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A new recursive function on discrete interval exchange associated to a composition of length r, and the permutation
σ(i) = r − i + 1 is defined. Acting on a composition c, this recursive function counts the number of orbits of the
discrete interval exchange associated to the composition c. Moreover, minimal discrete interval exchanges, i.e. the
ones having only one orbit, are reduced to the composition (1, 1) which label the root of the Raney tree. Therefore,
we describe a generalization of the Raney tree using our recursive function.
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1 Introduction
An interval exchange is a map which cuts an interval into r pieces and reorders them. These maps were
introduced by Oseledec in 1966 [11] to generalize circle rotations following some ideas of Arnold [1,
2]. The discrete analogue maps were introduced by Ferenczi and Zamboni in 2013 [7] by replacing the
interval by a discrete interval i.e. a set of integers between a and b. A discrete interval exchange is
called minimal if it has only one orbit. In the same paper, Ferenczi and Zamboni give a bijection between
minimal discrete interval exchange and a special subset of words called π-clustering words (see [7] for
more details on π-clustering words). A natural question arises from that bijection: Can we identify
compositions associated with minimal discrete interval exchanges?

Some partial answers can be found in the literature when the pieces are reordered in reverse order. It is
well-known that a discrete interval exchange with 2 pieces is minimal if and only if its composition has
coprime parts. Moreover, a discrete interval exchange with 3 pieces (λ1, λ2, λ3) is minimal if and only
if gcd(λ1 + λ2, λ2 + λ3) = 1 as shown by Pak and Redlich [12]. We propose a new recursive function
on compositions which counts the number of orbits of a discrete interval exchange and agrees with the
greatest common divisor recursion when r = 2. Other functions that coincide with the greatest common
divisor when r = 2 are known. For example, Rauzy induction is a generalization of Euclid’s algorithm
which renormalized intervals exchange and was introduced by Rauzy in 1979 [14]. Other examples are
given by the multidimensional continued fraction algorithms (see [9, 16]).

This paper is organized as follows. In Section 2, a formal definition of symmetric discrete interval ex-
changes is presented. The presentation of the recursive function counting the number of orbits is the main
focus of the Section 3. In Section 4, a generalization of the Raney tree where each circular composition
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appears is shown. Finally, we describe the number of orbits of any symmetric discrete interval exchange
with 3 pieces extending the result given by Pak and Redlich [12]. Moreover, we give the cyclic type of
these discrete interval exchanges.

Note that the recursive function counting the number of orbits presented in Theorem 1, Corollary 3
giving the cyclic type of a discrete interval exchange of length 3 and a slightly modified version of the
tree of circular compositions were conjectured by Christophe Reutenauer [15].

After submission, we discovered that Karnauhova and Liebscher [8] (2017) have given a similar al-
gorithm as ours (Theorem 1). They work on a geometric generalization of symmetric discrete interval
exchanges, called bi-rainbow meanders. Their main contribution is a formula which counts the number
of connected components of bi-rainbow meanders; this is the same as counting the number of orbits of
symmetric discrete interval exchanges. They do not study the construction, nor the enumeration of con-
nected bi-rainbow meanders, which corresponds in our language to minimal symmetric discrete interval
exchanges.

2 Discrete interval exchange

An integer interval, denoted by Ja, bK, is the set [a, b] ∩ Z for some integers a and b. A composition
of n is a finite sequence (λ1, . . . , λr) of positive integers whose sum is n. A permutation σ of Sr can
be written as the word σ(1)σ(2) . . . σ(r). Recall that the cycle notation of a permutation σ is written as
the product of its orbits. For example, the permutation written as the word 451326, is written in cycle
notation as (1, 4, 3)(2, 5)(6). The number of orbits of σ is denoted by γ(σ). A permutation is circular if
it has exactly one orbit.

We consider a particular case of discrete interval exchanges, as they are defined in [7] (as they are
defined in [7]: for π ∈ Sr, let π(k) = r − k + 1 for all k ∈ J1, rK).

Definition 1. Let λ = (λ1, . . . , λr) be a composition of n. The associated symmetric discrete interval
exchange Tλ is defined as follows: let B1, . . . , Br be the subintervals of J1, nK defined by Bi = J1 +∑
j<i λj ,

∑
j≤i λjK; let

si =
∑
j>i

λj −
∑
j<i

λj .

Then for all x ∈ Bi, Tλ(x) = x + si. We call si the i-th translation parameter and (s1, . . . , sr) the
translation vector.

The symmetric discrete interval exchange Tλ is a permutation on the set J1, nK. For example, the
symmetric discrete interval exchange T(3,5,4,2) is (1, 12, 6, 9, 3, 14, 2, 13)(4, 7, 10)(5, 8, 11) as shown in
Figure 1. The subintervals of J1, 14K are B1 = {1, 2, 3}, B2 = {4, 5, 6, 7, 8}, B3 = {9, 10, 11, 12},
B4 = {13, 14} and the translation vector of J1, 14K is s = (5+4+2, 4+2− 3, 2− 3− 5,−3− 5− 4) =
(11, 3,−6,−12). A discrete interval exchange is minimal if it has only one orbit.

The translation vector of a symmetric discrete interval exchange is strictly decreasing. Moreover, the
inverse of a symmetric discrete interval exchange T(λ1,...,λr) is T(λr,...,λ1). Evidently, they both have the
same number of orbits.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

B1 B2 B3 B4

Bσ(1)Bσ(2)Bσ(3)Bσ(4)

Fig. 1: The symmetric discrete interval exchange T(3,5,4,2)

3 Counting Orbits

In this section, we define a recursive function on compositions that counts the number of orbits of a
symmetric discrete interval exchange. In fact, the function subtracts the i−th translation parameter to λi.
To ensure that the result is positive, we first prove that each composition has a part which is greater than
its translation parameter.

Lemma 1. Let λ = (λ1, . . . , λr) be a composition. There exists an integer t in the set J1, rK such that
λt ≥ |st|.

Proof: There exists an integer t such that∑
i<t

λi ≤
∑
i≥t

λi and
∑
i≤t

λi ≥
∑
i>t

λi,

since all λi are positive integers. By isolating λt in both inequalities, we obtain∑
i<t

λi −
∑
i>t

λi ≤ λt and λt ≥
∑
i>t

λi −
∑
i<t

λi,

We combine both inequalities to obtain

λt ≥

∣∣∣∣∣∑
i>t

λi −
∑
i<t

λi

∣∣∣∣∣ = |st|,
by Definition 1.

Remark: The value t where λt ≥ |st| is not unique if λt = |st|. For example, in the composition
(2, 1, 2, 1) we have that λ2 ≥ |s2| and λ3 ≥ |s3|. However, one can show that there are at most two
possible values. These properties are proven in Section 4.

Let t be the smallest integer belonging to the set J1, rK such that λt ≥ |st| where (s1, . . . , sr) is the
translation vector of Tλ. Define a function f mapping from the set of compositions to the natural numbers
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λ (3, 5, 4, 2) (3, 2, 4, 2) (3, 2, 1, 2) (3, 1, 2) (1, 2) (1, 1) (1)
t 2 3 2 1 2 1
|st| 3 3 0 3 1 1

Tab. 1: The first row gives the successive steps in the computation of f(3, 5, 4, 2), the second row gives
the indices where the recursion for f is applied on the composition and the third row gives the absolute
value of the t-th translation parameter.

as

f(λ1, . . . , λr) =


λ1 if r = 1,

λt + f(λ1, . . . , λt−1, λt+1, . . . , λr) if |st| = 0,

f(λ1, . . . , λt−1, λt+1, . . . , λr) if λt = |st|, and
f(λ1, . . . , λt − |st|, . . . , λr) otherwise.

(1)

We show that f counts the number of orbits of any symmetric discrete interval exchange i.e. f(λ) =
γ(Tλ).

Example 1. The symmetric discrete interval exchange T(3,5,4,2) has 3 cycles as shown previously and

f(3, 5, 4, 2) = f(3, 2, 4, 3) = f(3, 2, 1, 2)

= 2 + f(3, 1, 2) = 2 + f(1, 2) = 2 + f(1, 1) = 2 + f(1)

= 3.

The values of t and the corresponding translation parameter at each step are in Table 1.

We say that (λ1, . . . , λr) ≤ (β1, . . . , βs) if r < s or r = s and (λ1, . . . , λr) ≤lex (β1, . . . , βs), where
≤lex is the lexicographic order i.e. λ1 < β1 or λ1 = β1 and (λ2, . . . , λr) ≤lex (β2, . . . , βs). One can
check that the composition in the recursive step of f is smaller than the composition.

The next few lemmas show that the operations used in the recursive step of the function f are valid.

Lemma 2. If the value of |st| is zero , then the symmetric discrete interval exchange Tλ has

λt + γ(T(λ1,...,λt−1,λt+1,...,λr))

orbits.

For example, T(3,2,4,5) has 5 orbits and its third translation parameter is 0. Moreover, one can check
that T(3,2,5) has one orbit, hence γ(T(3,2,4,5)) = 5 = 4 + γ(T(3,2,5)) as predicted.

Proof: Let λ = (λ1, . . . , λr) be a composition and t an integer in J1, rK such that st = 0. Let x be an
integer in the set J1, nK. By definition, the symmetric discrete interval exchange Tλ is

Tλ(x) = x+ si (2)

where x belongs to Bi with Bi = J1 +
∑
j<i λj ,

∑
j≤i λjK and si =

∑
j>i λj −

∑
j<i λj as in Defini-

tion 1.
If x ∈ Bt, then Equation (2) becomes Tλ(x) = x. Thus, each integer in Bt is a fixed point of Tλ and

its orbit contains only itself. Thus Tλ|Bt is the identity and Tλ stabilizes H = J1, nK\Bt.
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We show that Tλ|H is conjugated to Tλ′ ; that is , Tλ|H = ω−1 ◦ Tλ′ ◦ ω, where ω is the unique
decreasing bijection H → J1, n− λtK. This implies that the number of orbits of Tλ|H is equal to γ(Tλ′).

Suppose that x /∈ Bt. Let λ′ = (λ′1, . . . , λ
′
r−1) where λ′i = λi if i < t and λ′i = λi+1 otherwise. Note

that Tλ′ is the symmetric discrete interval exchange where B′1, . . . , B
′
r−1 are subintervals of J1, n − λtK

defined by B′i = J1 +
∑
j<i λ

′
i,
∑
j≤i λ

′
iK. Its translation parameters are defined by s′i =

∑
j>i λ

′
j −∑

j<i λ
′
j . Then for all x ∈ B′i, Tλ′(x) = x+ s′i. Note that Tλ′ = T(λ1,...,λt−1,λt+1,...,λr).

First, we describe the sets Bi using the sets B′i. We have two cases to consider.
If i < t, then

Bi =

u

v1 +
∑
j<i

λj ,
∑
j≤i

λj

}

~ =

u

v1 +
∑
j<i

λ′j ,
∑
j≤i

λ′j

}

~ = B′i

since j ≤ i < t, we know that λj = λ′j .
Otherwise, if i > t, then

Bi =

u

v1 +
∑
j<i

λj ,
∑
j≤i

λj

}

~ =

u

v1 + λt +
∑
j<i

λ′i, λt +
∑
j≤i

λ′i

}

~ = {x+ λt | x ∈ B′i},

since i > t and
∑
j<i λj =

∑
j<t λj +

∑
t<j<i λj + λt = λt +

∑
i<j λ

′
i.

Secondly, we want to show that Tλ(x) = Tλ′(x)± λt. Recall that Tλ(x) = x+
∑
j>i λj −

∑
j<i λj .

We factorize λt to obtain

Tλ(x) =

{
x+

∑
j>t λj +

∑
t>j>i λj −

∑
j<i λj + λj if i < t

x+
∑
j>i λj −

∑
j<t λj −

∑
t<j<i λj − λj if i > t.

Replacing λj by λ′j if j < t and by λ′j−1 otherwise gives

Tλ(x) =

{
x+

∑
j>i λ

′
j −

∑
j<i λ

′
j + λt if i < t

x+
∑
j>i λ

′
j −

∑
j<i λ

′
j + λt if i > t,

=

{
x+ si + λt if i < t

x+ si − λt if i > t.

Hence, Tλ|H is conjugated to Tλ′ and the number of orbits of Tλ is λt + γ(T(λ1,...,λt−1,λt+1,...,λr)) as
claimed.

Lemma 3. Let (λ1, . . . , λr) be a composition of n. The symmetric discrete interval exchange T(λ1,...,λr)

and T(λ1,...,λt+|st|,...,λr) have the same number of orbits.

We begin by understanding how the orbits of T(λ1,...,λr) can be transformed into the orbits of T(λ1,...,λt+|st|,...,λr).
Through the cycle notation, a symmetric discrete interval exchange can be viewed as a set of circular
words on the alphabet J1, nK. Therefore, a substitution on T(λ1,...,λr) describes this operation:

ψt(x) =


x if x ∈ J1, kK
x · (x+ |st|) if x ∈ Jk + 1, k + |st|K and st > 0

(x+ |st|) · x if x ∈ Jk + 1, k + |st|K and st < 0

x+ |st| otherwise

(3)
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where x ∈ J1, nK is a letter, · denotes concatenation and

k =

{∑
j≤t λj if st ≥ 0∑
j<t λj − |st| ifst < 0.

For example, the symmetric discrete interval exchange of T(5,1,2) is (1, 4, 7)(2, 5, 8)(3, 6) and the sym-
metric discrete interval exchange of T(5,4,2) is (1, 7, 4, 10)(2, 8, 5, 11)(3, 9, 6). Let us apply ψ2 on T(5,1,2).
We have that t = 2, st = −3 < 0 and k = 2. For T(5,1,2), the substitution is

ψ2(x) =


x if x ∈ J1, 2K
(x+ 3) · x if x ∈ J3, 5K
x+ 3 otherwise.

(4)

Hence ψ2(T(5,1,2)) = ψ2((1, 4, 7)(2, 5, 8)(3, 6)) = (1, 7, 4, 10)(2, 8, 5, 11)(6, 3, 9) as predicted.

Lemma 4. Let t be an integer in J1, rK. The identity

ψt(T(λ1,...,λr)) = T(λ1,...,λt+|st|,...,λr)

holds.

Here ψt acts as a substitution on the orbits of T(λ1,...,λr). Recall that the circular factors of length 2 of
a circular word (a1, . . . , an) are the words aia(i+1) mod n, with i ∈ J1, nK. We use the following obvious
but useful result in the next proof: the orbits of σ and α have the same circular factors of length 2.

Proof: First, suppose that st = 0. Thus, ψt(Tλ) = T(λ1,...,λt+|st|,...,λr), since ψt is the identity morphism
when st = 0.

Let t be an integer in the set J1, rK and Tλ a symmetric discrete interval exchange as in Definition 1.
Let λ′ = (λ′1, . . . , λ

′
r) be a composition where λ′t = λt + |st| and λ′i = λi if t 6= i. Recall that Tλ′ is

the symmetric discrete interval exchange where B′1, . . . , B
′
r are subintervals of J1, n + |st|K defined by

B′i = J1 +
∑
j<i λ

′
i,
∑
j≤i λ

′
iK and its translation parameters are s′i =

∑
j>i λ

′
j −

∑
j<i λ

′
j . Then for all

x ∈ B′i, Tλ′(x) = x+ s′i. Note that the previous definition implies Tλ′t = T(λ1,...,λt+|st|,...,λr).
We begin by describing the circular factors of length 2 of Tλ′ using λ and Bi instead of λ′ and B′i.
To describe B′i using the sets Bi, we have three cases to consider. First, if i < t, then

B′i =

u

v1 +
∑
j<i

λ′i,
∑
j≤i

λ′i

}

~ =

u

v1 +
∑
j<i

λi,
∑
j≤i

λi

}

~ = Bi

since j ≤ i < t, we know that λ′j = λi. Secondly, if i = t, then

B′t =

u

v1 +
∑
j<i

λ′i,
∑
j≤i

λ′i

}

~ =

u

v1 +
∑
j<i

λi, |st|+
∑
j≤i

λi

}

~ = Bt ∪

u

v1 +
∑
j≤t

λj , |st|+
∑
j≤t

λj

}

~

as λ′t = λt + |st| and λ′i = λi. Finally, if i > t, then

B′t =

u

v1 +
∑
j<i

λ′i,
∑
j≤i

λ′i

}

~ =

u

v1 + |st|+
∑
j<i

λi, |st|+
∑
j≤i

λi

}

~ = {x+ |st| | x ∈ Bi}.
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We have that Tλ′(x) = x+
∑
j>i λ

′
j −

∑
j<i λ

′
j . We factorize λ′t to obtain

Tλ′(x) =


x+

∑
t>j>i λ

′
j +

∑
j>t λ

′
j −

∑
j<i λ

′
j + λ′t if i < t

x+
∑
j>i λ

′
j −

∑
j<i λ

′
j if i = t

x+
∑
j>i λ

′
j −

∑
j<t λ

′
j −

∑
t<j<i λ

′
j − λ′t if i > t.

Replacing λ′i by λi if i 6= t and λ′t by λt + |st| give that

Tλ′(x) =


x+

∑
t>j>i λj +

∑
j>t λj −

∑
j<i λj + λt + |st| if i < t

x+
∑
j>i λj −

∑
j<i λj if i = t

x+
∑
j>i λj −

∑
j<t λj −

∑
t<j<i λj + λt − |st| if i > t,

=


x+ si + |st| if i < t

x+ si if i = t

x+ si − |st| if i > t.

Therefore, the circular factors of length 2 of Tλ′ are x · (x+ si + |st|) if x ∈ Bi and i < t, x · (x+ si) if
x ∈ Bt and x · (x+ si − |st|), otherwise.

Now, it remains to find the circular factors of length 2 of ψ(Tλ). There are two cases to analyze
depending on the translation parameter st.

Let x be an integer in J1, nK. There exist an integer i such that x ∈ Bi.
Suppose that st is positive. Thus, we have that k =

∑
j≤t λj .

If i < t, we have that x ∈ J1,
∑
j<t λjK, then x < k. Also, we have that T(λ1,...,λr)(x) > k+ |st|, since∑

j>t λj = st+
∑
j<t λj . Therefore, we obtain that ψt(x·Tλ(x)) = x·(Tλ(x)+|st|) = x·(x+si+|st|).

Since i < t, we know that x ∈ Bi implies that x ∈ B′i and Tλ′(x) = x+ si + |st| , the element x is sent
to the same element in both symmetric discrete interval exchanges , as desired.

If i = t, we have that x ∈ J1 +
∑
j<t λj ,

∑
j≤t λjK, then x < k. Moreover, we have T(λ1,...,λr)(x) ∈

J
∑
j<t λj + 1, k + |st|K, since

∑
j>t λj = st +

∑
j<t λj . Therefore, we obtain that

ψt(x · Tλ(x)) =

{
x · (x+ si) if x < k

x · (x+ si) · (x+ si + |st|) otherwise.

Which means that all elements of Bt are sent to (x+ si), as desired.
If i > t, we have that x ∈ J1 +

∑
j≤t λj , nK, then x > k. Moreover, we have that Tλ(x) < k + |st|,

since
∑
j≤t λj > |st|+

∑
j>t λj . Therefore, we obtain that

ψt(x · Tλ(x)) =


x · (x+ |st|) if x ≤ k + |st| and σ(x) ≤ k,
x · (x+ |st|) · Tλ(x) · (Tλ(x) + |st|) if x ≤ k + |st| and σ(x) > k,

(x+ |st|) · Tλ(x) if x > k + |st| and Tλ(x) ≤ k,
(x+ |st|) · Tλ(x) · (Tλ(x) + |st|) if x > k + |st| and Tλ(x) > k.

(5)

Hence, we have that every element between k+1 and k+|st| is sent to x+si. Thus, all elements ofB′t are
sent to the correct value. Moreover, every element ofB′i with i > t are of the form x+|st| corresponding to
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the last two cases in Equation (5). The circular factors of length 2 are (x+|st|)·Tλ(x) = (x+|st|)·(x+si),
which can be rewritten to y · (y + si − |st|) if we substitute y to x+ |st|, as desired.

If st is negative, a similar case-by-case analysis shows the equality.

Now, we are ready to prove Lemma 3.

Proof of Lemma 3: By Lemma 4, we have that

ψt(T(λ1,...,λr)) = T(λ1,...,λt+|st|,...,λr),

for all t ∈ J1, rK. As a substitution on a set of circular words preserves the number of circular words, we
have that

γ(T(λ1,...,λr)) = γ(ψt(λ1, . . . , λr)) = γ(T(λ1,...,λt+|st|,...,λr))

as claimed.

Theorem 1. The function f counts the orbits of the symmetric discrete interval exchange Tλ.

Proof: By Lemma 1, we know there exists an integer t ∈ J1, rK such that λt ≥ |st| for any composition λ.
Also, (λ1, . . . , λt−|st|, . . . , λr) and (λ1, . . . , λt−1, λt+1, . . . , λr) are both compositions, since λt−|st| ≥
0. Hence, the function f is well-defined.

We show case by case that the recursive step of the function f preserves the number of orbits. First,
γ(λ1) = λ1, since Tλ1(x) = x for all x ∈ J1, λ1K. Secondly, if |st| = 0, we know that γ(λ1, . . . , λr) =
λt + γ(λ1, . . . , λt−1, λt+1, . . . , λr) by Lemma 2. Thirdly, if |st| = λt, we know that γ(λ1, . . . , λr) =
γ(λ1, . . . , λt − |st|, . . . , λr) by Lemma 3. However, λt = |st| implies (λ1, . . . , λt − |st|, . . . , λr) =
(λ1, . . . , λt−1, 0, λt+1, . . . , λr) = γ(λ1, . . . , λt−1, λt+1, . . . , λr) as desired. Finally, if λt > |st|, the
equality γ(λ1, . . . , λr) = γ(λ1, . . . , λt−|st|, . . . , λr) follows directly from Lemma 3. Thus, the function
f counts the number of orbits of Tλ.

Corollary 1. A symmetric discrete interval exchange is minimal if and only if f(λ1, . . . , λr) = 1.

4 Tree of circular compositions

How can we use the function f to enumerate the compositions defining minimal symmetric discrete
interval exchange? For minimal symmetric discrete 2-interval exchanges, solutions are given by the Raney
tree [3, 13] (also called Calkin-Wilf tree [5]) or the Stern-Brocot tree [4, 17]. A composition λ is called
circular if the symmetric discrete interval exchange Tλ is minimal. We propose a generalization of the
Raney tree to enumerate circular compositions of any lengths.

The Raney tree is a complete infinite binary tree whose nodes are reduced fractions, described recur-
sively by the following rules :

• the root of the tree is the fraction 1
1 ;

• each vertex i
j has two children: the left child is the fraction i

i+j and the right child is the i+j
j .
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4
3

3
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5
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3
1
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Fig. 2: Raney tree

(1, 1, 2, 4)

(8, 1, 2, 4) (1, 6, 2, 4) (1, 1, 4, 4) (1, 1, 2, 8)

(a) Children of type 1

(1, 1, 2, 4)

(8, 1, 1, 2, 4) (1, 6, 1, 2, 4) (1, 1, 4, 2, 4) (1, 1, 2, 0, 4) (1, 1, 2, 4, 8)

(b) Children of Type 2 (Note that (1, 1, 2, 0, 4) is not a
composition)

Fig. 3: Children of Type 1 and 2 of the composition (1, 1, 2, 4) whose translation vector is (7, 5, 2,−4)
and δ = (8, 6, 4, 0,−8)

Figure 2 shows the first few levels of the Raney tree. This tree contains each reduced positive rational
number exactly once as shown by Berstel and de Luca [3], and by Calkin and Wilf [5]. Thus it contains
all pairs of coprime natural numbers. Therefore, the Raney tree contains every circular composition of
length 2 exactly once.

Observe that applying the function f to any vertex in the Raney tree gives the path from that ver-
tex to the root 1/1 in the Raney tree. Therefore, we can use the function f to generalize the Raney
tree. The root of this generalized tree is still (1, 1), since it is an extension of the Raney tree. A cir-
cular composition (λ1, . . . , λr) has children of the form (λ1, . . . , λt + |st|, . . . , λr) for all t ∈ J1, rK
and (λ1, . . . , λt, |δt|, λt+1, . . . , λr) for all t ∈ J0, rK, where δt = n − 2

∑
j≤t λj . Figure 3 shows all

the possible children of the composition (1, 1, 2, 4). Note that |st| cannot be zero, otherwise the com-
position is not circular by Lemma 2. Moreover, the children of (λ1, . . . , λr) of the form (λ1, . . . , λt +
|st|, . . . , λr) are circular by Lemma 3. There are two problems with the children of (λ1, . . . , λr) of the
form (λ1, . . . , λt, |δt|, λt+1, . . . , λr). First, if δt = 0 (e.g. δ3 in Figure 3), the result is the same symmetric
discrete interval exchange. We want to avoid this case as it does not add any new information. Secondly,
the resulting composition has two parents. For example, the parents of the circular composition (1, 1, 2, 4)
are the compositions (1, 1, 4) (δ = (6, 4, 2,−6)) and (1, 1, 2) (δ = (4, 2, 0,−4)) (as shown in Figure 4).

Adding δt preserves the number of orbits of the symmetric discrete interval exchange, since the (t +
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1

1

2

2

3

3

4

4

5

5

6

6

B1 B2 B3

Bσ(3) Bσ(2)Bσ(1)

1

1

2

2

3

3

4

4

B1 B2 B3

Bσ(3) Bσ(2)Bσ(1)

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

B1 B2 B3 B4

Bσ(4) Bσ(3) Bσ(2)Bσ(1)

Fig. 4: The top right discrete interval is (1, 1, 4) and the top left one is (1, 1, 2) both can be the parent of
(1, 1, 2, 4). The δ of (1, 1, 4) is (6, 4, 2,−6) and the δ of (1, 1, 2) is (4, 2, 0,−4). Hence, (1, 1, |δ2|, 2) =
(1, 1, 2, 4) = (1, 1, 2, |δ4|)

1)-th translation parameter of the composition (λ1, . . . , λt, |δt|, λt+1, . . . , λr) is by definition st+1 =∑
j>t λt −

∑
j≤t λt = n− 2

∑
j≤t = δt. By Lemma 3, these children of (λ1, . . . , λr) are also circular.

Compositions constructed by the two rules have two parents, since adding δt or λt if δt > 0 (resp. λt+1

if δt < 0) produces the same composition (see Figure 4). To ensure that every child is a composition and
that each composition has a single parent, we add a condition on δ.

The tree of circular compositions is an infinite tree described by the following recursive rules:

• the root of the tree is the composition (1, 1);

• each vertex (λ1, . . . , λr) has children of the form:

Type 1: (λ1, . . . , λt + |st|, . . . , λr) for all t ∈ J1, rK;

Type 2: if δt > λt+1 or −δt > λt, (λ1, . . . , λt, |δt|, λt+1, . . . , λr) for all t ∈ J0, rK;

where δt = n−
∑
j≤t λj .

Figure 5 shows the first few levels of the tree of circular compositions. Note that δ0 > λ1 and−δr > λr,
hence the condition is always satisfied in those cases. Thus, the parent of (1, 1, 2, 4) is (1, 1, 2), since
−δ3 = 4 > λ3 and (1, 1, 4) is not its parent since δ3 = 2 < λ4 = 4 and −δ3 = −2 < λ3 = 2. Now we
prove that each circular composition is a child of type 1 or 2 but not both and has a unique parent.

Lemma 5. Let (λ1, . . . , λr) be a circular composition and t an integer in J1, rK. If λt > |st|, then
λi < |si| for all i ∈ J1, rK, i 6= t.
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(1, 1)

(2, 1, 1)

(2, 1)

(1, 2)

(1, 1, 2)

(1, 1, 2, 4)

(1, 1, 4)

(1, 2, 2)

(1, 2, 1, 2)

(4, 1, 2)

(4, 1, 1, 2)

(1, 2, 3)

(1, 3)

(3, 2)

(3, 1, 2)

(2, 1, 3)

(2, 3)

(3, 1)

(3, 2, 1)

(2, 1, 1, 4)

(2, 1, 4)

(2, 1, 2, 1)

(2, 2, 1)

(4, 1, 1)

(4, 2, 1, 1)

Fig. 5: The tree of circular compositions
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Proof: Let t be an integer in J1, rK such that λt > |st|. First, we show that si > 0 if i < t (resp. si < 0 if
i > t). Let i be an integer in the set J1, t− 1K.

If st > 0, by the definition of st the following inequality is satisfied:∑
k>t

λk >
∑
k<t

λk.

Since i < t and all λk’s are positive, we have that∑
k>i

λk >
∑
k>t

λk >
∑
k<t

λk >
∑
k<i

λk.

Hence si =
∑
k>i λk −

∑
k<i λk > 0.

If st < 0, by the definition of st, we know that

λt > |st| = −st =
∑
k<t

λk −
∑
k>t

λk.

Moreover, adding
∑
k>t λk on both sides, we have that

λt +
∑
k>t

λk >
∑
k<t

λk.

Since i < t and all λk’s are positive, the previous inequality implies that∑
k>i

λk ≥ λt +
∑
k>t

λk >
∑
k<t

λk >
∑
k<i

λk.

Hence, si =
∑
k>i λk −

∑
k<i λk > 0 as claimed.

Similar arguments show that, if i > t, then si < 0.
Now we can show that λi < |si| if i 6= t. There are two cases to consider.
Suppose that st > 0. If i < t, the translation parameter si can be expressed as a sum of st and some

λ′ks given below:

st + λt + 2
∑
i<j<t

λj + λi =
∑
j>t

λj −
∑
j<t

λj + λt + 2
∑
i<j<t

λj + λi

=
∑
j>i

λj −
∑
j<i

λj

=si.

Moreover, we have that si = st + λt + 2
∑
i<j<t λj + λi > λi since st is positive. Thus, |si| = si > λi

since i < t.
If i > t, the translation parameter si can be expressed by st and some λk as below:

st − λt − 2
∑
t<j<i

λj − λi =
∑
j>t

λj −
∑
j<t

λj − λt − 2
∑
t<j<i

λj − λi

=
∑
j>i

λj −
∑
j<i

λj

=si.
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Since i > t, we have that si < 0, hence |si| = −st + λt + 2
∑
t<j<i λj + λi which is a sum of positive

integers since λt − st > 0. Hence, |si| > λi as claimed.
Similar arguments show that the lemma also holds in the case where st is negative.

Lemma 6. Let (λ1, . . . , λr) be a circular composition and t be an integer in J1, rK. If λt = |st|, then
there exists an integer d ∈ {t − 1, t + 1} such that λd = |sd| and λi < |si| for all i ∈ J1, rK − {t, d}.
Moreover λd 6= λt.

Proof: Let (λ1, . . . , λr) be a circular composition such that λt = |st|. First, we check that λd exists.
If st > 0, then

λt =
∑
k>t

λk −
∑
k<t

λk ⇒ λt+1 =
∑
k<t+1

λk −
∑
k>t+1

λk = |st+1|.

Similarly, if st < 0, we have that λt−1 = |st−1|.
Secondly, we have to show that λt 6= λd. Suppose that we are in the case d = t+1. Suppose further that

λt = λd. Since λt = |st|, we have that γ(λ1, . . . , λr) = γ(λ1, . . . , λt−1, λt+1, . . . , λr) by Theorem 1.
Moreover, λt =

∑
k>t λk −

∑
k<t λk and λt = λt+1 imply that 0 =

∑
k>t+1 λk −

∑
k<t λk. Hence,

γ(λ1, . . . , λt−1, λt+1, . . . , λr) = λt+1+γ(λ1, . . . , λt−1, λt+2, . . . , λr) by Lemma 2. Thus γ(λ1, . . . , λr)
is greater than 1 since λt+1 > 0, a contradiction. The case where d = t− 1 is similar.

Finally, we have to check that λi < |si| if i 6= d and i 6= t. Suppose that st > 0, then d = t + 1.
If i < t, then we have that λt = st =

∑
k>t λk −

∑
k<t λk. We isolate λi in this equation to obtain

λi = −
∑
j<i λj −

∑
i+1<j≤t λj +

∑
j>t λj . Moreover, we have that

λi = −
∑
k<i

λk −
∑

i+1<k≤t

λk +
∑
k>t

λk + si − si

= si − 2
∑

i+1<k≤t

λk

< si

since all λk’s are positive.
Similar arguments show that if i > t, then λi < |si|. To complete the proof, we use a similar argument

to show that λi < |si| if st < 0.

Corollary 2. Let (λ1, . . . , λr) be a circular composition. If the composition is not (1, 1), then it has a
unique parent in the tree of circular composition.

Proof: There exists a t ∈ J1, rK such that λt ≥ |st| by Lemma 1 and st is positive, since the composition
is circular by Lemma 2. Therefore, the composition (λ1, . . . , λr) is a child of type 1 or type 2 of the
composition λ′.

Suppose that (λ1, . . . , λr) is a child of type 1. We know that λi < |si| for all i ∈ J1, rK − {t} by
Lemma 5. Thus (λ1, . . . , λr) is not a child of type 2 and the only valid position to reduce the composition
is t. So the parent of (λ1, . . . , λr) is λ′ = (λ1, . . . , λt − |st|, . . . , λr).

Suppose that (λ1, . . . , λr) is a child of type 2. We know that λi < |si| for all i ∈ J1, rK− {t, d}. Thus
(λ1, . . . , λr) is not a child of type 1, since any λi ≤ |si|. If δt > λt+1 or −δt > λt, then the parent
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of (λ1, . . . , λr) is λ′ = (λ1, . . . , λt−1, λt+1, . . . , λr), otherwise it is λ′ = (λ1, . . . , λt, λt+2, . . . , λr) if
δt > 0, or λ′ = (λ1, . . . , λt−2, λt, . . . , λr) if δt < 0.

Theorem 2. Every circular composition appears exactly once on the tree of circular composition.

Proof: First, we show that every composition in the tree is circular. The symmetric discrete interval
exchange T(1,1) is the permutation (1, 2) which is obviously minimal. Let (λ1, . . . , λr) be a composition
that appears in the tree which is not associated with a circular permutation and such that all compositions
appearing in previous levels of the tree are circular. There exists an integer t ∈ J1, rK such that λt ≥ |st|
and

γ(λ1, . . . , λt − |st|, . . . , λr) = γ(λ1, . . . , λr) > 1,

by Theorem 1. The composition (λ1, . . . , λt − |st|, . . . , λr) appears in a previous level of the tree, which
is a contradiction. Thus, all the compositions in the tree are circular.

Secondly, we prove that all circular compositions appear in the tree. The composition (1, 1) is the root
of the tree. Let S be the set of all circular compositions which are not in the tree and (λ1, . . . , λr) the
smallest composition in S ordered them as in Section 3. There exists a natural number t ∈ J1, rK such that
λt ≥ |st| and

γ(λ1, . . . , λt − |st|, . . . , λr) = γ(λ1, . . . , λr)

by Lemma 1. Therefore the composition (λ1, . . . , λt − |st|, . . . , λr) cannot be an element of the tree,
otherwise (λ1, . . . , λr) is also an element of the tree contradicting the minimality of (λ1, . . . , λr).

Thirdly, we show that no circular composition occurs more than once in the tree. Let (λ1, . . . , λr)
be the smallest composition which appears more than once in the tree. By Corollary 2, we know that
(λ1, . . . , λr) has a unique parent λ′. Then (λ1, . . . , λr) is the child of two distinct vertices both labelled
by λ′, contradicting the minimality of (λ1, . . . , λr). Therefore, each circular composition appears only
once in the tree.

5 Cyclic type

The cyclic type of a symmetric discrete interval exchange is a partition `α1
1 . . . `αk

k where `1 > `2 >
· · · > `k, `i is the length of an orbit of Tλ and αi is the number of orbits of length `i. For example, the
cyclic type of T(3,5,4,2) is the partition 8132. The cyclic type of symmetric discrete 2-interval exchanges
is already known.

Lemma 7. (folklore) Let (λ1, λ2) be a composition. The cyclic type of the symmetric discrete interval
exchange T(λ1,...,λr) is the partition (

λ1 + λ2
gcd(λ1, λ2)

)gcd(λ1,λ2)

.

The cyclic type of symmetric discrete 3-interval exchange can also be described by the gcd function.

Lemma 8. Let (λ1, λ2, λ3) be a composition. The integers s1, s2 and s3 are multiples of gcd(λ1 +
λ2, λ2 + λ3).
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Proof: The result is straightforward for s1 = λ2+λ3 and s3 = −λ1−λ2. Moreover, subtracting λ2+λ3
from λ1 + λ2, we obtain that gcd(λ1 + λ2, λ2 + λ3) = gcd(λ1 − λ3, λ2 + λ3). Thus s2 = |λ3 − λ1| is a
multiple of gcd(λ1 + λ2, λ2 + λ3).

Now, we can describe the number of orbits of a symmetric discrete 3-interval exchange using the
gcd(λ1 + λ2, λ2 + λ3).

Theorem 3. The orbit of x ∈ J1, nK in the symmetric discrete interval exchange T(λ1,λ2,λ3) is the set{
x+ kd

∣∣∣∣ k ∈ N and
1− x
d
≤ k ≤ n− x

d

}
,

where d = gcd(λ1 + λ2, λ2 + λ3).

For example, the cyclic decomposition of the symmetric discrete interval exchangeof T(9,1,4) is (1, 6, 11)(2, 7, 12)(3, 8, 14)(4, 9, 14)(5, 10).
Therefore, the orbit of 9 is {9 + 5k| − 8/5 ≤ k ≤ 5/5} = {4, 9, 14} .

Proof: Let d be the gcd(λ1 + λ2, λ2 + λ3) and x be an integer in J1, nK. First, we show by induction that
T

(k)
(λ1,λ2,λ3)

(x) = x+ id. We know that T 0
(λ1,λ2,λ3)

(x) = x+ 0 · d and T 1
(λ1,λ2,λ3)

(x) = x+ si = x+ id

since si is a multiple of d as shown in Lemma 8. Let computes

T
(k+1)
(λ1,λ2,λ3)

(x) = T (T k(λ1,λ2,λ3)
(x)) = T (x+ id) = x+ id+ si

by induction. Moreover, si is a multiple of d by Lemma 8. Hence, we have that T (k+1)
(λ1,λ2,λ3)

(x) = x+ jd.
By the definition of T(λ1,λ2,λ3), we have that 1 ≤ x + kd ≤ n which gives that (1 − x)/d ≤ k ≤

(n− x)/d.

Corollary 3. Let (λ1, λ2, λ3) be a composition of n = λ1 + λ2 + λ3. Take d = gcd(λ1 + λ2, λ2 + λ3).
Let q and r be integers with 0 ≤ r < d such that n = qd+ r. The cyclic type of T(λ1,λ2,λ3) is qd if r = 0

and (q + 1)rqd−r otherwise. Moreover d = γ(T(λ1,λ2,λ3)).

Proof: By Theorem 3, we have that the orbit of x is the set{
x+ kd

∣∣∣∣ k ∈ N and
1− x
d
≤ k ≤ n− x

d

}
.

Therefore, every element in the orbit of x is congruent to x modulo d. Hence, the number of orbit is
the number of classes modulo d, which is exactly d. The cardinality of γ(x) is [n/d] if x mod d < r or
[n/d] + 1 if x mod d ≥ r.

The symmetric discrete interval exchanges Tλ where λ is a composition of length 2 or 3 has simple
cyclic type. For symmetric discrete interval exchanges of length 4 or more, no such description is known.
As a matter of fact, it does not seem to have any relation between the length of the orbits in the cyclic type.
However computer testing suggests that if `α1

1 . . . `α
k

k is the cyclic type of T(λ1,...,λr), then k ≤ d r−12 e.
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[7] Sébastien Ferenczi and Luca Q. Zamboni. Clustering words and interval exchanges. J. Integer Seq.,
16(2):Article 13.2.1, 9, 2013.

[8] Anna Karnauhova and Stefan Liebscher. Connected components of meanders: I. Bi-rainbow mean-
ders. Discrete Contin. Dyn. Syst., 37(9):4835–4856, 2017.
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