Colouring the Square of the Cartesian Product of Trees
David R. Wood

To cite this version:

HAL Id: hal-00990503
https://hal.inria.fr/hal-00990503
Submitted on 13 May 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
We prove upper and lower bounds on the chromatic number of the square of the cartesian product of trees. The bounds are equal if each tree has even maximum degree.

Keywords: cartesian product, colouring, square graph

1 Introduction

This paper studies colourings of the square of cartesian products of trees. For simplicity we assume that a tree has at least one edge.

For our purposes, a colouring of a graph G is a function $c : V(G) \rightarrow \mathbb{Z}$ such that $c(v) \neq c(w)$ for every edge vw of G. The square graph G^2 of G has vertex set $V(G)$, where two vertices are adjacent in G^2 whenever they are adjacent in G or have a common neighbour in G. Thus, a colouring of G^2 corresponds to a colouring of G, such that in addition, vertices with a common neighbour in G are assigned distinct colours.

Let $[a, b] := \{a, a + 1, \ldots, b\}$. The cartesian product of graphs G_1, \ldots, G_d is the graph $G_1 \square \cdots \square G_d$ with vertex set $\{(v_1, \ldots, v_d) : v_i \in V(G_i)\}$, where vertices $v = (v_1, \ldots, v_d)$ and $w = (w_1, \ldots, w_d)$ are adjacent whenever $v_i w_i \in E(G_i)$ for some $i \in [1, d]$, and $v_j = w_j$ for all $j \neq i$. In this case, vw is in dimension i. Let $\Delta(G)$ be the maximum degree of G.

Theorem 1 Let T_1, \ldots, T_d be trees. Let $G := T_1 \square T_2 \square \cdots \square T_d$. Then

$$1 + \sum_{i=1}^{d} \Delta(T_i) \leq \chi(G^2) \leq 1 + 2 \sum_{i=1}^{d} \left\lceil \frac{1}{2} \Delta(T_i) \right\rceil.$$

This upper bound improves upon a similar bound by [Jamison et al., 2006], who proved $\chi(G^2) \leq 1 + 2 \sum_{i=1}^{d} (\Delta(T_i) - 1)$, assuming that each $\Delta(T_i) \geq 2$. Theorem 1 implies:

†woodd@unimelb.edu.au. Supported by a QEII Research Fellowship from the Australian Research Council.

1365–8050 © 2011 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
Corollary 1 Let T_1, \ldots, T_d be trees, such that $\Delta(T_i)$ is even for all $i \in [1, d]$. Let $G := T_1 \square T_2 \square \cdots \square T_d$. Then

$$\chi(G^2) = 1 + \sum_{i=1}^d \Delta(T_i).$$

This corollary generalises a result of [Fertin et al., 2003], who proved it when each T_i is a path, and thus G is a d-dimensional grid. See [Sopena and Wu, 2010; Fertin et al., 2004; Por and Wood, 2009; Jamison et al., 2006; Chiang and Yan, 2008] for more related results.

2 The Proof

For a colouring c of a graph G, the span of an edge vw of G is $|c(v) - c(w)|$. The following lemma is well known; see [Por and Wood, 2009] for example.

Lemma 1 Let G be a graph. If G^2 has a colouring in which every edge of G has span at most s, then G^2 is $(2s + 1)$-colourable.

Proof: Let $c : V(G^2) \to \mathbb{Z}$ be the given colouring of G^2. Since every edge of G has span at most s, every edge of G^2 has span at most $2s$. Let $c'(v) := c(v) \mod (2s + 1)$ for each vertex v. Then $c'(v) \neq c'(w)$ for each edge vw of G^2. Thus G^2 is $(2s + 1)$-colourable.

Lemma 2 For every tree T and non-negative integer s, T^2 has a colouring such that every edge of T has span in $[s + 1, s + \lfloor \frac{1}{2} \Delta(T) \rfloor]$.

Proof: We proceed by induction on $|V(T)|$. If $|V(T)| = 2$ the result is trivial. Now assume that $|V(T)| \geq 3$. Let v be a leaf vertex of T. Let w be the neighbour of v. By induction, $(T - v)^2$ has a colouring c such that every edge of $T - v$ has span in $[s + 1, s + \lfloor \frac{1}{2} \Delta(T) \rfloor]$. Let

$$X := \{x \in \mathbb{Z} : x \in [s + 1, s + \lfloor \frac{1}{2} \Delta(T) \rfloor] \}.$$

Each neighbour of w in $T - v$ is coloured $c(w) + x$ for some $x \in X$. Since $|X| \geq \Delta(T)$ and w has degree less than $\Delta(T)$ in $T - v$, for some $x \in X$, no neighbour of w is coloured $c(w) + x$. Set $c(v) := c(w) + x$. Thus $|c(v) - c(w)| = |x| \in [s + 1, s + \lfloor \frac{1}{2} \Delta(T) \rfloor]$. No two neighbours of w receive the same colour. Hence c is the desired colouring of T.

Proof of Theorem[1] The lower bound is well known [Jamison et al., 2006]. In particular, for $i \in [1, d]$, let v_i be a vertex of maximum degree in T_i. Then (v_1, \ldots, v_d) has degree $\sum_i \Delta(T_i)$ in G. This vertex and its neighbours in G receive distinct colours in any colouring of G^2. Thus $\chi(G^2) \geq 1 + \sum_i \Delta(T_i)$.

Now we prove the upper bound. Let $s_1 := 0$ and $s_i := \sum_{j=1}^{i-1} \lfloor \frac{1}{2} \Delta(T_j) \rfloor$. By Lemma 2, T^2_d has a colouring c_i such that every edge of T_i has span in $[s_i + 1, s_i + \lfloor \frac{1}{2} \Delta(T_i) \rfloor]$. Thus the spans of edges in distinct trees are distinct.

Colour each vertex $v = (v_1, \ldots, v_d)$ of G by $c(v) := \sum_{i=1}^d c_i(v_i)$.

Suppose on the contrary that $c(v) = c(w)$ for some edge vw of G. Say vw is in dimension i. Thus $v_j = w_j$ for all $j \neq i$. Hence $c_i(v_i) = c_i(w_i)$, and c_i is not a colouring of G. This contradiction proves that c is a colouring of G.

David R. Wood

110
Suppose on the contrary that \(c(x) = c(y) \) for two vertices \(x \) and \(y \) with a common neighbour \(v \) in \(G \). Say \(vx \) is in dimension \(i \), and \(vy \) is in dimension \(j \). Thus \(v_\ell = x_\ell \) for all \(\ell \neq i \), and \(v_\ell = y_\ell \) for all \(\ell \neq j \). Now \(c_i(x) - c_i(v) = c(x) - c(v) = c(y) - c(v) = c_j(y) - c_j(v_j) \). Thus the edges \(x, v_i \) and \(y, v_j \) have the same span. Since the spans of edges in distinct trees are distinct, \(i = j \). Hence \(c_i(x_i) = c_i(y_i) \). However, \(v_i \) is a common neighbour of \(x_i \) and \(y_i \) in \(T_i \), implying \(c_i \) is not a colouring of \(T_i^2 \). This contradiction proves that \(c \) is a colouring of \(G^2 \).

Each edge of \(G \) has span at most \(\sum_{i=1}^{d} \lceil \frac{1}{2} \Delta(T_i) \rceil \). The result follows from Lemma 1. \(\square \)

References

