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We study the local limit of the fixed-point forest, a tree structure associated to a simple sorting algorithm on permu-
tations. This local limit can be viewed as an infinite random tree that can be constructed from a Poisson point process
configuration on [0, 1]N. We generalize this random tree, and compute the expected size and expected number of
leaves of a random rooted subtree in the generalized version. We also obtain bounds on the variance of the size.
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1 Introduction
We start with a simple sorting algorithm on a deck of cards labeled 1 though n. If the value of the top
card is i, place it in the ith position from the top in the deck. Repeat until the top card is a 1. Viewing the
deck of cards as a permutation in one-line notation π = π(1)π(2) · · ·π(n), we create a new permutation,
τ(π), by removing the value π(1) from beginning of the permutation and putting it into position π(1).
For example, if π = 43512 then τ(π) = 35142. This induces a graph whose vertices are the permutations
of [n] = {1, · · · , n} and edges are pairs of permutations (π, τ(π)). Note that τ(π) has a fixed point at the
position π(1).

This graph is a rooted forest, which we denote by Fn and call the fixed point forest. A rooted forest
is a union of rooted trees, and a tree is a graph that does not contain any closed loops involving distinct
vertices. A permutation that begins with 1 is called the base of the tree in which they are contained. A
thorough introduction to the fixed point forest can be found in Johnson et al. (2017).

The fixed point forest was first studied in McKinley (2015). The largest tree in Fn has size bounded
between (n− 1)! and e(n− 1)! and has as its base the identity permutation. The longest path from a leaf
to a base is 2n−1 − 1 and is unique, starting from the permutation 23 · · ·n1 and ending at the identity.

Let Sn denote the set of permutations of length n. For π ∈ Sn, let F(π) denote the collection of fixed
points of π other than 1. For each m ∈ F(π) we create a new permutation π(m) such that

π(m)(i) =

 m, i = 1
π(i− 1), 2 ≤ i ≤ m
π(i), m < i ≤ n

.
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Fig. 1: The descendant tree desc(π) for π = 31245

We say we bump the value m in π to create π(m) and call π(m) a child of π. We let C(π) = {π(m) :
m ∈ F(π)} denote the set of children of π. Every child σ ∈ C(π) satisfies τ(σ) = π hence is connected
to π in Fn.

Let N(π) be the rooted tree in Fn that contains π, with π designated as the root instead of the unique
permutation that starts with 1 in N(π). Let desc(π) be the subtree of N(π) rooted at π and consisting
of π and its descendants, so that desc(π) ⊆ N(π). We call this the descendant tree of π (See Figure 1).
Note that for any permutation σ ∈ desc(π), there is some r such that τ r(σ) = π.

By Theorem 3.5 in Johnson et al. (2017), there exists a tree, T, such that as n → ∞, for πn chosen
uniformly at random from permutations of size n, the randomly rooted tree Nn = N(πn), converges in
the local weak sense to T. This limiting tree is described in Section 2 of Johnson et al. (2017), and the
subtree of T which corresponds to the local weak limit of desc(πn) has a similar description, denoted
by D. In Johnson et al. (2017), they find the distribution for the shortest and longest paths from the root
to a leaf in D. The main purpose of the paper is to study the size of D. For α ∈ [0, 1], we define a
generalization of D, denoted Dα such that D = D1. We compute the expected size and expected number
of leaves of Dα and show that they are both unbounded for α = 1. Finally we find bounds on the second
moment of the size of Dα. We show that the second moment has a phase transition from finite to infinite
somewhere between (3−

√
5)/2 and (

√
5− 1)/2.

2 Local limits, point process configurations, and trees
Poisson Point Processes
The following briefly introduces an important probabilistic object: Poisson point processes. A thorough
treatment can be found in Kingman (1993).

We say a random variable X is Poi(α) if it satisfies P(X = k) = 1
k!e
−ααk. If X0 and X1 are two

independent Poi(α0) and Poi(α1), respectively, then their sum is Poi(α0 + α1).
A point process on [0, 1] is an integer-valued measure on Borel sets of [0, 1]. It may be viewed as a

collection of points, which represent the atoms of the measure. A point process configuration on [0, 1] is a
collection of point processes, each on [0, 1], and can be viewed as a collection of labelled points on [0, 1].

A Poisson point process on [0, 1] with intensity α is a random integer-valued measure which satisfies
two properties: For any Borel subset E ⊂ [0, 1] with Borel measure λ, the number of atoms of the point
process in E is given by Poi(αλ), and for any disjoint Borel subsets of [0, 1] the number of atoms in
each are independent. Conditioned on the number of atoms in E the location of each of the atoms is
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ξ f(ξ, x)

x

Fig. 2: The bump map f(ξ, x) where ξ4 is assumed to be empty.

independent and uniform in E.
Collections of Poisson point processes can be merged to create a single poisson point process. Suppose

ξ0 is a Poi(α0) point process on [0, 1] and ξ1 is Poi(α1) point process on [0, 1] with ξ0 and ξ1 both
independent. Then the union of ξ0 and ξ1 is distributed like a Poi(α0 + α1) point process. The reverse
is also true. Let ξ′ be a Poi(α0 + α1) point process on [0, 1] and label each atom 0 with probability
α0/(α0 + α1) and 1 otherwise. Let ξ0 denote the point process consisting of the atoms labeled 0 and ξ1
the point process of the remaining atoms. Then ξ0 and ξ1 are, respectively, independent Poisson(α0) and
Poisson(α1) point processes on [0, 1]. This can be generalized further to α = α0 + · · ·+ αk−1. If ξ′ is a
Poisson(α) point process each atom in ξ′ is independently labeled such that the label is i with probability
αi/α for 0 ≤ i < k, then the collection of atoms labeled i is a Poisson(αi) point process and each ξi is
independent of the rest.

Let ξ1 and ξ2 be two independent Poisson(α) point processes. For x ∈ (0, 1), define ξ′1 = ξ2
∣∣
[0,x)

+

ξ1
∣∣
(x,1]

to be the point process consisting of the atoms from ξ2 restricted to the interval [0, x) and the
atoms from ξ1 restricted to the interval (x, 1]. If x is independent of ξ1 and ξ2 then the resulting process
ξ′1 is also a Poisson(α) point process.

Weak Convergence
We give a brief definition of the version of local weak convergence that is used to define T and D.
See Aldous and Steele (2004) or Benjamini and Schramm (2001) for a proper discussion of local weak
convergence, which is sometimes referred to as Benjamini-Schramm convergence.

Let G1, G2 · · · be a sequence of rooted graphs. For any rooted graph H , the r-neighborhood of the
root, denoted H(r), is the subgraph of H induced from all vertices that are distance at most r from the
root. The rooted graph G is the local weak limit of Gn if for every r ≥ 0 and every finite graph H ,

P[Gn(r) = H]→ P[G(r) = H].

From point process configurations to trees
Let ξ = (ξk)k≥0 be a point process configuration on [0, 1]N where each ξk is a point process on [0, 1]. For
each atom x ∈ ξ0 define the bump map f(ξ, x) = (ξ′k)k≥0 where

ξ′k = ξk+1

∣∣∣
[0,x)

+ ξk

∣∣∣
(x,1]

.

See Figure 2 for an illustration of this map. Given a point process configuration, ξ, the bump map allows
us to recursively define a tree with root v0 whose vertices are point process configurations. Define v0 to be
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ξ γ4(ξ)
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Fig. 3: A point process collection and corresponding 4-neighborhood of the bump tree. Note that any configuration
of point processes for ξ5 and higher will not affect the structure of the bump tree and thus γ4(ξ) = γ(ξ).

the root of the tree with corresponding point process configuration ξv0 = ξ. Suppose v is a vertex in the
tree with corresponding point process configuration given by ξv . For each x ∈ ξv0 , create a new vertex v(x)
in the tree with point process configuration given by the bump map ξv(x) = f(ξv, x). The newly created
vertex v(x) is a considered a child of v. We call this tree the bump tree of ξ and denote it by γ(ξ). For
fixed r ≥ 0 let γr(ξ) denote the r-neighborhood of the root in γ(ξ). Only the atoms in (ξ0, · · · , ξr−1) are
necessary to determine the structure of the γr(ξ), so we may write γr(ξ) = γr(ξ0, · · · , ξr−1) and assume
ξk = ∅ for k ≥ r. The map γr is continuous because a slight perturbation of the atoms will not change
the relative order of the points in (ξ0, · · · , ξr). See Figure 3 for an example of a finite neighborhood of
the root of the bump tree for a point process configuration.

For a permutation π of length n, we say the index i or the value π(i) is k-separated if π(i) = i+k. We
define the separation word of π point-wise by Wπ(i) := π(i) − i. No two permutations have the same
separation word. From this word we can construct a point process configuration (ξπk )k≥0 by placing an
atom in ξπk at position i/n if i is a k-separated point in π.

By Proposition 3.4 in Johnson et al. (2017), for fixed r ≥ 0, as n tends to infinity,

(ξπn0 , · · · , ξπnr−1) −→d (ξ0, · · · , ξr−1)

where ξk is a Poi(1) point process on [0, 1]. From the arguments of Theorem 3.5 in Johnson et al.
(2017), letting ξ = (ξk)k≥0, we have γr(ξπn)→ γr(ξ) by continuity of γr and the Continuous Mapping
Theorem [Billingsley (1999)]. Furthermore, it is seen that γr(ξπn) is the same as the r-neighborhood
of the descendant tree desc(πn) with high probability. Therefore D := γ(ξ) is the local weak limit of
desc(πn).

We now can state our main results. For α ∈ (0, 1], let ξ = (ξk)k≥0 be a collection of independent
Poi(α) point processes on [0, 1] and let Dα := γ(ξ) be the corresponding bump tree of ξ. Let D denote
the number of vertices and U the number of leaves in Dα. Finally let Eα and Pα denote the expectation
and probability associated with Poi(α) point processes. We now may state our main results.

Theorem 1. For 0 < α < 1, Eα[D] = (1− α)−1, and E1[D] diverges.

Theorem 2. For 0 < α < 1, Eα[U ] = e−α(1− α)−1, and E1[U ] diverges.

Theorem 3. For α ≥ (
√

5− 1)/2, Eα(D2) diverges. For α < (3−
√

5)/2, Eα(D2) is finite.
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ξ0

ξ1

ξ2

2 1 0 1 0

Fig. 4: A collection of point processes corresponding to the word 2 1 0 1 0.

3 Comparison with Galton-Watson trees
In this section we compare our results to the well-studied Galton-Watson tree Watson and Galton (1875);
Neveu (1986).

A Galton-Watson tree, GW, can be constructed through a simple random process. Start with a root v0
and a nonnegative integer-valued random variable X . Create Xv0 children of v0 where Xv0 is distributed
as and independent copy of X . For each child, v, of v0 repeat this process, where Xv is an independent
copy of X . Depending on the distribution of X , the resulting tree will have drastically different behavior.

Fix a nonnegative integer-valued random variable X with finite expectation 0 < E[X] < 1 and finite
second moment E[X2] < ∞. Let Y = |GW|. Let X denote the number of children of the root of GW
and for 1 ≤ i ≤ X , let Y i denote the number of vertices in the subtree consisting of the ith child and all of
its descendants. Each Y i is distributed identically as an independent copy of GW. We denote the size of
GW conditioned onX by (Y |X) = 1+

∑X
i=1 Y

i. Taking expectation we have E[(Y |X)] = 1+XE[Y ]
and thus

E[Y ] = E[E[(Y |X)]] = 1 + E[X]E[Y ]

and so
E[Y ] =

1

1−E[X]
.

A similar approach for the second moment gives the equation

E[Y 2] = 1 + E[X]E[Y ] + E[X]E[Y 2] + E[X2 −X]E[Y ]2,

which can be simplified to

E[Y 2] =
1

(1−E[X])2
+

E[X2]−E[X]

(1−E[X])3
. (1)

Given that E[X] < 1 and E[X2] is finite, (1) shows that E[Y 2] finite. In particular if X is Poi(α) then
E[Y ] agrees with Eα[D] from Theorem 1, while Theorem 3 shows the second moment E[Y 2] cannot
agree with the second moment Eα[D2] if α ≥ (

√
5 − 1)/2 since the former is finite while the latter

diverges.
The approach used to compute E[Y ] and E[Y 2] cannot be used to compute Eα[D] and Eα[D2] because

the subtrees from the root in Dα are not independent of each other.

4 Words from point process configurations
For a collection of point processes on [0, 1], ξ = {ξk}k≥0, let wr(ξ) be the word constructed from the
relative order of the atoms in (ξ0, · · · , ξr−1). For example see Figure 4. Assuming that no two atoms of ξ
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are in the same location, the structure of the r-neighborhood of the root in the tree γr(ξ) can be constructed
directly from this word. Let Ωr denote the space of finite words with letters from {0, · · · , r − 1}.

If ξ is a Poi(α) point process configuration, this induces a probability measure Pα,r on Ωr for every
r ≥ 0. The following lemma describes this distribution.

Lemma 4. Let ξ be a Poi(α) point process configuration and W = wr(ξ) the word given by the relative
order of the first r point processes of ξ. Let w denote a fixed word of length n in Ωr. Then

Pα,r(|W | = n) =
1

n!
e−αrαnrn (2)

and
Pα,r(W = w) =

1

n!
e−αrαn. (3)

Proof:
Construct the r independent Poi(α) point processes from a single Poi(rα) point process by labeling

each atom independently from {0, · · · , r − 1}, choosing the label uniformly at random. The probability
that |W | = n is precisely the probability that a Poi(rα) point process has n atoms in [0, 1], the right hand
side of (2). As the labeling is independent for each atom, each of the rn possible labelings is equally
likely, so the probability that W = w for a fixed w of length n is computed by dividing the right hand side
of (2) by rn, giving (3).

For W ∈ Ωr of length n we write W = W1 · · ·Wn in one line notation. For a fixed subset of indices
A = (i1, · · · , ij) let WA = Wi1 · · ·Wij . We may refine Lemma 4 even further.

Lemma 5. Let u = u1 · · ·uj be a word in Ωr. Let W ∈ Ωr, and A = (i1, · · · , ij) be a set of indices
such that 1 ≤ i1 < · · · < ij ≤ n. Then,

Pα,r ({WA = u} ∩ {|W | = n}) =
1

n!
e−αrαnrn−j .

Proof:
Conditioned on |W | = n, the labels of the atoms indexed by A are chosen independently so

Pα,r(WA = u||W | = n) = r−j

and the statement follows.

The tree γr(ξ) with word wr(ξ) will agree up to a relabeling of the vertices of the tree γr(ξ′) if
wr(ξ) = wr(ξ

′). A vertex in the tree corresponds to bumping a particular set of atoms in a particular
order. Therefore the measure Pα,r on words in Ωr is exactly the measure we need to understand the
γr(ξ).

We can translate our language of bumping atoms in ξ to bumping letters in words. Let W ∈ Ωr. For
each 0 ∈ W , we construct a new word by removing the chosen 0 and reducing every letter to the left of
it by 1. We say the index of this letter 0 is bumped and indices less than the bumped index are shifted.
The set of indices of the 0s in a word are called the bumpable indices. The set of words that can be
constructed by bumping a single 0 in W are called the children of W and denoted C(W ). For example the
word 2 1 0 1 0 has has two children, 1 0 � 1 0 and 1 0 � 0 �, where � is used to indicate bumped indices
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2 1 0 1 0

1 0 1 0
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Fig. 5: The tree, γ(w), for the root word w = 2 1 0 1 0

or indices shifted below zero. Once the letter at an index becomes � in a word it can never become 0 in
one of its descendants. We construct a rooted tree, denoted γ(W ), following a process that mirrors our
construction of γ(ξ) for point process configurations. We let γj(W ) denote the j-neighborhood of the
root in γ(W ).

We may omit the � symbol in the labeling of the tree. The � symbol is used to emphasize that the set
of indices is the same for each word in the same tree. See Figure 5 for the rooted tree in Ω3 associated
with the word 2 1 0 1 0. The sequence of indices that are bumped to reach the vertex v in γ(W ) is called
the bumping sequence of v.

For j ≥ 1 and every vertex v ∈ γj(W )\γj−1(W ) there is a corresponding set of j atoms that must
be bumped in a particular order to reach v. This sequence of atoms induces an ordered set of indices
A = {a1 < · · · < aj} and permutation, σ, of length j such that v is obtained by bumping the atoms at
the indices in order {aσ1 , · · · , aσj} where each of the indices must be 0 when they are bumped. We say
the set of indices A reaches v by the order σ. Since γ(W ) is a tree, any such v is reachable by a unique
pair (A, σ).

For a set of indices A = {a1 < · · · < aj}, we say A is complete in W if there exists an order σ ∈ Sj

and a sequence of words W = W 0, · · · ,W j such that for 1 ≤ i ≤ j, W i ∈ C(W i−1) is obtained by
bumping the index aσi in W i. Whether or not A is complete in W is independent of the letters not in A.
The following lemma gives conditions on when A is complete in W .

Lemma 6. IfA is complete inW ∈ Ωr with |A| = j, there is a unique σ ∈ Sj such that a vertex in γ(W )
is reachable by (A, σ). If r ≥ j, then for each σ ∈ Sj there is a unique sequence of values u = u1 · · ·uj
such if WA = u then there exists a vertex in γ(W ) that is reachable by (A, σ).

Finally, A is complete with respect to W if and only if Wai ≤ min(j − i, r − 1) for 1 ≤ i ≤ j.

Proof:
SinceA is complete inW there is at least one σ ∈ Sj and v in γ(W ) such that v is reachable by (A, σ).

First aσ1 is bumpable if and only if Waσ1
= 0. In order for aσi+1 to be bumpable after bumping aσ1 up to

aσi , the label of aσi+1
must be 0, and therefore index must be shifted exactly Waσi+1

times by bumping
indices larger then aσi+1

. For this to occur there must be exactly Waσi+1
integers m such that m < i+ 1
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and σm > σi+1. In terms of σ−1 we have for 1 ≤ i ≤ j,

Wai = #{i < m ≤ j|σ−1i > σ−1m }.

The sequence of values Wa1 · · ·Waj is the unique inversion table (Knuth (1998)) for the permutation
σ−1. No two permutations have the same inversion table and thus σ must be unique. Given a σ ∈ Sj , if
WA is the inversion table for σ−1 then A will be complete with respect to W .

Finally we have that Wa1 · · ·Waj is an inversion table if and only if Wai ≤ j − i for 1 ≤ i ≤ j. We
also have that Wai ≤ r − 1 by definition.

Define the following truncated factorial function:

fy(x) =

{
x!, x ≤ y,
y!yx−y, y < x.

Note that limy→∞ fy(x) = x!.
Let βr(j) denote the set of subwords of length j such such that A is complete in W if and only if

WA ∈ βr(j). For any r ≥ 0 and j ≥ 0, by Lemma 6,

|βr(j)| = fr(j)

and for r ≥ j, this simplifies to
|βr(j)| = j!.

5 Expectation of D and U

Let D(r) denote the number of vertices in γr(ξ). Let U (r) denote the number of leaves in γr(ξ) that are
distance less than r from the root. Note that a leaf in γr(ξ) that is distance r from the root may not be
a leaf in γr+1(ξ). By Theorem 5.1 in Johnson et al. (2017), the longest path to a leaf in γ(ξ) is almost
surely finite and therefore γr(ξ) is identical to γ(ξ) for large enough r. To compute the expectation of D
and U it suffices to compute the expectation of D(r) and U (r) and let r tend to infinity.

Let W be chosen from Ωr. For j ≤ r let D(r)
j = |γj(W )\γj−1(W )|. Similarly let Lj denote the set

of leaves in γj(W ), so that for j ≤ r − 1, U (r)
j = |Lj(W )\Lj−1(W )|, the number of leaves in γj(W )

exactly distance j from the root. By linearity of expectation

Eα,r[D
(r)] =

r∑
j=0

Eα,r[D
(r)
j ]

and

Eα,r[U
(r)] =

r−1∑
j=0

Eα,r[U
(r)
j ].

For a fixed j ≤ n, let A be the set of all subsets of j indices A ⊆ [n]. Consider a fixed A ∈ A and a
word u of length j with letters less than r. If a wordW ∈ Ωr has length n, there are rn−j possible fillings
of the indices in [n] \A and there are fr(j) ways to fill the indices of A so that A is complete in W .
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By Lemma 5 we have

Pα,r ({A is complete in W} ∩ {|W | = n}) = e−αrαnrn−jfr(j)/n!. (4)

By the one-to-one correspondence with complete indices A in W of size j with vertices in γ(W )

exactly distance j from the root, the expectation of D(r)
j is

Eα,r[D
(r)
j 1|W |=n] =

∑
A∈A

e−αrαnrn−jfr(j)/n! = e−αrαnrn−jfr(j)/(j!(n− j)!). (5)

For r ≥ j,

Eα,r[D
(r)
j 1|W |=n] = e−αrαnrn−j/(n− j)!, (6)

and Eα,r[D
(r)
j ] =

∑
n≥j E[D

(r)
j 1|W |=n], so

Eα,r[D
(r)
j ] = αje−αr

∑
n≥j

(αr)n−j

(n− j)!
= αj . (7)

Proof of Theorem 1: From (7), Eα,r[D
(r)
j ] = αj for j ≤ r and Eα,r[D

(r)] =
∑r
j=0 α

j . Then
limr→∞D(r) = D and by Monotone Convergence Theorem

Eα[D] = lim
r→∞

Eα,r[D
(r)] = lim

r→∞

1− αr+1

1− α
=

1

1− α
.

Expected number of leaves
For a set of indices A of size j that are complete in W , let X denote the word obtained after bumping
every index in A. The vertex labelled with X is a leaf if it contains no bump-able indices, that is X has
no 0s. Let a0 = 0 and aj+1 = |W | + 1. For 0 ≤ i ≤ j, an index bi ∈ (ai, ai+1) is bump-able in X if
and only if Wbi = j − i. If r ≤ j and i ≤ j − r, Wbi < r ≤ j − i and hence bi cannot be bump-able.
Otherwise if i > j − r, there are r − 1 choices for Wbi so that bi is not bump-able.

Let `(r, n,A) denote the number words, w of length n in Ωr such that A corresponds to a leaf in γ(w).
There are fr(j) possible ways to fill in the indices of A. For r ≤ j,

`(r, n,A) = fr(j)r
∑j−r
i=0 (ai+1−ai−1)(r − 1)

∑j
i=j−r+1(ai+1−ai−1). (8)

For j < r this simplifies to
`(r, n,A) = j!(r − 1)n−j . (9)

Thus for j < r we have

Pα,r

({
|W | = n

}⋂{
X is a leaf

})
= e−αrαn(r − 1)n−jj!/n!. (10)
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For j < r the expectation of U (r)
j 1{|W |=n} is

Eα,r[U
(r)
j 1{|W |=n}] =

∑
A∈A

e−αrαn(r − 1)n−jj!/n! = e−αrαn(r − 1)n−j/(n− j)!. (11)

Summing over n ≥ j gives

Eα,r[U
(r)
j ] = e−αrαj

∑
n≥j

(α(r − 1))n−j/(n− j)! = e−ααj . (12)

Proof of Theorem 2:
From (12), Eα,r[U

(r)
j ] = e−ααj for j < r and Eα,r[U

(r)] =
∑r−1
j=0 e

−ααj . Then limr→∞ U (r) = U
and by Monotone Convergence Theorem

Eα[U ] = lim
r→∞

Eα,r[U
(r)] = lim

r→∞
e−α

1− αr

1− α
=

e−α

1− α
. (13)

6 Expectation of D2

For a, b, c,m ≥ 0 let n = a+ b+ c+m. Let B(a, b, c,m) be the set of all ordered pairs of subsets of [n],
(A,B), such that |A \ B| = a, |B \ A| = b, and |A ∩ B| = c and let B(a, b, c) =

⋃
m B(a, b, c,m). We

denote the set of distinct subwords u on the indices A ∪ B such that and both uA and uB are complete
by χr(A,B). The size of χr(A,B) is denoted by xr(A,B) and only depends on the relative order of A
and B. Suppose (A,B) ∈ B(a, b, c). For both subwords to be complete, each index ai ∈ A \ B must
have letters strictly less than min(a+ c− i, r), each index bj ∈ B \A must have letters strictly less than
min(b+ c− j, r), and each index ai = bj ∈ A∩B must have letters strictly less than min(a+ c− i, b+
c− j, r). Thus

xr(A,B) =
fr(a+ c)fr(b+ c)∏

ai=bj
min(r,max(a+ c− i, b+ c− j))

. (14)

The following lemma provides uniform bounds of xr(A,B) for all (A,B) ∈ B(a, b, c).

Lemma 7. Fix a, b, c and r ≥ 0. For (A,B) ∈ B(a, b, c), if a ≤ b, then

fr(a+ c)fr(b) ≤ xr(A,B) ≤ (a+ c)!(b+ c)!/c!

Otherwise if a > b, then

fr(b+ c)fr(a) ≤ xr(A,B) ≤ (a+ c)!(b+ c)!/c!.

Proof:
For a fixed a, b, c and r, xr(A,B) will reach its minimum value over B(a, b, c) when the product in

the denominator is maximized in the right hand side of (14). The denominator of xr(A,B) is maximized
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when every index inA∩B is less than every index inA∪B \A∩B soA∩B = {a1 = b1, · · · , ac = bc}.
In this case for a ≤ b the denominator of the right hand side of (14) is given by

c∏
i=1

min(r, b+ i) = fr(b+ c)/fr(b)

and
xr(A,B) = fr(a+ c)fr(b).

Otherwise for a > b

xr(A,B) = fr(b+ c)fr(a).

For the other direction xr(A,B) is maximized when the denominator in the right-hand side of (14) is
minimized. This occurs when every index in A ∩B is greater than every index in A ∪B \A ∩B. In this
case,

xr(A,B) =
fr(a+ c)fr(b+ c)

fr(c)
≤ (a+ c)!(b+ c)!

c!
. (15)

These bounds on xr(A,B) will give us bounds on Eα[D2]. Let Vr = 1 +
∑∞
j=1D

(r)
j . For a fixed set

of indices A ∈ Z+ let 1A(W ) denote the indicator function that is 1 if WA is complete and 0 if WA is not
complete or A is not a subset of indices of W . Then

Vr =
∑
A⊂Z+

1A(W )

with limr→∞ Vr = D. We also have

V 2
r =

∑
(A,B)⊂Z2

+

1A(W )1B(W )

=
∑
a,b,c

∑
B(a,b,c)

1A(W )1B(W )

=
∑

a,b,c,m

∑
B(a,b,c,m)

1A(W )1B(W )1|W |=a+b+c+m.

For a fixed pair (A,B) ∈ B(a, b, c,m), using Lemma 5 we have

Eα,r[1A(W )1B(W )1{|W |=a+b+c+m}]

=
∑

u∈χr(A,B)

Pα,r ({WA∪B = u} ∩ {|W | = a+ b+ c+m})

=
1

(a+ b+ c+m)!
e−αrαa+b+c+mrmxr(A,B). (16)
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The value of xr(A,B) depends on (A,B) but the upper and lower bounds from Lemma 7 only depend
on a, b, and c. Thus we have bounds of (16) that are uniform for all (A,B) ∈ B(a, b, c,m). For each m
the size of B(a, b, c,m) is

(
a+b+c+m
a,b,c,m

)
= (a+b+c+m)!

a!b!c!m! . Thus∑
B(a,b,c,m)

Eα,r
[
1A(W )1B(W )1|W |=a+b+c+m

]
≥ αa+b+c

a!b!c!
fr(max(a, b) + c)fr(min(a, b))

1

m!
(αr)me−αr (17)

Summing over m ≥ 0 in (17) gives the lower bound∑
B(a,b,c)

Eα,r [1A(W )1B(W )] ≥ αa+b+c

a!b!c!
fr(min(a, b) + c)fr(max(a, b)). (18)

Similarly for the upper bound we have∑
B(a,b,c)

Eα,r [1A(W )1B(W )] ≤ αa+b+c
(
a+ c

c

)(
b+ c

c

)
. (19)

Proof of Theorem 3:
In this section we make repeated use of the identity∑

n≥0

(
n+ k

n

)
xn =

1

(1− x)k+1
.

See Wilf (2006) for a variety of similar identities.
By Fatou’s Lemma limr→∞Eα,r[V

2
r ] ≤ Eα[limr→∞ V 2

r ] = Eα[D2] so

lim
r→∞

∑
a<b,c

αa+b+c

a!b!c!
fr(min(a, b) + c)fr(max(a, b)) ≤

∑
0≤a<b,0≤c

(
a+ c

a

)
αa+b+c (20)

≤ Eα[ lim
r→∞

V 2
r ]

= Eα[D2].

The right hand side of (20) can be simplified further. Suppose 1/2 < α < 1. Then∑
0≤a<b,0≤c

(
a+ c

c

)
αa+b+c =

∑
0≤a<b

αb

1− α

(
α

(1− α)

)a
(21)

=
1

2α− 1

∑
b>0

αb

((
α

1− α

)b
− 1

)
(22)

=
1

2α− 1

∑
b>0

(
α2

1− α

)b
− αb. (23)
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There is an issue when α = 1/2 in (22) and (23). But in this case α
1−α = 1 in (21), so (22) becomes∑

b≥0
bαb

1−α , which is finite. Otherwise (23) diverges precisely when α2/(1 − α) ≥ 1 which occurs if
(
√

5− 1)/2 ≤ α < 1. For the other direction we have

Eα[D2] = Eα[ lim
r→∞

V 2
r ]

≤
∑

a,b,c≥0

(
a+ c

c

)(
b+ c

c

)
αa+b+c

=
∑
b,c≥0

(
b+ c

c

)
αb+c

(1− α)c+1

=
1

(1− α)2

∑
c≥0

(
α

(1− α)2

)c
(24)

The last line (24) converges when α/(1− α)2 < 1, which occurs when 0 < α < (3−
√

5)/2.

As α increases from (3 −
√

5)/2 to (
√

5− 1)/2 a phase transition occurs where Eα[D2] becomes
infinite. With a more precise analysis of the size of xr(A,B) that depends more closely on the relative
order of A and B, one might be able to obtain the exact location where this phase transition occurs.
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