
Discrete Mathematics and Theoretical Computer Science DMTCS vol. 13:1, 2011, 13–20

Tree-width and large grid minors in planar
graphs

Alexander Grigoriev†

Department of Quantitative Economics, Maastricht University SBE, Maastricht, The Netherlands

received 22nd September 2009, accepted 27th January 2011.

We show that for a planar graph with no g-grid minor there exists a tree-decomposition of width at most 5g − 6. The
proof is constructive and simple. The underlying algorithm for the tree-decomposition runs in O(n2 logn) time.

Keywords: Planar graph, tree decomposition, tree width, minor, grid graph

1 Introduction
We call H a minor of a graph G if H is obtainable from a subgraph of G by edge contractions. If
g ≥ 2, the g-grid is the simple graph with vertices vij (1 ≤ i, j ≤ g) where vij and vi′j′ are adjacent if
|i− i′|+ |j − j′| = 1; see Robertson and Seymour (1991). A tree-decomposition of a graph G , is a pair
(T, S), where T is a tree and S = {St : t ∈ V (T)} is a family of subsets of V (G), called bags, such that

1.
⋃

t∈V (T) St = V (G);

2. for every edge e ∈ E(G) there exists t ∈ V (T) such that St contains both ends of e;

3. if t, t′, t′′ ∈ V (T) and t′ lies on the path of T between t and t′′ then St ∩ St′′ ⊆ St′ .

The width of a tree-decomposition is the cardinality of the maximum size bag minus 1 and the tree-width
of a graph G is the minimum width of a tree-decomposition of G; see Robertson, Seymour and Thomas
(1994).

The close relationship between the tree-width and the size of the largest grid minor not only in planar
but also in general graphs is known already for more than two decades. The problem of finding a tight
upper bound for the tree-width in terms of the size of the largest grid minor was introduced and studied
first by Robertson and Seymour (1984). In that paper Robertson and Seymour show that every planar
graph with no g-grid minor has tree-width strictly less than 3

2 g
2 + 3g − 2. Ten years later, Robertson,

Seymour and Thomas (1994) improved the bound to be at most 6g − 5. The proof of this bound follows
straightforwardly from two lemmas. First, Robertson, Seymour and Thomas prove that every planar graph

†Email: a.grigoriev@ke.unimaas.nl

1365–8050 c© 2011 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/
http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/dm13:1ind.html

14 Alexander Grigoriev

with a tangle of order 4g − 3 has a g-grid minor. Second, Robertson and Seymour (1991) prove that if
G has no tangle of order ≥ θ, then its tree-width is at most 3θ/2. To find tangles in planar graphs the
ratcatcher algorithm and its modifications can be used; see Gu and Tamaki (2008); Hicks (2005a,b);
Seymour and Thomas (1994). Recently, Thomas (2007b) announced that the bound can be further
improved to 5g − 1 simply using the techniques by Alon, Seymour and Thomas (1994) for finding cut-
sets in planar graphs, called also planar separators. Unfortunately, this result has not been published
Thomas (2007a).

The main result of this paper is a short, simple and constructive proof of the following theorem.

Theorem 1 Every simple planar graph with no minor isomorphic to a g-grid has tree-width at most
5g − 6.

To prove the result, we describe an algorithm which, for a given planar graph G with no minor iso-
morphic to a g-grid, returns a tree-decomposition of G of width at most 5g − 6. Let g be the minimum
integer such thatG does not contain g-grid minor. Then, by definition of g, G contains (g−1)-grid minor,
and therefore g − 1 is a lower bound to the tree-width of G. Thus, we straightforwardly claim that our
algorithm is a 5-approximation algorithm to the problem of finding a tree-decomposition of minimum
width. The best known algorithm to the planar tree-width is a 1.5-approximation algorithm running in
time O(n4) with n = V (G) based on the ratcatcher algorithm of Seymour and Thomas (1994). Recently
Gu and Tamaki (2008) improved the theoretic running time of that algorithm to O(n3) time. Hicks
(2005a,b) provided an extensive computational study showing that the ratcatcher algorithm is quite slow
in practice even for some medium size planar graphs. Compared to the ratcatcher algorithm, the algorithm
presented in this paper has worse performance guarantee but better running time as it runs in O(n2 log n)
time.

The main difference between our algorithm and the ratcatcher algorithms is that we do not compute
tangles but directly construct bags of a tree-decomposition using specific cut-sets of the graph. Recent
studies by Gu and Tamaki (2009, 2010) show that using branch-decomposition approach the results of
this paper can be further improved in both, run time and performance guarantee of the algorithms. It is
noticeable, however, that compared to the ratcatcher algorithms and the algorithms of Gu and Tamaki
(2009, 2010), our algorithm is extremely simple. To understand the algorithm no deep knowledge of
graph minor theory is required. In fact, we use only text-book maximum flow techniques to construct
desired cut-sets. On our opinion, this provides good insight to the planar tree-decomposition problem.
Therefore, we see also an added value of this paper in methodology and simplicity of the findings and in
popularization of graph minor theory.

2 An algorithm to compute a planar tree-decomposition
In an earlier paper, Bodlaender, Grigoriev and Koster (2008) presented an algorithm computing a lower
bound to the side size of the largest grid minor in a planar graph. More explicitly, given a planar graph
with (g − 1)-grid minor and with no minor isomorphic to g-grid, their algorithm is capable to recognize
existence of a g

4 -grid minor in the graph. In this way the authors in Bodlaender, Grigoriev and Koster
(2008) derive a lower bound to the planar tree-width. In the present paper we extend this algorithm to find
actually a tree-decomposition of width at most 5g − 6.

To describe the algorithm, we need several standard graph theoretic notions. Let G[X] denotes the
subgraph of G induced by X ⊆ V (G). We write X for V (G) \ X and G \ X for G[X]. If H is

Planar tree-width and grid minors 15

a connected subgraph of G, we define G/H to be a minor of G obtained by contraction of H into a
single vertex vH . We treat vH as a new vertex and we call this vertex a vertex for H in G/H . Let
the vertex connectivity of non-adjacent vertices v and w in V (G) be defined as the minimum size of a
vertex set C ⊂ V (G), called vw cut-set, such that v and w are in different components of G \ C. If a
cut-set consists of a single vertex, we call such a cut-set atomic. Let a walk in a graph G be a sequence
W := v0e1v1 . . . , v`−1e`v`, whose terms are alternately vertices and edges of G such that vi−1 and vi
are the ends of ei (1 ≤ i ≤ `). If u and v are two vertices of a walk W , where u precedes v on W , the
subsequence of W starting with u and ending with v is denoted by uWv and called the segment of W
from u to v. A walk W := v0e1v1 . . . , v`−1e`v` is closed if v0 = v`; see, e.g., Bondy and Murty (2008).
Finally, for a set of vertices X ⊆ V (G) and for a connected subgraph H in G we define

N(X,H) = {v ∈ X : ∃u ∈ V (H) such that (v, u) ∈ E(G)}, (1)

which is simply a subset of vertices in X adjacent to vertices in H .

Algorithm A

Input. A planar embedding of a simple planar graph G with no edge crossings. Such an embedding can
be constructed in O(n) time; see Hopcroft and Tarjan (1974).

Preprocessing and postprocessing. We assume that G is 2-connected. Notice that this assumption
can be made without loss of generality. Indeed, if G is 1-connected, we decompose the graph into a
collection of subgraphs where each subgraph is either a simple edge or it is 2-connected. Moreover,
for any two subgraphs H and H ′ from this collection, V (H) ∩ V (H ′) is either an atomic cut-set or
empty. Given a decomposition of G into subgraphs, we run the algorithm for each subgraph separately.
Obtained subgraph tree-decompositions we straightforwardly amalgamate: consider two subgraphs H
and H ′ sharing a single vertex v ∈ V (G) and let the corresponding tree-decompositions be (T, S) and
(T ′, S); find two nodes, t ∈ V (T) and t′ ∈ V (T ′), such that v ∈ St and v ∈ St′ ; connect T and T ′

introducing an edge e = (t, t′); redefine H := (V (H) ∪ V (H ′), E(H) ∪ E(H ′) ∪ {e}) and recurse
on the remaining subgraphs disregarding H ′. Finding collection of subgraphs and amalgamation of the
tree-decompositions can be done in preprocessing and postprocessing, respectively, both in linear time.

Initialization. In the initialization phase of the algorithm we create a root node 0 of T with bag S0.
Further, we associate each node t ∈ V (T) with a connected planar graph Gt constructed in a certain way.

Let F0 be the outer face of the planar embedding ofG. LetW0 be a closed walk along F0. SinceG is 2-
connected, W0 forms a simple cycle. Assume W0 contains at least four vertices. Let v1, v2, v3, v4 be any
four distinct vertices appearing in W0 in this particular order, i.e., v2 ∈ v1W0v3 and v3 ∈ v2W0v4. Now,
define S0 = {v1, v2, v3, v4}. If W0 contains only three vertices, say v1, v2, v3, define S0 = {v1, v2, v3}.
Notice, that W0 contains at least three vertices as G is simple. Let G0 be the graph obtained from G by
renaming vertices v1, v2, v3, v4 into vN , vE , vS , vW , respectively. In particular, this means V (G0)∩S0 =
∅.

Basic step. We view the algorithm as construction of a rooted tree T with root 0. At each basic step of the
algorithm, given a node t ∈ V (T), bag St ⊆ V (G), and a planar embedding of Gt, we create a number
of child nodes of t and we recurse on the child nodes unless |V (Gt)| ≤ 5. We assume that in the outer
face Ft of the planar embedding of Gt there is at least one of the special vertices vN , vE , vS or vW . We
also assume that none of the special vertices belongs to the interior of the embedding. Moreover, if Gt

16 Alexander Grigoriev

is 2-connected and all four special vertices are present, there exists a closed walk Wt along Ft such that
vE ∈ vNWtvS and vS ∈ vEWtvW . The graph associated with a child node of t is a minor of Gt. This
minor is either a component of Gt, or it is obtained by deletion of an edge between two special vertices,
or it is obtained by contraction of all edges in some connected subgraph of Gt into a special vertex. We
consider the following six mutually exclusive cases. Here, case 1 is most general and crucial, while cases
2-6 are rather special.

Case 1. Suppose Gt is 2-connected, all four special vertices are present and not adjacent with each other,
both graphs, Gt \ {vN , vS} and Gt \ {vE , vW}, are connected. In this case the child nodes of t are
constructed as follows.

Let ct be the vertex connectivity of vN and vS in Gt \ {vE , vW} and let dt be the vertex connectivity
of vW and vE in Gt \ {vN , vS}. Notice, by Menger (1927) the vertex connectivity of any two vertices v
and u in a graph equals the number of vertex disjoint paths between v and u. Using the maximum flow
technique, e.g., from Section 8.4 of Ahuja, Magnanti and Orlin (1993), we find ct vertex disjoint vN −vS
paths in Gt \ {vE , vW} together with the corresponding vN vS cut-set Ct. Similarly, in Gt \ {vN , vS} we
find dt vertex disjoint vE − vW paths together with vEvW cut-set Dt. If ct ≤ dt, we create a single child
node t0 of t with bag St0 = St ∪Ct. We do not recurse on this node but we do recurse on its children that
we construct next.

As Ct is a vN vS cut-set in Gt \ {vE , vW}, graph Gt \ (Ct ∪ {vE , vW}) has at least two components:
one containing vN and one containing vS . Let H be a component in Gt \ (Ct ∪ {vE , vW}) containing
vN . Consistently, we create two child nodes, t1 and t2, of t0 with bags St1 = N(St0 , H) and St2 =
N(St0 , H). For associated graphs, let Gt1 = Gt/H where vS := vH . Respectively, let Gt2 = Gt/H

′

where H ′ = Gt[V (H) ∪ Ct] and vN := vH′ .
If ct > dt, we create child nodes corresponding to vEvW cut-set Dt.

This completes the construction in case 1. Now, we consider the cases when the assumptions of case
1 are not valid, i.e., either some special vertices are adjacent in Gt (case 2), or Gt has low connectivity
(cases 3 and 4), or some special vertices are missing (case 5), or Gt \ {vN , vS} or Gt \ {vE , vW} are not
connected (case 6).

Case 2. If there exists an edge e between any two special vertices in Gt, we create a child node t′ of t
with St′ = St. Let Gt′ be a minor of Gt obtained by deletion of edge e.

Case 3. Suppose there are no edges between special vertices in Gt and graph Gt is not connected.
Since, when taking minors, we delete edges only between special vertices, each component in Gt must
contain at least one special vertex. For each component H in Gt we create a child node tH of t defining
StH = N(St, H) and GtH = H .

Case 4. Suppose there are no edges between special vertices and Gt is 1-connected. Then, like in the
preprocessing, we decomposeGt into a collection of subgraphsH, where each subgraph is either a simple
edge or it is 2-connected. Again, any two subgraphs from H can share at most one vertex, which is an
atomic cut-set in Gt.

First, assume that a special vertex v has degree 1, i.e., vertex w adjacent to v forms an atomic cut-set.
Then, a single child node t0 of t is created with St0 = St ∪ {w}. In turn, we create a child node t1 of t0

with St1 = N(St0 , V (Gt) \ {v, w}) and Gt1 = Gt/(v, w). Let the vertex obtained by contracting (v, w)
be again special vertex v.

Planar tree-width and grid minors 17

Now, assume that a special vertex v is an atomic cut-set in Gt. For each component H of Gt \ {v} we
create a child node tH of t defining StH = N(St, H) and GtH = H . Notice that GtH is a minor of Gt

where all components of Gt \ {v} but H are contracted into v.
Let all special vertices have degree at least 2 and none of those vertices is an atomic cut-set inGt. Then,

there exists a vertex w which is an atomic cut-set in Gt such that at least two special vertices belong to
different components in Gt \ {w}, for otherwise the original graph G is not 2-connected as the algorithm
either deletes the edges between the special vertices or contracts connected subgraphs into special vertices.
Without loss of generality assume, vN and vS are in different components of Gt \ {w}. Denote atomic
cut-set Ct = {w}. A single child node t0 of t is defined by St0 = St ∪ Ct. We do not recurse on t0 but
we do recurse on its children. Two child nodes, t1 and t2, of t0 are constructed as follows. Let H be a
component of Gt \ {w} containing vN . Consider a complement of H in Gt defined by H = Gt[V (H)].
Notice that H is connected and contains vS . Let St1 = N(St0 , H), Gt1 = Gt/H , and let vertex vH for
H in Gt1 be vS := vH . For the second child node, define St2 = N(St0 , H), Gt2 = Gt/Gt[V (H) ∪ Ct],
and let the vertex for Gt[V (H) ∪ Ct] in Gt2 be vN .

Case 5. SupposeGt contains at most three special vertices, these vertices are not adjacent with each other,
and Gt is 2-connected. Since Gt is 2-connected and |V (Gt)| > 5, any closed walk along the outer face
Ft forms a simple cycle of length at least 3.

Assume there are at most two special vertices in Gt. Take any vertex v in Ft which is not special and
define Ct = {v}. Let the child node t′ of t be the node with St′ = St ∪ Ct and let Gt′ be the graph
obtained from Gt by renaming v into a special vertex different from the special vertices in Gt.

Assume there are exactly three special vertices in Gt. Without loss of generality assume that special
vertex vW is missing. Consider a closed walk Wt along Ft starting at vN and having vE ∈ vNWtvS .
Notice that such a walk always exists. Since vS and vN are not adjacent, there is a vertex v in Wt such
that vS ∈ vEWtv. Notice, v is not a special vertex. Let Ct = {v}. For child node t′ define St′ = St ∪Ct,
and let Gt′ be the graph obtained from Gt by renaming v into vW .

Case 6. Suppose in 2-connected graph Gt all four special vertices are present and these vertices are not
adjacent with each other. Moreover, suppose either Gt \ {vN , vS} or Gt \ {vE , vW} is not connected. If
Gt\{vN , vS} is not connected, {vN , vS} is a vEvW cut-set inGt. LetH be a component ofGt\{vN , vS}
containing vE . We create two child nodes of t: t1 and t2. Here, St1 = N(St, H), Gt1 = Gt/H where
vW := vH . In turn, St2 = N(St, H), Gt2 = Gt/H where vE := vH . The case when Gt \ {vE , vW} is
not connected is treated similarly.

Leaves of the tree-decomposition. Consider a node t ∈ V (T) such that |V (Gt)| ≤ 5. Let Ct =
V (Gt) \ {vN , vE , vS , vW}. We create a single child node t′ of t with bag St′ = St ∪ Ct and we stop
recursing on it, i.e., t′ is a leaf in T .

Cleaning and output. If there is an edge (t′, t) ∈ E(T) such that St′ ⊆ St we contract (t′, t) identifying
the resulting common bag with St. Then, we stop and output (T, S), where S = {St : t ∈ V (T)}.

3 Analysis of the algorithm
First, we proof correctness of the algorithm.

Lemma 2 Pair (T, S) returned by algorithm A is a tree-decomposition of G.

18 Alexander Grigoriev

Proof: By construction, T is a tree; for each node t ∈ V (T), bag St is a subset of V (G); and
⋃

t∈V (T) St =

V (G). Therefore, it only remains to verify tree-decomposition conditions (2) and (3).
For condition (2), consider an edge (v, u) ∈ E(G). Let t′ be the node in T such that none of the bags

in 0− t′ path in T contains v or u, and there is a child node t′′ of t′ with a bag containing v. Without loss
of generality we may assume existence of such a node, for otherwise there is a node t′ in T such that none
of the bags on 0− t′ path in T contains v or u, and there is a child node t′′ of t′ with a bag containing u.
Now, if u ∈ St′′ , condition (2) is trivially satisfied. Assume u /∈ St′′ . By definition of bags in (T, S) and
by Equation 1, for any successive child t of t′′, vertex v is an element of St unless vertices from V (Gt)
are not adjacent to v in G. Thus, there is a node in T , successor of t′′, with a bag containing both ends of
(v, u).

Finally, we argue that condition (3) is satisfied. Consider tree T before the cleaning phase of the
algorithm. Let t ∈ V (T) and let t′, t′′ be two child nodes of t in T . Notice that in cases 2 and 5, node
t has a single child node. Therefore, t′ and t′′ are constructed in one of the cases: 1, 3, 4 or 6. In all
these cases, V (Gt′) ∩ V (Gt′′) = ∅ as Gt′ and Gt′′ are different components in graph Gt \ X where
X ⊆ V (Gt). Hence, any vertex v ∈ V (G) appears in exactly one branch of T . Let t be a node in T ,
closest to the root, such that v ∈ St. Again, by definition of bags in (T, S) and by Equation 1, for any
successive child t′ of t, vertex v is an element of St′ unless vertices from V (Gt) are not adjacent to v in
G. Thus, nodes of T with bags containing v form a connected subtree in T . 2

Now, we analyze the run time of the algorithm.

Lemma 3 Algorithm A terminates in O(n2 log n) time.

Proof: As we mentioned in the algorithm description, initialization, preprocessing and postprocessing
require O(n) time. Recognition of the case of a basic step can also be done in linear time. Basic step
cases 2-6 require O(n) time. For case 1, cut-sets in planar networks can be computed in O(n log n) time;
see Theorem 8.8 in Ahuja, Magnanti and Orlin (1993), p. 265. Given cut-sets, creating the child nodes
takes only linear time. Therefore, one basic step of the algorithm takes at most O(n log n) time. Notice
that processing the leaves of the tree-decomposition and clean-up require only linear time.

Let us argue that the number of basic steps of the algorithm is O(n). First, we notice that any con-
secutive appearance of cases 2 and 3 can be observed in at most 6 basic steps. This is because we have
at most four special vertices in the outer face of any considered graph, yielding at most 5 edges between
the special vertices, i.e., 5 basic steps under case 2. Then, we can apply only one iteration with case 3
since in this case each of the components must contain a special vertex. Any other sequence of iterations
with cases 2 and 3 is shorter. Now, consider basic step cases 1 and 4-6. In each of these cases, when
specifying the bags of the child nodes of t, the algorithm finds a non-empty cut-set Ct in Gt. Notice
that V (Gt) ∩ St = ∅ as vertices from St are either renamed or contracted into the special vertices in Gt.
Therefore, Ct ∩St = ∅. By construction, Ct ⊆ St′ . Thus, for each child node t′ of t, there exists a vertex
v ∈ Ct such that v ∈ St′ and v /∈ St. Hence, the total number of basic steps with cases 1 and 4-6 is at
most n. Since appearance of cases 1 and 4-6 can be interrupted by at most 6 consecutive cases 2-3, we
derive that the total number of basic steps inA is at most 7n. As each basic step is executed in O(n log n)
time, the total run time of the algorithm is O(n2 log n). 2

Finally, we analyze performance guarantee of the algorithm. The core of the analysis is the following
three lemmas.

Planar tree-width and grid minors 19

Lemma 4 Given a 2-connected planar graph G together with its planar embedding, let F be the outer
face of the embedding, and let vN , vE , vS , vW be four distinct vertices in V (G) incident to F . Moreover,
assume there exists a closed walk W along F such that vE ∈ vNWvS and vS ∈ vEWvW . Finally,
assume G \ {vN , vS} and G \ {vE , vW} are connected. Then, G has a min{c, d}-grid minor, where c is
the vertex connectivity of vN and vS in G \ {vE , vW}, and d is the vertex connectivity of vE and vW in
G \ {vN , vS}.

Proof: Under the lemma assumptions, vertex connectivity of both pairs, (vN , vS) and (vE , vW), in the
corresponding graphs are well defined. Therefore, there are c vertex disjoint vN − vS paths in G \
{vE , vW}, and there are d vertex disjoint vE−vW paths inG\{vN , vS}. Since vN , vE , vS , vW are incident
to the outer face and there exists a closed walk W along F such that vE ∈ vNWvS and vS ∈ vEWvW ,
each of the c vertex disjoint vN − vS paths crosses each of the d vertex disjoint vE − vW paths. Thus, G
has a min{c, d}-grid minor. 2

Lemma 5 Let G be a planar graph that does not have a g-grid minor. At any basic step of algorithm A,
given a node t ∈ V (T) and a graph Gt with k (1 ≤ k ≤ 4) special vertices, the size of bag St is at most
k(g − 1).

Proof: Consider node t ∈ V (T) and graph Gt with k (1 ≤ k ≤ 4) special vertices. By definition, bag
St is a subset of a union of k cut-sets contracted to the special vertices of Gt. By Lemma 4, the size of a
cut-set is at most g − 1. Therefore, the size of St is at most k(g − 1) that proves the lemma. 2

Now, we are ready to prove the last lemma, eventually implying Theorem 1.

Lemma 6 If graph G does not have a g-grid minor then the width of tree-decomposition (T, S) returned
by algorithm A is at most 5g − 6.

Proof: By Lemma 5, for any t ∈ V (T) it holds that |St| ≤ k(g − 1), where k (1 ≤ k ≤ 4) is the
number of special vertices in Gt. Therefore, at any basic step of the algorithm, when dealing with node
t ∈ V (T), bag St contains at most 4g − 4 vertices. In addition to these nodes, in cases 1 and 4, we
construct intermediate nodes t0 ∈ V (T). These nodes are necessary for (T, S) to satisfy condition (3)
of tree-decomposition. By definition, St0 = St ∪ Ct, where Ct is a cut-set in Gt. In case 4, this cut-set
is atomic yielding |St0 | ≤ 4g − 3. In case 1, by Lemma 4, |Ct| ≤ (g − 1) implying |St0 | ≤ 5g − 5.
For the leaves of T , we have associated graphs containing at most five vertices including the special ones.
Applying the same arguments as in Lemma 5, we derive that the size of a leaf bag is at most 4g−3. Since
5g − 5 is an upper bound for the number of vertices in any bag of (T, S), we conclude that the width of
(T, S) is at most 5g − 6. 2

4 Conclusions
We present a new, fast and simple, constant approximation algorithm to the problem of finding a tree-
decomposition of minimum width in planar graphs. Based on the algorithm, we derive the following
structural result: if a planar graph does not contain a g-grid as a minor then its tree-width is at most
5g − 6.

20 Alexander Grigoriev

References
Ahuja, R.K., T.L. Magnanti, J.B. Orlin. 1993. Network Flows: Theory, Algorithms, and Applications.

Prentice Hall, Inc., Upper Saddle River, New Jersey.

Alon, N., P.D. Seymour, R. Thomas. 1994. Planar Separators. SIAM J. on Discrete Math. 7, 184–193.

Bondy, J.A., U.S.R. Murty. 2008. Graph Theory. Springer, New York.

Bodlaender, H.L., A. Grigoriev, A.M.C.A. Koster. 2008. Treewidth lower bounds with brambles. Algo-
rithmica 51, 81–98.

Gu, Q.P., H. Tamaki. 2009. Constant-factor approximations of branch-decomposition and largest grid
minor of planar graphs in O(n1+ε) time. In Y. Dong, D.-Z. Du, O.H. Ibarra (Eds.), Proceedings of
the 20th International Symposium (ISAAC’2009). Lecture Notes in Computer Science 5878, Springer,
85–96.

Gu, Q.P., H. Tamaki. 2010. Improved bounds on the planar branchwidth with respect to the largest grid
minor size. In O. Cheong, K.-Y. Chwa, K. Park (Eds.), Proceedings of the 21st International Symposium
(ISAAC’2010). Lecture Notes in Computer Science 6507, Springer, 984–993.

Gu, Q.P., H. Tamaki. 2008. Optimal branch decomposition of planar graphs in O(n3) time. ACM Trans.
Algorithms 4, 1–13.

Hicks, I.V. 2005a. Planar branch decompositions I: The ratcatcher. INFORMS J. on Computing 17, 402–
412.

Hicks, I.V. 2005b. Planar branch decompositions II: The cycle method. INFORMS J. on Computing 17,
413–421.

Hopcroft, J.E., R.E. Tarjan. 1974. Efficient planarity testing, J. ACM 21, 549–568.

Menger, K. 1927. Zur allgemeinen Kurventheorie. Fund. Math. 10, 96–115.

Robertson, N., P.D. Seymour. 1984. Graph minors. III. Planar tree-width. J. Combin. Theory Ser. B 36,
49–64.

Robertson, N., P.D. Seymour. 1991. Graph minors. X. Obstructions to Tree-Decomposition. J. Combin.
Theory Ser. B 52, 153–190.

Robertson, N., P.D. Seymour, R. Thomas. 1994. Quickly excluding a planar graph. J. Combin. Theory
Ser. B 62, 323–348.

Seymour, P.D., R. Thomas. 1994. Call routing and the ratcatcher. Combinatorica 14, 217–241.

Thomas, R. 2007a. Personal communications, June-July 2007.

Thomas, R. 2007b. Tree-decompositions of graphs. Retrieved in June-July 2007 from
http://www.math.gatech.edu/ thomas/SLIDE/slide2.ps, p. 32.

	Introduction
	An algorithm to compute a planar tree-decomposition
	Analysis of the algorithm
	Conclusions

