this stage, the only ordered vertices with exactly one
reference are those of X , whose common reference is O. Indeed, the ordered vertices of X ′ also have O
as reference and another in X , and the ordered vertices of Y have one reference in X and another one
in X ′. Moreover, every vertex of C has O as reference and at least one reference in Y , because x̄ is a
feasible solution of (c, x). Finally, one can verify that the vertices of B can be ordered to have exactly
two references as long as they come after the vertices of C in the order.
The following vertices in σ are the vertices of X that do not appear at the beginning of the order, i.e.,
Xi if x̄i = FALSE, or Xi+n if x̄i = TRUE. At this stage, each one of these variables has O and B0

i as
references. The remaining vertices of X ′ and Y can then be inserted last in σ without an increase in the
objective value. As a consequence, the objective value of σ is exactly n.

Assume then that (G,n) is a YES instance of SLVO(1,2), such that there is a discretization order of G,
σ, that satisfies F1,2 (σ) = n, and σ(O) = 1. Lemma 3 states that there is another discretization, σ̄, such
that σ̄(1) = O and

• F1,2 (σ̄) = n;

• σ̄(X ′i) = σ̄(Xi) + 1 for all i ∈ {1, . . . , 2n};

• σ̄(Yj,k) > σ̄(Xi) for all i, j, k such that jk = i;
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• for all i ∈ {1, . . . , n}, fσ̄ (Xi) = 1 or fσ̄ (Xi+n) = 1.

This also means that fσ̄ (v) = 0,∀v /∈ X . Now, denote as x̄ the vector of boolean values such that for
i = 1, . . . , n, x̄i = TRUE if fσ̄ (Xi) = 1, and x̄i = FALSE if fσ̄ (Xi+n) = 1. We show that x̄ is a
feasible solution of the instance of 3-SAT.
We assume by contradiction that there is a clause cj that is not satisfied by x̄, i.e., x̄jk = FALSE for
k = 1, 2, 3. For k = 1, 2, 3, we then have fσ̄ (Xjk) = 0 by definition of x̄. Arguments similar to those
used in the proof of Lemma 3 yield

σ̄(Yj,k) > σ̄(Xjk) > σ̄(B0
jk

) > · · · > σ̄(Cj).

This means in particular that Cj has only one reference, which is in contradiction with the definition of σ̄.
We conclude that (c, x) is a YES instance of 3-SAT.

One can observe that the constraints |Rv (σ)| ≥ 1 for all v 6= O did not intervene anywhere in the
proofs of Theorem 3 and Lemma 3. Actually, it is automatically satisfied for all neighbors of O, and
|Rv (σ)| ≥ 2 for every other vertex v if F1,2 (σ) = n. Moreover, if σ is feasible for SLVO(1,2) it is of
course feasible for SLVO(0,2) and F0,2 (σ) = F1,2 (σ) + 2 (because fσ (O) = 2 if K = 0). This means
that the proof of Theorem 3 could be immediately adapted to show that SLVO(0,2) is NP-complete by
showing that (c, x) is a YES instance if and only if there is a vertex order of G, σ, such that σ(O) = 1
and F0,2 (σ̄) = n+ 2.

Theorem 4. SLVO(0,2) is NP-complete.

We conclude this complexity study by summing up the results in Table 1.

aaaaaa
K

U −K 0 1 2 ≥ 3

0 P P NP NP
1 P NP NP NP
2 P NP NP NP
≥ 3 P NP NP NP

Tab. 1: Complexity of SLVO(K,U).

Since MDOP for fixed K is equivalent to SLVO(K,K+1), we immediately deduce the following.

Corollary 1. If K is fixed, MDOP is in P if K = 0 and it is NP-complete for all K ≥ 1.

4 Perspectives
Now that we have established that SLVO(K,U) is NP-complete for every interesting value of K and U ,
the next step should be in a thorough study of its approximability. In this perspective, it is interesting
that both Gonçalves and Mucherino (2016) and Omer and Gonçalves (2017) have noticed that the greedy
method described in Algorithm 1 performed very well on MDOP with K fixed to 3. Although this might
be a lead for the types of instances they used, we can show that, in general, it does not even approximate
the optimal solution of SLVO(1,2) (i.e., MDOP with fixed K = 1) within a constant factor. This is shown
by the following example.
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O

A0 A1 A2 AN

B1 B2 BNB−2 B−1 B0

Fig. 3: Counter-example of approximation within a constant factor for the greedy algorithm.

Example 1. Consider the instance illustrated in Figure 3, which is composed of 2N+5 vertices: one root
O, and two branches {A0, A1, . . . , AN} and {B−2, B−1, . . . , BN}. As in the previous section, we could
add a gadget rooted in O to make sure that any solution where O is not ordered before the two branches
will cost more than N , so we set σ(O) = 1.
The optimal value of this instance is 4, and it can be obtained with the discretization order

(O,B−2, B−1, B0, . . . , BN , A0, . . . , AN ).

Indeed, in this order, B−2, B−1, B0, and A0 have one reference, and the other vertices (except O) have
two.
After setting σ(O) = 1, Algorithm 1 picks one vertex among those with most references, i.e., either A0

or B−2. Assuming that it repeatedly picks a vertex in the A branch, the algorithm builds a discretization
order where the first N + 1 vertices (A0, . . . , AN ) have only one reference. Finally, the approximation
ratio of the algorithm is (N + 1)/4 for this instance.

Another finding is that different values ofK could lead to different approximability results for SLVO(K,U).
Indeed, we provide in Appendix A a proof that SLVO(K,U) is NP-complete for all K ≥ 3, U ≥ K + 1,
by reduction from minimum vertex cover (VC) in bounded degree graphs. From an instance, GV C , of VC,
the proof constructs an instance G of SLVO(K,K+1), where K is the maximum edge degree in GV C . We
then show that there is a vertex cover of GV C with size N if and only if there is a discretization order
of G with value N . In particular, this shows that the best approximation ratio that can be achieved for
SLVO(K,K+1) is at best that achieved for VC in bounded degree graphs (see e.g., Halperin (2002) for such
results). However, this reduction is not valid for U ≤ 3. Another similar reduction from the TRIANGLE
PACKING problem (see Garey et al. (1976)) is still valid for K = 2 and U = 3, but not for smaller values
of U . This leaves the possibility that better approximation can be found for U = 2.

Finally, there is still much to be done in the practical solution of SLVO(K,U), since recent studies still fail
in the search for optimal solutions of SLVO(K,U) for graphs with as few as 100 vertices (see Cassioli et al.
(2015); Omer and Gonçalves (2017)). We also hope that we will soon see some other real applications of
SLVO(K,U) than the discretization of DGPs.
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A. Cassioli, O. Günlük, C. Lavor, and L. Liberti. Discretization vertex orders in distance geometry.
Discrete Applied Mathematics, 197:27–41, 2015. doi: 10.1016/j.dam.2014.08.035.

J. Ceberio, A. Mendiburu, and J. A. Lozano. The linear ordering problem revisited. European Journal of
Operational Research, 241(3):686 – 696, 2015. doi: 10.1016/j.ejor.2014.09.041.

M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the Theory of NP-Completeness.
W. H. Freeman & Co., New York, NY, USA, 1990. ISBN 0716710455.

M. R. Garey, D. S. Johnson, and L. J. Stockmeyer. Some simplified np-complete graph problems. Theo-
retical Computer Science, 1(3):237 – 267, 1976. doi: 10.1016/0304-3975(76)90059-1.
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A Alternative reduction for K ≥ 3
In this section, we prove that SLVO(K,U) is NP-complete for all K ≥ 3, U = K + 1 by reduction from
the minimum vertex cover problem (VC) in graphs with vertex degrees bounded by K.

Proof Alternative proof of NP-completeness of SLVO(K,U) for K ≥ 3 and U = K + 1: We show the
result by polynomial reduction from VC in graphs with bounded degrees, which is NP-complete for any
maximum degree ∆ ≥ 3 (see Garey et al. (1976)).

Let GV C = (V,E) and N ≤ |V | define an arbitrary instance of VC with vertex degrees bounded by
∆ ≥ 3. We then set K = ∆, U = K + 1 and construct the corresponding instance (G,N) of SLVO(K,U).
To avoid confusion in the remainder, we index with V C the quantities that refer to GV C (e.g. dV C(i) or
δV C(i)), and we do not index those referring to G. The vertices of G are given by the union of four sets
of vertices C ∪ VV ∪ VE ∪ V i, where

1. C = {c1, . . . , cK} is a clique of G;

2. VV = {vi : i ∈ V } and for all i ∈ V , dV C(i) edges connect vi to the K + 1 − dV C(i) first vertices
of C;

3. VE = {vi,j : {i, j} ∈ E} and for all {i, j} ∈ E, K edges connect vi,j to the vertices of C, and two
edges connect vi,j to vi and vj (∈ VV ) as illustrated in Figure 4;

vi

C

vj

vi,j

i ∈ V

j ∈ V

{i, j} ∈ E

K + 1− dV C(i) edges

K + 1− dV C(j) edges

K edges

Fig. 4: Construction of VV and VE from V and E.

4. for all i ∈ V , the gadget V i = {gi1, . . . , gidV C(i)} has dV C(i) vertices. Each vertex gik ∈ V i is
connected to vi ∈ VV , to theK vertices of C, to gik−1 if k 6= 1 and to gik+1 if k 6= dV C(i). The gadget
is illustrated in Figure 5.
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C

gi1

gi2

gidV C(i)

vi

K edges

K edges
K edges

K + 1− dV C(i) edges

dV C(i) edges

Fig. 5: Illustration of the gadget Vi for i ∈ V .

Stated otherwise, the vertices of C induce the K-clique, which will come first in the discretization order.
The vertices of VV and VE correspond to the vertices and edges ofGV C , and the gadget V i will guarantee
the validity of the reduction. It is straightforward that the transformation from GV C to G is polynomial.
We will prove that a vertex cover of GV C with cardinality N exists if and only if a discretization order of
G with cost N exists, but we start with preliminary remarks about G.

First, observe that C is a clique of G so that it can be set at the beginning of a discretization order of G.
Moreover, the first K + 1 vertices of a discretization order must form a clique. If there is no vertex of VV
in this clique, it only includes vertices that are neighbors to every vertex of C. This means that the vertices
of C can be set at the beginning of the order without modifying its cost. Otherwise, the K + 1-clique
contains at most one vertex vi ∈ VV , because there is no edge with both ends in VV . This vertex can
always be set K + 1 − th in the order without modifying its cost, so the vertices of C can be set at the
beginning of the order if there is no other vertex in the clique. By construction of VE and V i there can be
either one vertex vi,j ∈ VE or at most two vertices gik and gik+1 of V i in the K + 1-clique. In both cases,
we can modify the vertex order to obtain

σ(ck) = k, ∀k ∈ {1, . . . ,K},
σ(gik) = K + k, ∀k ∈ {1, . . . ,dV C(i)},
σ(vi) = K + dV C(i) + 1.

If there is also some vi,j ∈ VE in the K + 1-clique, we also set σ(vi,j) = K + dV C(i) + 2. The first
K + 1 vertices in σ still form a clique and the dV C(i) + 1 following vertices all have K + 1 references.
If we keep the relative order of the other vertices unchanged, this modification can only increase their
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numbers of references, so the total cost of the order does not increase. As a consequence, we can focus
on discretization orders starting with C without loss of generality.

Secondly, a vertex vi,j ∈ VE is connected to the K vertices of C and to the two vertices vi, vj ∈ VV .
As a consequence, its cost will vanish if and only if it comes after vi or vj in the order. Similarly, the costs
of every vertex of V i will vanish if and only if they all come after vi in the order. And reciprocally, the
cost of vi ∈ VV vanishes if it comes after every vertex vi,j ∈ VE or after every vertex of V i.

Using the above preliminary remarks, we show that a solution, σ, of SLVO(K,U) with costFK,K+1 (σ) =
N can be built from a vertex cover, I ⊂ V , of GV C with cardinality N . For this we set the orders of the
vertices from the beginning to the end as follows.

1. σ(ck) = k, ∀k ∈ {1, . . . ,K}, then

2. ∀i ∈ I : σ(gi1) ≤ · · · ≤ σ(gidV C(i)) ≤ σ(vi), then

3. ∀{i, j} ∈ E : σ(vi,j) ≥ σ(vk), : ∀k ∈ I , then

4. ∀i ∈ V \ I : σ(vi) ≥ σ(vi,j), ∀{i, j} ∈ E, then

5. ∀i ∈ V \ I, ∀j ∈ V i : σ(gidV C(i)) ≥ · · · ≥ σ(gi1) ≥ σ(vi).

By Item 2., for all i ∈ I , gi1 has K references, but vi and every other vertex of V i have K + 1 refer-
ences. Item 3. sets the position of the vertices of VE only after those of {vi : i ∈ I}. Since I is a
vertex cover of GV C this guarantees that every vertex of VE has at least K + 1 references. According to
Items 4. and 5., the remaining vertices of VV then come after all the vertices of VE and each vertex of
V i comes after vi for all i ∈ V \ I . As a consequence, these vertices also have a vanishing cost. Finally,
this means that the only vertices with non-vanishing costs are {gi1 : i ∈ I}, hence FK,K+1 (σ) = |I| = N .

Reciprocally, let σ̃ be a discretization order of G such that σ̃(V1) = {1, . . . ,K} and FK,K+1 (σ̃) = N .
We have already seen that we can consider that σ̃(C) = {1, . . . ,K} without loss of generality. We then
modify σ̃ to build another discretization order of G, σ, such that the only vertices with non-vanishing
costs are {gi1 : i ∈ I} for some set I of size at most N .
Let v /∈ {gi1 : i ∈ V } such that fσ̃ (v) = 1. Then either, v ∈ VV , v ∈ VE or v ∈ V i \ {gi1} for i ∈ V .

• If v = vi ∈ VV , we can move vertices of V i down in the order so that σ(gi1) ≤ · · · ≤ σ(gidV C(i)) ≤
σ(vi). We get fσ

(
gi1
)

= 1, fσ
(
gik
)

= 0,∀k ≥ 2 and fσ (vi) = 0.

• If there exists i ∈ V such that v = gik ∈ V i, k 6= 1, we can perform similar changes so that
σ(gi1) ≤ · · · ≤ σ(gidV C(i)) ≤ σ(vi).

• If v = vi,j ∈ E, we can also set vi and some vertices of V i to lower position in the order so that
σ(gi1) ≤ · · · ≤ σ(gidV C(i)) ≤ σ(vi) ≤ σ(vi,j). Once again, gi1 becomes the only vertex with non-
vanishing cost among them.

In all the above modifications, we only set vertices to lower positions in the order while leaving the
relative orders of the remaining vertices unchanged. This means that only the number of references of
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the vertices that have been moved can decrease. But, in every case there is at least one vertex with non-
vanishing cost among them before the modifications and exactly one after. As a consequence, we get
FK,K+1 (σ) = |I| ≤ N , where I = {i ∈ V : fσ

(
gi1
)

= 1}.
Finally, ∀i ∈ V \ I and ∀v ∈ {vi} ∪ V i, fσ (v) = 0, so σ(vi) ≥ σ(vi,j),∀{i, j} ∈ E. As a consequence,
every vertex of VE has at least one reference among the vertices of {vi : i ∈ I}, which means that I is a
vertex cover of GV C of size at most N .

Remark 2. In the same vein as the reduction from VC, we can also prove that SLVO(2,3) is NP-complete
by a reduction from TRIANGLE PACKING. This problem has been proved to be NP-complete for graphs
with a 3-clique by Garey et al. (1976) and later studied for several classes of graphs by Guruswami et al.
(1998).
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