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We investigate the 2-domination number for grid graphs, that is the size of a smallest set D of vertices of the grid
such that each vertex of the grid belongs to D or has at least two neighbours in D. We give a closed formula giving
the 2-domination number of any n×m grid, hereby confirming the results found by Lu and Xu, and Shaheen et al.
for n ≤ 4 and slightly correct the value of Shaheen et al. for n = 5. The proof relies on some dynamic programming
algorithms, using transfer matrices in (min,+)-algebra. We also apply the method to solve the Roman domination
problem on grid graphs.
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1 Introduction and notations
A dominating set D in a graph G is a subset of the vertices such that every vertex in V (G)\D has at least
one neighbour inD. The domination number ofG, denoted by γ(G) is the minimum size of a dominating
set of G. In 1993 Chang [2] conjectured that the domination number for a grid graph of arbitrary size was
γ(Gn,m) =

⌈
(n+2)(m+2)

5

⌉
− 4. He also showed that this was actually an upper bound. Gonçalves et al.

[5] proved Chang’s conjecture in 2011 by showing that this was a lower bound. Several generalisations of
the domination problem have also been studied in the literature (see for example [1]). We adapt here the
method used in [5] to the 2-domination problem and the Roman domination, obtaining closed formulas
for these two problems on grids. This confirms the results found by [9, 11] for n ≤ 4 and slightly corrects
the result by [11] for n = 5. This also confirms the results of Pavlič and Žerovnik [10] for n ≤ 8 and
prove that the upper bound given by Currò [3] is tight.

The domination problem is one of many problems which are hard for general graphs, but are easy to
solve for graphs of bounded treewidth. The grids are among the simplest graphs which neither have a
bounded treewidth nor a bounded cliquewidth, but for which these kinds of problems are usually difficult
to tackle. Gonçalves et al. managed to solve the domination problem on grids. In this paper we generalise
their techniques and try to see on what kind of problems they can be used. The domination problems
are related to tiling problems. For instance, Figure 1 shows the shape associated with the domination
problem. A smallest dominating set in a grid is equivalent to a smallest covering set of the rectangle with
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this shape. The method of Gonçalves et al. works thanks to the fact that the shape has the following three
properties. First, it can tile (that is, cover without overlaps) the infinite plane. Second, there is a unique
way, up to mirrors and translations, to tile the plane with this shape. Third, we can find optimal solutions
which consist in projecting a tiling of the plane, cropping it and modifying only tiles at bounded distance
from the border. We will discuss these properties in the conclusion.

Figure 1: The shape corresponding to the domination tiling problem.

We adapt here the method developed by Gonçalves et al. to some other domination problems: the
2-domination and the Roman domination. Each of these two problems is also related to a tiling problem,
which also has the properties we have just mentioned.

The source of the program used to prove the results can be found in the arXiv version of this paper:
https://arxiv.org/format/1810.12896, selecting the ”Download source” option.

2 Method of the proofs and application to the 2-domination prob-
lem

A 2-dominating set ofG is a subsetD ⊂ V (G) such that every vertex not inD has at least two neighbours
in D. The 2-domination number of a graph G, denoted by γ2(G) is the minimum size of a 2-dominating
set of G. Here we compute all the γ2 values for grid graphs. We denote by Gn,m the grid graph with n
lines and m columns, and by γ2(n,m) the 2-domination number for an n×m grid. We take the viewpoint
of a grid whose cells represent vertices. In this section we give the tools to prove the following theorem.

https://arxiv.org/format/1810.12896
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Theorem 1. For all 1 ≤ n ≤ m,

γ2(n,m) =



⌈
m+1
2

⌉
if n = 1

m if n = 2

m+
⌈
m
3

⌉
if n = 3

2m−
⌊
m
4

⌋
if n = 4 and m mod 4 = 3

2m−
⌊
m
4 + 1

⌋
if n = 4 and m mod 4 6= 3

2m+
⌈
m
7

⌉
+ 1 if n = 5 and m mod 7 ∈ {0, 6}

2m+
⌈
m
7

⌉
if n = 5 and m mod 7 /∈ {0, 6}

2m+
⌊
6m
11

⌋
+ 1 if n = 6 and m mod 11 ∈ {0, 2, 6}

2m+
⌊
6m
11

⌋
+ 2 if n = 6 and m mod 11 /∈ {0, 2, 6}

3m−
⌊
m
18

⌋
+ 1 if n = 7 and m > 9 and m mod 18 ≤ 9

3m−
⌊
m
18

⌋
+ 1 if n = 7 and (m ≤ 9 or m mod 18 > 9)

3m+
⌊
m
3

⌋
if n = 8 and m mod 3 = 1

3m+
⌊
m
3

⌋
+ 1 if n = 8 and m mod 3 6= 1⌊

(n+2)(m+2)
3

⌋
− 6 if n ≥ 9.

The first subsection uses some well-known techniques to establish the 2-domination values for grids of
small height, whereas the second subsection uses the recent technique of loss, which was introduced by
Gonçalves et al. [5] in order to obtain the values for arbitrarily large height for the domination problem in
grids.

If V is a vector of size n indexed from 0 to n− 1, we will sometimes refer, for concision, to some V [i]
where i is negative or greater than n − 1. This means that any condition or operation on invalid indices
is to be ignored: for instance, ”both V [i − 2] = 1 and V [i + 1] = 1” is necessarily false if i < 2 or
i > n− 2. We denote by |V |p the number of entries of V which have value p. Operations on matrices are
always done in the (min,+)-algebra. In all what follows, unless explicitly specified otherwise, the grid
we consider always has n lines and m columns. Note that we require n ≤ m in all theorems. We denote
by a mod b the remainder of the Euclidean division of a by b.

2.1 Computing 2-domination numbers for small n

We use here a dynamic programming approach. Our algorithm is exponential in the number of lines, but
for a fixed number of lines n, it is linear in the number of columns.

Let S = { STONE, NEED ONE, OK } be the set of cell states. If D is a 2-dominating set of cells of the
grid Gn,m let f(D) ∈ (Sn)m be such that f(D)[i][j] is STONE if (i, j) ∈ D, OK if at least two among
(i − 1, j), (i, j − 1) and (i, j + 1) are in D, or NEED ONE otherwise. Note that the state of a cell does
not depend on the values of the cells of the next columns. We also define, for 0 ≤ i < n, fi(D) to be the
column i of f(D): for all j ∈ {0, . . . , n− 1}, fi(D)[j] = f(D)[i][j]. Note that, since D is 2-dominating,
what precedes implies that fi(D)[j] = NEED ONE if exactly one among (i− 1, j), (i, j− 1) and (i, j+1)
is in D.
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We now define the set of valid states V = ∪0≤i<m{fi(D) : D is a 2-dominating set}. V is composed
of the states which we can find in some 2-dominating set: all states which can appear. Among these,
we define the set of first states F = {f0(D) : D is a 2-dominating set}. Finally, we define the set of
dominated states D = {fm−1(D) : D is a 2-dominating set}. F is the set of states which can be the
first column of a 2-dominating set, that is whose entries only depend on themselves and not on a previous
column. D is the list of states which do not need a next column to be 2-dominated: they are dominated by
themselves and their previous column.

We now define the relation of compatibility R: we say that a state S′ ∈ V is compatible with S ∈ V ,
and write SRS′ if there exist a 2-dominating set D and i ∈ {0, . . . ,m − 2} such that fi(D) = S and
fi+1(D) = S′. Defining these states enables us to use the principles of dynamic programming: instead of
enumerating all possible 2-dominating sets, we realise that the information conveyed in f(D) is enough,
and that we only need the information at a column i to continue to column i+ 1. In particular, we do not
need to know what happened in previous columns.

To illustrate these concepts, we give the rules defining the sets V , F , D and the relation R. S ∈ V if
and only if for all i ∈ {0, . . . , n− 1}:
• if S[i] =NEED ONE then at most one among S[i− 1], S[i+ 1] is STONE;
• if S[i] =OK then at least one among S[i− 1] and S[i+ 1] is STONE.

S ∈ F if and only if for all i ∈ {0, . . . , n− 1}:
• if S[i] =NEED ONE then exactly one among S[i− 1], S[i+ 1] is STONE;

• if S[i] =OK then both S[i− 1] and S[i+ 1] are STONE (so 1 ≤ i < m− 1);

A state S belongs to D if and only if S ∈ V and none of its entries is NEED ONE.
Finally, SRS′ if and only if for all i ∈ {0, . . . , n− 1}:

• if S[i] =NEED ONE then S′[i] =STONE;

• if S′[i] =NEED ONE then exactly one among S′[i− 1], S′[i+ 1] and S[i] is STONE;

• if S′[i] =OK then at least two among S′[i− 1], S′[i+ 1] and S[i] are STONE;

Claim 1. Let F be the vector of size |V| such that F [S] = |S|STONE if S ∈ F or +∞ otherwise. Let D be
the vector of size |V| such that D[S] = 0 if S ∈ D or +∞ otherwise. Let T be the square matrix with |V|
lines such that T [S][S′] = |S′|STONE if SRS′ or +∞ otherwise.
Then γ2(n,m) = F TTm−1D.
(We recall that the products of matrices are done in the (min,+)-algebra.)

Proof: Let m ≥ 1. V = F TTm−1 is a vector such that if S ∈ V then V [S] is the minimum size of a
set X which 2-dominates the subgrid with n lines and m− 1 columns, and such that f(X)[m− 1] = S.
However, we are interested in a 2-dominating set, therefore S should be 2-dominated as well. Thus
V D = minS∈D V [S] gives us the minimum size of any 2-dominating set.

This claim leads to a simple algorithm to generate the different sets and the compatibility relation, and
then compute the product and exponentiation of matrices, and a matrix vector product. The matrix T is a
transfer matrix, whose exponentiation propagates the fact of being 2-dominated one column further. This
is enough to compute the 2-domination numbers for small n and m, but our goal is to find all the numbers
for small n and arbitrary m. What follows fills this hole.



The 2-domination and Roman domination numbers of grid graphs 5

We say that a matrix M is primitive if there exists an integer k > 0 such that max(Mk) < +∞.

Claim 2. T is primitive.

Proof: Let S0, S2 ∈ V . Let S∗ be the state whose entries all are STONE. There exists some S1 ∈ V such
that S0RS∗, S∗RS1 and S1RS2. We leave the construction of S1 to the reader: put the necessary stones
and fill the rest accordingly. We conclude that T 3 < +∞.

Proposition 1. Let M be a primitive matrix of size n and k be such that Mk < +∞. Let V be a vector
of size n which has at least one entry different from +∞. We put Vi = M iV . Then there exist some i0, p
and r such that for all i ≥ i0, Vi = Vi−r + p.

Proof: Since Mk < +∞, Vk = MkV has at least one entry different from +∞. This implies that
Vk−1 has one entry different from +∞. Since Vk = MkV = MVk−1 we can prove by induction that
all the Vi’s share this property. Let i ≥ k, and b0 be such that Vi−k[b0] is a minimum of Vi−k. Vi[a] ≤
Mk[a][b0]Vi−k[b0] ≤ α + Vi−k[b0], where α = max(Mk). Similarly, Vi[a] ≥ mina′,b′ (M

k[a′][b′]) +
Vi−k[b0] ≥ Vi−k[b0]. These two inequalities imply that max(Vi)−min(Vi) ≤ α for every i ≥ k. Let us
write, for i ≥ k, Vi = ni + V ′i where ni ∈ N and each entry of V ′i is between 0 and α. Since there are at
most αn different vectors of size n which have all entries between 0 and α, there exist k ≤ i1 < i2 such
that V ′i2 = V ′i1 , hence by letting r = ni2 − ni1 we obtain Vi2 − Vi1 = r.

Proposition 1 guarantees that the transfer matrix T verifies, for some p0, k and t the relation T p+k =
T p + t for p ≥ p0. Thanks to Claim 1 the relations we obtain for the transfer matrix T directly apply to
the 2-domination number. Here are the relations we obtain for n ≤ 12:

• ∀m ≥ 3, γ2(1,m) = γ2(1,m− 2) + 1;

• ∀m ≥ 3, γ2(2,m) = γ2(2,m− 1) + 1;

• ∀m ≥ 5, γ2(3,m) = γ2(3,m− 3) + 4;

• ∀m ≥ 8, γ2(4,m) = γ2(4,m− 4) + 7;

• ∀m ≥ 14, γ2(5,m) = γ2(5,m− 7) + 15;

• ∀m ≥ 20, γ2(6,m) = γ2(6,m− 11) + 28;

• ∀m ≥ 31, γ2(7,m) = γ2(7,m− 18) + 53;

• ∀m ≥ 16, γ2(8,m) = γ2(8,m− 3) + 10;

• ∀m ≥ 17, γ2(9,m) = γ2(9,m− 3) + 11;

• ∀m ≥ 14, γ2(10,m) = γ2(10,m− 1) + 4;

• ∀m ≥ 16, γ2(11,m) = γ2(11,m− 3) + 13;

• ∀m ≥ 17, γ2(12,m) = γ2(12,m− 3) + 14.

Thanks to these relations, and to the first values we obtain for each n, we deduce the formulas for
γ2(n,m), for 1 ≤ n ≤ 12. For instance, for n = 5 we only need to know the recurrence relation, plus the
first twelve values. We stop at n = 12 here because the method for arbitrarily large n works for n ≥ 13.

2.2 Computing 2-domination numbers for arbitrarily large n

We adapt here the method Gonçalves et al. introduced in [5]. Their idea was to assume that for a suffi-
ciently large grid, the position of the stones would be a projection of an optimal tiling for Z2, except on
a fixed-height border of the grid, because not every cell has 4 neighbours at the frontier of a finite grid.
This happens to be also the case for the 2-domination problem.
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We use the dual concept of loss to count how many stones we need to make up for the degree problem of
the border. The loss denotes how much ”influence” given by the stones of a 2-dominating set was wasted.
For instance, two neighbouring stones would cause a loss of 2: each stone cell dominates its stone neigh-
bour which did not need to be dominated by another stone. Instead of computing the minimum number
of stones needed, we will compute a lower bound on the minimum loss possible on the border. It happens
that this lower bound gives us a direct lower bound on the 2-domination number, and that these bounds
are sharp.

More formally, given a 2-dominating set D of the n ×m-grid, we define the loss to be `(D,n,m) =
4|D| − 2(nm − |D|). The idea behind this formula is simple: each stone contributes to the domination
of its four neighbours, and each cell not in D should be dominated twice. The difference between these
two quantities is the influence of stones that was ”lost”, i.e. not necessary. The loss function should have
several characteristics: while it should be ”easy” to compute, it should also be reversible so that given the
loss, we can find the 2-domination number.

Here we can indeed reverse the formula to get |D| = (2nm + `(D,n,m))/6. Let `(n,m) be the
minimum possible loss over every 2-dominating set D. We then obtain γ2(n,m) = (2nm+ `(n,m))/6.
The method works: the lower bound we obtain matches the 2-domination numbers (we prove later that it
is also an upper bound). Computing the minimum loss over a big grid seems very hard, but we managed
to find a lower bound for `(n,m) by computing the minimum loss on a fixed-height border of the grid
(see Figure 2).

Computing the loss on a border can be done by adapting the method used to compute the 2-domination
number when the number of lines is small. We compute a lower bound on the loss by computing only the
loss over the border of the grid. Let h > 0 be an integer and an n×m grid with n > 2h and m > 2h. The
border of height h is the set of cells (i, j) such that either min(i, n−1− i) < h or min(j,m−1−j) < h.
We define the corners as the four connected parts of the grid composed of cells (i, j) such that both
min(i, n − 1 − i) < h and min(j,m − 1 − j) < h. The remaining four connected parts of the border
are called the bands. The corners and bands are illustrated in Figure 2. Once again, we get an algorithm
which is faster than exhaustive search over the dominating sets by working with states. However, we need
to adapt the sets V,F ,D and the relation R we worked with.

Let us begin with the bottom band. In this subsection, we focus on the bottom h lines of our grid by
adapting the sets V,D and the relation R. Let assume that n > h and consider the function f̂i such that
if D is a 2-dominating set, f̂i(D) = fi(D)[0], · · · fi(D)[h − 1]. f̂i consists of the bottom h lines of
fi. As in the previous subsection, f̂i denotes the column i of f̂ . We begin by defining the almost valid
states: Va = ∪0≤i<m{f̂i(D) : D is a 2-dominating set}. More explicitely, S ∈ Va if and only if, for
i ∈ {0, . . . , h− 1}:
• if S[i] =NEED ONE then at most one among S[i− 1], S[i+ 1] is STONE;
• if S[i] =OK then i 6= 0 or at least one among S[i− 1] and S[i+ 1] is STONE;

Notice that there is a distinction depending on whether i = 0: the first cell will have a neighbour in the
center of the grid, so we need to consider the case when this neighbour is a stone. We do not need first
states here, so we will not define a set Fa. We define the relation of almost-compatibility: if S, S′ ∈ Va,
SRaS

′ if and only if for i ∈ {0, . . . , n− 1}:
• if S[i] =NEED ONE then i = 0 or S′[i] =STONE;
• if S′[i] =NEED ONE and i 6= 0 then exactly one among S′[i− 1], S′[i+ 1] and S[i] is STONE;
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Figure 2: The borders of the grid. The four parts coloured in black are the corners, and the white parts are the bands.
The grey cells belong to both the bands and the corners: the ones filled with light grey are the output of a band and
input of the corner next to it; the ones in dark grey are the output of a corner and input of the following band.

• if S′[0] =NEED ONE then at most one among S′[i− 1], S′[i+ 1] and S[i] is STONE;
• if S′[i] =OK and i 6= 0 then at least two among S′[i− 1], S′[i+ 1] and S[i] are STONE;
• if S′[0] =OK then at least one among S′[i− 1], S′[i+ 1] and S[i] is STONE.

Finally, a set S ∈ Va is almost-two-dominated (denoted by S ∈ Da) if all its cell except the upper one are
different from NEED ONE.

We again use the exponentiation of a transfer matrix to compute the minimum loss over a border of a
grid. We define the matrix Ta such that Ta[S][S′] contains the loss induced by putting state S′ after state
S. By exponentiating the matrix Ta we can compute the minimum loss over a border, excluding the loss
induced by the first state alone on itself.

The next step is to compute the loss for corners. A corner is composed of an h by h square, plus an
input column and an output column. Let us consider the bottom right corner of Figure 2. The last column
of the bottom band is coloured in light grey: it is the input column of the square (and the output column
of the band). At the other side of the square, the horizontal ”column” filled with dark grey is the output
column of the square (and the input column of the next border). Suppose that the input column of the
square is in state A and its output column is in state B. The loss over the corner is the sum of:
• the loss on the corner by A,B and the corner itself;
• the loss on B by the corner and B itself;
• the loss on A by the corner.

The explanation is simple: the input state was fixed by the loss computation on the band (so its loss so far
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was already counted) and the corner provides the first state for the next band (so we have to compute its
loss so far). Similarly to Ta, we define the matrix Ca for a corner: Ca[S][S

′] contains the minimum loss
over a corner whose input state is S and output state is S′ as defined just before (we do not count the loss
induced by S alone on itself).

Claim 3. minS∈Va((T
m−2h−1
a CaT

n−2h−1
a Ca)

2[S][S]) is the minimum loss over the border.

Proof: Tm−2h−1
a is the minimum loss over a band starting on the output column of the bottom left corner

and ending on the input column of the bottom right corner. Hence Tm−2h−1
a Ca means computing the

minimum loss on the bottom band we have just described, and extending it to the output state of the
bottom right corner. As mentioned above, in the corner loss we take the input state as it is (which is
exactly what Tm−2h−1 provides: the loss on the last state by itself and its preceding column was already
computed). Since we compute the loss on the output state of the corner, Tm−2h−1

a CaT
n−2h−1
a extends

the loss to the right band. Now, Tm−2h−1
a CaT

n−2h−1
a Ca corresponds to the loss from the output of the

bottom left square to the output of the top right square, that is the loss of half the border. By squaring this
matrix, we obtain the minimum losses over the whole border of the grid: (Tm−2h−1

a CaT
n−2h−1
a )2[S][S]

means that we compute the minimum loss by beginning from the (h+ 1)th column at the bottom in state
S and leaving it in state S by the bottom left corner.

In the rest of this section, we consider that h = 6. This value is sufficient to obtain the correct bounds
with our program. Here again, we have the problem of computing the minimum loss over borders of
arbitrary sizes. However, we may notice that, if we let H(n,m) = (Tm−13

a CaT
n−13
a )2, there exist some

j0, k and p such that ∀ r ≥ r0, T r+k
a = T r

a +p, so thatH(n+ i,m+j) = H(n,m)+(i+j)p ∀ n,m ≥
13 + r0. Indeed, the matrix Ta is primitive for the same reasons as for the transfer matrix of Claim 2.

To complete the proof of Theorem 1, we check the values of `(n,m) for 13 ≤ n ≤ m ≤ 35. With
these values, plus the recurrence relation on T r

a , we achieve the proof of the theorem. Indeed, if n > 13
and 33 ≤ m ≤ 35 then for all k ∈ N:

γ2(n,m+ 3k) =
2n(m+ 3k) + `(n,+3k)

6
≥2nm+ `(n,m)

6
+ nk + 2k

≥
⌊
(n+ 2)(m+ 2/)

3
− 6

⌋
+ nk + 2k

≥
⌊
(n+ 2)(m+ 3k + 2)

3
− 6

⌋
.

This proves the lower bound for every 13 < n ≤ 35 and m ∈ N. To prove it for n > 35, it suffices to do
the exact same computation, to compute γ2(n+ 3k,m) for any m.

To show that this bound is sharp, we give general 2-dominating sets of the right size. To obtain these
2-dominating sets, we select, for an infinite grid Z2 the 2-dominating setD = {(i, j) : i+j mod 3 = 0}
and its rotations. We then take all the different restrictions of these 2-dominating sets for Z2 into a finite
n×m grid. For each restriction we obtain, we modify each corner of size 6 according to two rules which
depend on the pattern in that corner. The two rules are shown in Figure 3: the first rule is used in the
top-left corner, and the second rule is used in the top-right and bottom-left corners. A rule corresponds to
removing the cells with a cross and adding the grey cells of the corner. Rule 1 could be stated as follows:
if the cell at the angle of the grid is in the dominated set, we remove it from the set and add instead its
two neighbours. Finally, we put a stone on the cells of the first and last rows and columns which are not
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Figure 3: Example of an optimal 2-dominating set D on a 18×30 grid. D is the set of cells which are gray or black.
The black cells and the cells with a cross are the projection of a minimal Z2 2-dominating set on the grid.

2-dominated. One can show that for 14 ≤ n ≤ m one of the resulting 2-dominating Dn,m set has the
right size. We can see an example of such a Dn,m for a 18×30 grid in Figure 3. The first rule is used
in the top left corner and the second rule is used in the top right and bottom left corner. No modification
needs to be done in the bottom right corner. By counting the number of stones in the regular pattern (black
and crossed cells in), removing the number of crossed cells, and adding the number of grey cells, we get
D = nm+2n+2m

3 − 5, which is equal to the number in Theorem 1 when n and m are multiple of 3.
The grid is of size 18×30, but it extends immediately to any n×m grid when n and m are both greater

than 14 and multiple of 3. Applying the same method for 14 ≤ n,m when the two numbers have other
congruences modulo 3 lead to 2-dominating sets having the right size.

3 Application to the Roman domination problem
In this section we consider another domination problem: the Roman domination. Formally, a Roman-
dominating ”set” is a pair (S1, S2) such that every vertex v /∈ S1 ∪ S2 has at least one neighbour in S2.
The cost of such a Roman-dominating set is |S1| + 2|S2|. Intuitively, the set S1 is the set of vertices on
which we put one stone, and they are dominated by themselves. S2 is the set of vertices on which we put
two stones, which makes them dominated, and they dominate their neighbours. The name of the problem
comes from the times when the Roman were conquerors: if they wanted to defend one of their regions
they could put either one troop, so that the region is guarded, or put two troops (at twice the expense), so
that the soldiers could also be used to defend any neighbouring region.

We will prove the following theorem:
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Theorem 2. For all 1 ≤ n ≤ m,

γR(n,m) =



⌈
2m
3

⌉
if n = 1

m+ 1 if n = 2⌈
3m
2

⌉
if n = 3 and m mod 4 = 1⌈

3m
2

⌉
+ 1 if n = 3 and m mod 4 6= 1

2m+ 1 if n = 4 and m = 5

2m if n = 4 and m > 5⌊
12m
5

⌋
+ 2 if n = 5⌊

14m
5

⌋
+ 2 if n = 6 and m mod 5 ∈ {0, 3, 4}⌊

14m
5

⌋
+ 3 if n = 6 and m mod 5 /∈ {0, 3, 4}⌊

16m
5

⌋
+ 2 if n = 7 and m = 7 or m mod 5 = 0⌊

16m
5

⌋
+ 3 if n = 7 and (m > 7 and m mod 5 6= 0)⌊

18m
5

⌋
+ 4 if n = 8 and m mod 5 = 3⌊

18m
5

⌋
+ 3 if n = 8 and m mod 5 6= 3⌊

20m
5

⌋
+ 2 if n = 9 and m mod 5 = 4⌊

20m
5

⌋
+ 3 if n = 9 and m mod 5 = 4⌊

2(n+1)(m+1)−2
5

⌋
− 1 if n ≥ 10 and n mod 5 = 4 and m mod 5 = 4⌊

2(n+1)(m+1)−2
5

⌋
if n ≥ 10 and n mod 5 6= 4 or m mod 5 6= 4

Since the rules of the Roman domination are a bit different, and we can put two stones on a cell, we
need a slight adaptation of the states and the loss. The possible states for a cell are now: TWO STONES,
STONE, OK and NEED ONE. A state S is in V if and only if for i ∈ {0, . . . , n− 1}:
• if S[i] =NEED ONE then neither S[i− 1] nor S[i+ 1] is TWO STONES;
• if S[i] =STONE then neither S[i− 1] nor S[i+ 1] is TWO STONES or STONE;

The second rule is not required for the coherency of the state, but it is an optimisation which allows us to
reduce a lot the number of states. It is justified by the fact that in a minimum Roman dominating set, we
can always remove any stone neighbouring a cell with two stones, and if there are two neighbouring cells
with a stone each we still have a dominating set of same value by removing one of the stones and putting
a second stone on the other cell.

A state S ∈ V is in F if and only if for every i ∈ {0, . . . , n− 1}, if S[i] =OK then at least one among
S[i− 1] and S[i+ 1] is TWO STONES.
(S, S′) is a compatible pair if and only if for i ∈ {0, . . . , n− 1}:
• if S[i] =NEED ONE then S′[i] =TWO STONES;
• if S′[i] =NEED ONE then S[i] 6=TWO STONES;
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• if S′[i] =OK then at least one among S[i], S′[i− 1] and S′[i+ 1] is TWO STONES;
• if S[i] ∈ {TWO STONES, STONE} then S′[i] 6=STONE;
• if S[i] =STONE then S′[i] 6=TWO STONES.

Finally, a state S ∈ V is in D if and only if none of its entry is NEED ONE.

We now need to adapt the loss. Here we define `(n,m) = 5|S2|+5/2|S1|−nm = (2|S2|+ |S1|)2/5−
nm. Indeed, each cell with two stones dominates 5 cells, and each cell in S1 dominates only itself, but
we add to it an additional loss of 3/2 to penalize its bad ratio of number of dominated cells compared to
number of stones used. This allows us to get γR(n,m) ≥ (`(n,m) + nm)5/2. Note that in the program,
what we compute is actually 2`(n,m) to avoid to manipulate fractions or floating numbers. Let us define
the almost-valid states which, for this problem, coincide with the valid states: Va = V . Now if S, S′ ∈ Va,
SRaS

′ if and only if for i ∈ {0, . . . , n− 1}:
• if S[i] =NEED ONE and i 6= 0 then S′[i] =TWO STONES;
• if S′[i] =NEED ONE then S[i] 6=TWO STONES;
• if S′[i] =OK and i 6= 0 then at least one among S[i], S′[i− 1] and S′[i+ 1] is TWO STONES;
• if S[i] ∈ {TWO STONES, STONE} then S′[i] 6=STONE;
• if S[i] =STONE then S′[i] 6=TWO STONES.

Here again we do not give complete details on how we compute the loss. Since we compute twice the
loss, each cell with two stones having k < 4 neighbours contributes for 4 − k, and each cell domi-
nated by k > 1 cells also contributes for k − 1. Finally, each stone with one cell contributes for 3/2. All
these contributions sum up to make the loss. We recall that in the program we compute twice these values.

As in the previous section, we get exact values for ”small” values of n, and a lower bound for bigger
values of n. In Chapter 4 of the thesis of Currò [3], the Grid Theorem gives an upper bound which matches
our lower bound, hence this is the exact value.

4 Concluding remarks and open problems
We successfully adapted the techniques introduced in [5] to other dominating problems, namely the 2-
domination and the Roman domination problems. The techniques used in this paper could be reused to
show similar results on grids, that is Cartesian products of paths.

Some authors investigated the problem of domination in Cartesian products of cycles (see for instance
[8, 10]). The first part of the technique (when n is fixed and small) may be adapted (with some care) but
the second part (for arbitrary number of lines) does not apply directly since a crucial property is that the
loss can be concentrated inside the borders of the grids.

We mentioned in the introduction that the fact that the method gives sharp bounds are probably related
to some tiling properties. In the case of the 2-domination and the Roman domination, it is not prop-
erly speaking a tiling problem, but a generalised tiling problem with some weights (see Figure 4). The
properties we write below are rather focused on standard tilings.

The dynamic algorithm or transfer matrix exponentiation for grids of small heights is likely to work for
any similar problem. Indeed, for a fixed number of lines and columns, it only needs an adaptation of the
special sets of states and of the compatibility relation. To extend it to an infinite number of columns, it
is sufficient to have a primitive transfer matrix. However, properties enabling the method to work for a
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1

1

cost=2

cost=2
(a) The 2-domination shape

cost=1

cost=2
(b) The Roman domination shapes

Figure 4: The shapes for the 2-domination and the Roman domination. For the 2-domination, we look for a covering
such that the sum of the weights (in white) on a cell is at least 2. For the Roman domination, we cover with two tiles,
but they have different costs. We are interested in a covering of minimum weight.

(arbitrarily) large number of lines are yet to be found. One crucial point is the following property.

Property 1 (Fixed-height border-fixing). LetX be a shape. X has the fixed-height border-fixing property
if there exist k, n0,m0 such that, for any n ≥ n0 and m ≥ m0, there exists an optimal covering of the
n×m rectangle whose cells at distance greater than k of the border constitute a subtiling of the plane.

For instance, the 2-domination shape has this property for k = 3: any optimal solution to the 2-
domination problem can be obtained from an infinite optimal 2-domination set of which we modify only
cells at distance at most 3 from the border. Note that, due to the automation feature of the algorithm, this
is indeed k = 3 here even if the program needs to explore borders of size 6 to find the correct bounds.

The fixed-height border-fixing property implies that the bounds given by the method are sharp for some
height of band, independent of the size of the rectangle. It seems to be related to the following property.

Property 2 (Crystallisation). Let X be a shape. We say that X has the crystallisation property if there
exists k ∈ N such that for every partial tiling of size k with the shape X , either this tiling cannot be
extended to tile the plane, or there is a unique way to do so.

For instance, the domination shape has this property for k = 2. On the contrary, the total domination,
which has been studied in grids by Gravier [6] does not have this property. The total-domination problem
has been studied a lot in other graphs (see [7] for example), but remains open for grids. The total-
domination problem is related to the shapes in Figure 5. The small one corresponds to the influence of
one ”stone”: note that it does not dominates itself. The big ones are the unions of two copies of the small
one. One can see that tiling the plane with the small shape is equivalent to tiling the plane with the set
of the two big shapes: in the small shape, the cell middle cell must be dominated. As shown, the big
shape can be vertical or horizontal. The problem with our technique is that a tiling of the plane can, with
a certain degree of freedom, mix the vertical and the horizontal big shapes. This probably leads to some
non-zero loss in the center of a big grid to be necessary for a covering to be of minimum size. In this case
the assumption of the loss on the border being zero would be false, making our technique not usable.
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Figure 5: The shapes associated with the total domination. The big ones are the two different unions of two copies
of the small one. Tiling the plane with the small one boils down to tiling the planes with the two big ones.

Conjecture 1. If a shape X tile the plane and has the crystallisation property then it also has the fixed-
height border-fixing property.

These properties could also be used on covering problems even if they have no relation with any domi-
nation problem on grids.
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