Characterising and recognising game-perfect graphs

Stephan Dominique Andres

1 Faculty of Mathematics and Computer Science, FernUniversität in Hagen, Germany

Edwin Lock

2 Department of Computer Science, University of Oxford, United Kingdom

Consider a vertex colouring game played on a simple graph with \(k \) permissible colours. Two players, a maker and a breaker, take turns to colour an uncoloured vertex such that adjacent vertices receive different colours. The game ends once the graph is fully coloured, in which case the maker wins, or the graph can no longer be fully coloured, in which case the breaker wins. In the game \(g_B \), the breaker makes the first move. Our main focus is on the class of \(g_B \)-perfect graphs: graphs such that for every induced subgraph \(H \), the game \(g_B \) played on \(H \) admits a winning strategy for the maker with only \(\omega(H) \) colours, where \(\omega(H) \) denotes the clique number of \(H \). Complementing analogous results for other variations of the game, we characterise \(g_B \)-perfect graphs in two ways, by forbidden induced subgraphs and by explicit structural descriptions. We also present a clique module decomposition, which may be of independent interest, that allows us to efficiently recognise \(g_B \)-perfect graphs.

Keywords: graph colouring game, game chromatic number, game-perfect graph, perfect graph, dominating edge decomposition, clique module decomposition, forbidden induced subgraph characterisation

1 Introduction

1.1 The vertex colouring games

In a vertex colouring game first mentioned by [Gardner (1981)] and formally introduced by [Bodlaender (1991)], two players take turns to colour an uncoloured vertex of a simple (undirected) graph \(G \) with one of \(k \) permissible colours such that adjacent vertices receive different colours. One player, Alice (the maker), aims to achieve a complete graph colouring, while the other player, Bob (the breaker), attempts to prevent this from happening by ensuring that some uncoloured vertex has neighbours coloured in all \(k \) colours. If Alice succeeds in finding a strategy that forces Bob to cooperate in colouring the whole graph, she wins, otherwise Bob wins.

We denote the games in which Alice and Bob start by \(g_A \) and \(g_B \), respectively. It also turns out to be useful to consider games where either Alice or Bob is permitted to miss their turn, leading to four new games \(g_{A,A}, g_{A,B}, g_{B,A} \) and \(g_{B,B} \). Here the first entry of the index denotes the starting player and the
second entry indicates the player who may miss any number of turns; in particular, they may also miss their first turn. For any game \(g \) of the six games defined above, the \(g \)-chromatic number \(\chi_g(G) \) of a graph \(G \) denotes the minimum number of colours required for Alice to win the game on \(G \). In this paper, all graphs are simple and undirected.

1.2 Motivation

Graph colouring games have received a great deal of attention over the last three decades (Dunn et al., 2017; Tuza and Zhu, 2015). One area of interest has been to identify good upper bounds for the \(g_A \)-chromatic number (also known as \textit{game-chromatic number}) of certain classes of graphs. Faigle et al. (1993) showed that \(\chi_{g_A}(F) \leq 4 \) for any forest \(F \), and more recently Zhu (2008b) proved that \(\chi_{g_A}(G) \leq 17 \) if \(G \) is planar. Other graph classes with known constant upper bounds include cactuses (Sidorowicz, 2007), partial \(k \)-trees (Zhu, 2000) and outerplanar graphs (Guan and Zhu, 1999). These bounds are known to be tight only for forests and cactuses.

For other graph classes, upper bounds for \(\chi_{g_A} \) are known only as a function of the clique number \(\omega(\cdot) \). The first such result was obtained by Faigle et al. (1993), who proved that \(\chi_{g_A}(I) \leq 3\omega(I) - 2 \) for any interval graph \(I \). Subsequently, upper bounds in terms of the clique number were also found for line graphs of various \(k \)-degenerate graph classes (Cai and Zhu, 2001; Erdős et al., 2004), Husimi trees (Sidorowicz, 2010), and various incidence graphs (Charpentier and Sopena, 2013). Many of the upper bounds above are the result of studying the \textit{colouring number}, a game invariant associated with the ‘colourblind’ marking game introduced by Zhu (1999), and exploiting the fact that the colouring number is an upper bound for the game-chromatic number for any graph. In order to tighten specific bounds for the game-chromatic number it may be necessary to design winning strategies for Alice that are not ‘colourblind’. A further ‘first-fit’ variant of the graph colouring game is the Grundy colouring game introduced by Havet and Zhu (2013). The game-chromatic number has also been studied in the context of random graphs (Bohman et al., 2008).

While much of the literature on the vertex colouring game has focussed on the game \(g_A \), there can be large discrepancies between the \(g \)-chromatic numbers of the different game variants \(g \). Indeed, some effects of allowing a player to skip moves have been analysed by Zhu (2008a) for the marking game.

In his original paper on vertex colouring games, Bodlaender (1991) asked about the complexity of deciding whether Alice can win the game \(g_A \) on a graph \(G \) with \(k \) colours. This problem is in P for \(k \leq 2 \) (cf. Andres (2009, Theorems 3, 15, 17, 18)). While it is easy to see that this decision problem is in PSPACE by constructing an alternating algorithm that simulates the game, the question of PSPACE-hardness remains open for all \(k \geq 3 \) and all the game variants mentioned above. In light of the lack of progress on the complexity of the colouring games in the general case, one might seek to restrict oneself to graph classes in which the games can be decided efficiently. This approach mirrors results achieved in the classic, non-competitive graph colouring setting.

It is well-known that deciding whether a given graph admits a proper colouring with \(k \geq 3 \) colours is NP-hard (Karp, 1972). For this reason, restricted classes of graphs that can be coloured efficiently are of major interest (Golumbic, 2004). Perhaps the most well-known such class, the perfect graphs, has been the subject of several seminal results. A graph \(G \) is considered to be \textit{perfect} if \(\omega(H) = \chi(H) \) for all induced subgraphs \(H \) of \(G \), where \(\chi(\cdot) \) denotes the chromatic number and \(\omega(\cdot) \) denotes the clique number. Grötschel et al. (1981) proved that colouring perfect graphs is in P. More recently, Chudnovsky et al. (2005) showed that recognising perfect graphs can be achieved in polynomial time. One year later,
Characterising and recognising game-perfect graphs

the famous Strong Perfect Graph Theorem by Chudnovsky et al. (2006) characterised perfect graphs by means of forbidden induced subgraphs. Andres (2009) introduced the notion of game-perfect graphs with respect to any of the six games defined in Section 1.1. For any such game \(g \), a graph \(G \) is game-perfect with regard to \(g \) (or simply \(g \)-perfect) if

\[
\chi_g(H) = \omega(H)
\]

for all induced subgraphs \(H \) of \(G \). It is easy to see that \(\omega(G) \leq \chi(G) \leq \chi_g(G) \) for any graph \(G \) and game \(g \), which implies that the game-perfect graphs are a subset of the perfect graphs.

In analogy to the Strong Perfect Graph Theorem, Andres (2012) obtained the following characterisations for \(g_{A,B} \), \(g_{A,B} \) and \(g_{B,B} \)-perfect graphs.

Theorem 1 (Andres (2012)).
For any graph \(G \), the following are equivalent.

(i) \(G \) is \(g_{B,B} \)-perfect.

(ii) \(G \) contains no induced \(P_4, C_4 \), split 3-star or double fan (see Figure 1).

(iii) Every connected component \(C \) of \(G \) is an instance of the graph class \(E_1 \) (see Figure 3).

Theorem 2 (Andres (2012)).
For any graph \(G \), the following are equivalent.

(i) \(G \) is \(g_A \)-perfect.

(ii) \(G \) is \(g_{A,B} \)-perfect.

(iii) \(G \) contains none of the following as induced subgraphs: a \(P_4, C_4 \), triangle star, \(Z \)-graph, the union of two double fans, the union of two split 3-stars or the union of a double fan with a split 3-star (see Figure 2).

(iv) If \(C_1, \ldots, C_k \) are the connected components of \(G \) and \(k \geq 1 \), then without loss of generality \(C_1 \) contains a dominating vertex \(v \) such that \(G - v \) is \(g_{B,B} \)-perfect.

Furthermore, the following holds for disconnected graphs.

Theorem 3 (Andres (2012)).
Disconnected \(g_{B,B} \)-perfect graphs are \(g_{B,B} \)-perfect.

We note that, by definition, the classes of \(g \)-perfect graphs are hereditary, whereas in general, graphs may have a smaller \(g \)-chromatic number than some of their induced subgraphs. It is also worth highlighting that the \(g_A \), \(g_{A,B} \) and \(g_{B,B} \)-perfect graphs are all trivially perfect (cf. Golumbic (2004, 1978); Wolk (1965)), whereas the class of \(g_B \)-perfect graphs is not, suggesting a richer family of structures.

1.3 Our results

In this paper, we provide two characterisations of \(g_B \)-perfect graphs, one in terms of forbidden induced subgraphs and one by means of explicit structural descriptions. This constitutes the main result of this paper, extending Theorem 3 and complementing Theorems 1 and 2, which provide a characterisation of \(g_A \), \(g_{A,B} \) and \(g_{B,B} \)-perfect graphs.
Theorem 4 (main result). For any graph G, the following are equivalent.

(i) G is g_B-perfect.

(ii) G contains no induced F_1, \ldots, F_{15} (see Figure 1).

(iii) G is an instance of one of the graph classes E_1, E_2, \ldots, E_9 (see Section 2 and Figure 3).

We give a brief overview of the proof of Theorem 4 and refer to the following sections for the remaining parts of the proof.

Proof overview: We can assume that G has two or more vertices. The implication (i) \Rightarrow (ii) is proved in Theorem 9 of Section 3, where we give winning strategies for Bob on F_1, \ldots, F_{15} with $\omega(F_i)$ colours.

For the implication (ii) \Rightarrow (iii), let G be a graph without induced F_1, \ldots, F_{15}. If G is disconnected, it contains no induced P_4 or C_4, hence, by Theorem 1 each component is an instance of E_1, implying...
Characterising and recognising game-perfect graphs

$G \in E_1^U$. Now assume that G is connected. In Section 4, we show that G has a dominating edge and perform a dominating edge decomposition as well as a structural analysis of G. This leads to the case distinctions of Lemma 36 in Section 5, classifying G as an instance of E_1^U, E_2, \ldots, E_9.

Finally, to prove (iii) \Rightarrow (i), let G be an instance of E_1^U, E_2, \ldots, E_9 and let H be an induced subgraph of G. By Lemma 8 of Section 2, H is also an instance of E_1^U, E_2, \ldots, E_9. In Section 6, we present a strategy for each of these graph classes that allows Alice to win on any graph H in that class with $\omega(H)$ colours, implying that G is g_B-perfect.

Recall that the g_B-chromatic number is lower-bounded by the clique number. Our main result, Theorem 4, identifies a class of graphs for which the two invariants coincide, thus establishing a tight upper bound. Whereas most results in the literature rely on the marking game to establish similar upper bounds, Theorem 4 is achieved by providing strategies for Alice that are not ‘colourblind’ but rely on Alice’s ability to recognise the specific colours that Bob has used.

Both characterisations obtained in Theorem 4 are instructive from an algorithmic perspective, as they each facilitate polynomial time checking of g_B-perfectness. The forbidden subgraph characterisation immediately yields the following $O(n^7)$-time algorithm, where n is the order of the graph: given a graph G, check for any subgraph of G with 5 or 7 vertices whether it is one of the fifteen forbidden graphs. Improving on this, we introduce a clique module decomposition technique in Section 7, which, together with the explicit structural characterisation of Theorems 1-4, allows us to formulate an $O(n^2)$ time algorithm for checking whether a graph is g_A- or g_B-perfect. This yields the following complexity results, which are proved in Section 7.2.

Theorem 5. There is an $O(n^2)$ time algorithm deciding whether a graph G with n vertices is g_B-perfect (or g_A-perfect).

Corollary 6. Alice can win on any g_A- or g_B-perfect graph G with $\omega(G)$ colours using only $O(n^2)$ computational time.

It is a standard exercise to show that HAMILTON CYCLE, the problem of deciding whether a graph has a Hamilton cycle, is NP-complete even for bipartite graphs (Krishnamoorthy, 1975), which form a subset of the perfect graphs. In Corollary 7 we see that this is no longer the case for game-perfect graphs.

Corollary 7. HAMILTON CYCLE is in P for g_A- and g_B-perfect graphs.
1.4 Organisation

The rest of this paper is structured as follows. In Section 2 we introduce the classes occurring in the structural characterisation of g_B-perfect graphs in Theorem 4 (iii). Sections 3 – 6 are devoted to the proof of Theorem 4. In Section 7, we state our complexity results (Theorem 5 and Corollary 7). We conclude by discussing the implications of our work to open problems in Section 8.

2 Notation and the classes E_1 to E_9

P_n and C_n denote the path and cycle graph with n vertices, K_n is the complete graph (or clique) with n vertices and $K_{m,n}$ is the complete bipartite graph with vertex partitions of size m and n. A graph is null if it has no vertices. For any graph G, let $V(G)$ and $E(G)$ denote the set of its vertices and edges, respectively. Denote by $N_G(v)$ the set of neighbours of v in G and by $N_G[v] := N_G(v) \cup \{v\}$ the set of neighbours of v together with v itself. We omit the subscript when G is clear from context.

![Diagrams](image.png)

Fig. 3: The nine structural possibilities for connected g_B-perfect graphs.
Classification of Game-Perfect Graphs

<table>
<thead>
<tr>
<th>Class E_1</th>
<th>Class E_2</th>
<th>Class E_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>class of $G - K$</td>
<td>K</td>
</tr>
<tr>
<td>centre</td>
<td>$E_1^{\geq 1}$</td>
<td>x_1/x_2</td>
</tr>
<tr>
<td>K_a</td>
<td>$E_1^{= 1}$</td>
<td>y_1/y_2</td>
</tr>
<tr>
<td>K_i/K_c</td>
<td>$E_1^{> 1}$</td>
<td>K_a</td>
</tr>
<tr>
<td>H_i</td>
<td>E_1</td>
<td>K_c/K_b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class E_4</th>
<th>Class E_5</th>
<th>Class E_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>class of $G - K$</td>
<td>K</td>
</tr>
<tr>
<td>a</td>
<td>E_4 or $E_1^{> 1}$</td>
<td>A_i/Z_i</td>
</tr>
<tr>
<td>b</td>
<td>E_1 by def.</td>
<td>A_R/Z_R</td>
</tr>
<tr>
<td>c</td>
<td>E_4 or E_5</td>
<td></td>
</tr>
<tr>
<td>K_m</td>
<td>E_7</td>
<td></td>
</tr>
<tr>
<td>K_n</td>
<td>E_7 or E_1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class E_7</th>
<th>Class E_8</th>
<th>Class E_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>class of $G - K$</td>
<td>K</td>
</tr>
<tr>
<td>a</td>
<td>$E_1^{\geq 1}$</td>
<td>a/c</td>
</tr>
<tr>
<td>b</td>
<td>E_7 or $E_1^{\geq 1}$</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>E_1</td>
<td>lower</td>
</tr>
<tr>
<td>lower $\neq b$</td>
<td>E_7 by def.</td>
<td>K_n</td>
</tr>
<tr>
<td>K_n</td>
<td>E_9</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 1: An illustration of the hereditary property of E. We list for each $G \in E_1^{\geq 1}, E_2, \ldots, E_9$ the class to which $G - K$ belongs, where K is a maximal clique module of G. Two cases are given in some entries depending on the existence of the optional vertex or the optional edges.

Given two graphs G and H with disjoint vertex sets, their union $G \cup H$ is a graph on $V(G) \cup V(H)$ with edges $E(G) \cup E(H)$ and their join $G \vee H$ is defined as the same graph with additional edges vw for every pair $(v, w) \in V(G) \times V(H)$. If G and H are not disjoint, we implicitly make isomorphic vertex-disjoint copies and proceed as above. Two subsets $S, T \subseteq V(G)$ in a graph G are completely connected if each vertex in S is adjacent to each vertex in T and disconnected if no edge exists between S and T. (Hence $V(G)$ and $V(H)$ are completely connected in $G \vee H$ and disconnected in $G \cup H$.) The subsets S, T are partially connected if they are neither completely connected nor disconnected.

We define the graph classes E_1, \ldots, E_9 by means of Figure 3 together with the following clarifications. Unless stated otherwise, large circles denote complete subgraphs of order at least 1 and small circles denote a single vertex. If the small circle is filled, then the vertex must be present in every graph of the graph class, otherwise (if it is hollow) it may be omitted. If two complete subgraphs or vertices are visually linked, they are completely connected, otherwise they are disconnected. Dashed lines indicate that the subgraphs or vertices may be either completely connected or disconnected. For E_1 we have $k \geq 0$ and for E_5 we have $k \geq 1$.
In the graph class E_1, we allow the large circles to be null graphs. Hence in terms of our notation introduced above, a graph G is in E_1 if and only if it consists of a subgraph $H_0 := K_a \lor (K_b \cup K_c)$ with $a, b, c \geq 0$ and any number $k \geq 0$ of complete subgraphs H_1, \ldots, H_k that are all completely connected to a dominating vertex. Additionally, we define E_{1+} as the graph class consisting of all graphs whose connected components are in E_1. In particular, the null graph K_0 is a member of E_{1+} (and of E_9). In E_2 we allow K_a to be null, and in E_5 we allow A_R and Z_R to be null. Finally, in any graph $G \in E_7$, vertex c is completely connected to K_n or vertex b (or both).

Many of the E_i can be considered as expanded forms of simple base graphs obtained by replacing single vertices with complete graphs and respecting edge relations. In Subsection 7.1 we show that these base graphs can be recovered from an expanded graph by means of a clique module decomposition technique. The base graphs of E_5, for instance, can be described as complements of complete bipartite graphs minus an almost maximal matching, or cocobi for short. This gives rise to our names for classes E_3 to E_9.

Finally, the names of E_1 and E_2 have historic reasons. In the following lemma, we show that the union of all our classes, $E := E_{1+} \cup \bigcup_{i=2}^9 E_i$, is hereditary.

Lemma 8. Any induced subgraph of a graph in E is also in E.

Proof: With Table 1, the reader will easily verify that removing a single vertex v from a graph G in E indeed results in a graph $G - v$ that is in E. Fix an induced subgraph H of $G \in E$. Then removing vertices $V(G) \setminus V(H)$ from G one by one yields H and the graph remains in E after each step. \hfill \Box

3 The forbidden induced subgraphs F_1 to F_{15}

Here we prove the implication (i) ⇒ (ii) of Theorem 4, restated as Theorem 9 below.

Theorem 9. If G is a g_B-perfect graph, then it contains no induced F_1, \ldots, F_{15} from Figure 1.

Proof: It suffices to show for every $1 \leq i \leq 15$ how Bob can win the game g_B on F_i with $w(F_i)$ colours. As this is already known for F_1, \ldots, F_9 (Andres 2012), we provide strategies for Bob on graphs F_{10}, \ldots, F_{15} that allow him to win. All six graphs have clique number $\omega(F_i) = 3$. Without loss of generality, we refer to the vertex labels assigned in Figure 1 and assume that the colours used appear in the order red, green and blue. A vertex is considered to be surrounded if it has neighbours coloured in all $w(F_i)$ possible colours. Note that once any vertex is surrounded, Bob wins. The following observation gives a second condition that guarantees a win for Bob.

Observation 10. Bob wins as soon as the remaining uncoloured vertices in the graph induce a C_4 or P_4 and admit colours green and blue but not red, and Alice is about to make the next move.

F_{10}: Note that in any proper colouring with three colours, d and e must be coloured the same. Hence Bob starts with c in red and Alice must respond with d in red. Bob then colours b in green. If Alice now colours a in red, then Bob can surround e by colouring f in blue. If Alice colours a in blue, then she herself surrounds c. If she colours c in blue, then Bob wins by colouring g in green. If Alice colours f or g in either possible colour, then Bob can colour a in blue and surround c.

Characterising and recognising game-perfect graphs

F_{11}: Bob begins with d in red. Due to symmetry, there are three possibilities. If Alice colours c green, then Bob responds with g in blue and surrounds e. If Alice instead colours a green, then Bob responds with e in blue and surrounds c. If Alice colours a red, then Bob colours g red and wins by Observation 10 due to the P_4 induced by the remaining uncoloured vertices.

F_{12}: Bob starts with a in red. If Alice colours c or e green, then Bob colours the other vertex blue, surrounding f and g. If Alice instead colours b, d, f or g green, then Bob colours another of these vertices blue, surrounding c. Finally, if she colours f (or g) red, then Bob colours d red and vice versa. By Observation 10 the P_4 induced by the remaining uncoloured vertices implies that Bob wins.

F_{13} and F_{14}: In any proper colouring with three colours, b and e are coloured the same and g receives a different colour to b and e. Bob begins with g in red. If Alice colours e or b, then Bob colours the other vertex in a different colour and wins. Hence by symmetry we assume Alice colours a. If she colours a red, then Bob responds with c in red and wins by Observation 10 due to the C_4 induced by the remaining uncoloured vertices.

F_{15}: Observe that the pairs b, c and d, g must be uniformly coloured. Bob starts with b in red. Alice colours c red to stop Bob from colouring c in a different colour on his next move. Bob then colours f red and wins by Observation 10 due to the P_4 induced by the remaining uncoloured vertices.

4 The dominating edge decomposition

In the following two sections we prove the implication (ii) \Rightarrow (iii) of Theorem 4. We can assume that G is connected and has order at least 2. Indeed, for the graphs K_0 and K_1 the statement is trivially true. Furthermore, suppose G is disconnected. Since F_3 and F_7 are forbidden and G has at least two components, the graph G contains no induced P_4 or C_4. As G also contains no split 3-star (F_5) or double fan (F_9), Theorem 1 implies $G \in E_1 \cup 1$ and we are done. Note that this argument proves Theorem 3.

Hence from now on, assume that G is a connected graph of order at least 2 that does not contain graphs F_1 to F_{15} as induced subgraphs. In the remainder of this section we prove structural properties of G. These results form the technical basis of the proof of implication (ii) \Rightarrow (iii) in Theorem 4, which is concluded by means of a series of structural case distinctions in Section 5.

First we prove that G admits a decomposition into a dominating edge and three subgraphs G_1, G_2 and G_3, as shown in Figure 4. We then identify the structures of G_1, G_2 and G_3 (in Section 4.1) and the relationship between them (in Sections 4.2 and 4.3). This allows us to explicitly describe the structure of G as belonging to one of the classes E_1^1, E_2, \ldots, E_9 in Section 5 Lemma 36. The following result by Cozzens and Kelleher (1990) provides the starting point for our decomposition.

Lemma 11 (Cozzens and Kelleher (1990)). Connected graphs of order at least 2 without an induced P_5, C_5 or 3-spider with thin legs (see Figure 5(a)) have a dominating edge.

Corollary 12. Our graph G has a dominating edge.
Stephan Dominique Andres, Edwin Lock

Fig. 4: The dominating edge graph decomposition corresponding to Definition 13.

Fig. 5: (a) The 3-spider with thin legs is a forbidden graph for Lemma 11. (b) The 3-star is a forbidden graph for Lemma 15.

Proof: By assumption, G has no induced P_5 or C_5. It also has no induced 3-spider with thin legs, as this would imply an induced F_3 obtained by removing a vertex of degree 3 from the 3-spider. Hence we can apply Lemma 11.

From now on, fix a dominating edge x_1x_2 in G. We define subgraphs G_1, G_2 and G_3 relative to this edge as follows.

Definition 13. G_1 is the subgraph of G induced by the vertex set $N_G(x_1) \setminus N_G[x_2]$, the graph G_2 is induced by the vertex set $N_G(x_2) \setminus N_G[x_1]$, and G_3 is induced by the vertex set $N_G(x_1) \cap N_G(x_2)$.

4.1 The internal structures of G_1, G_2 and G_3

The structures of G_1, G_2 and G_3 and the relationships between the three subgraphs satisfy certain rules that we express as a series of lemmas in the following three subsections. Note that by renaming x_1 to x_2, G_1 becomes G_2, and vice versa. In particular, all statements and proofs below concerning G_1 also hold for G_2 by symmetry. First of all, we describe the internal structures of G_1, G_2 and G_3. The following structural lemma turns out to be useful.

Definition 14. A graph H is a possibly degenerate ear graph if it has the structure $H = K_r \lor (K_p \cup K_q)$ with $p, q, r \geq 0$. We call H an ear graph if $p, q, r \geq 1$ (see Figure 6).

Lemma 15. A connected, non-complete graph H of order at least 3 without an induced P_4, C_4 or 3-star (see Figure 5(b)) is an ear graph.

Proof of Lemma 15. We proceed by induction on the number of vertices. Let H be a connected, non-complete graph. If H has three vertices, then it is a P_3. Now suppose H has order greater than three.
and pick a vertex x in H such that $H - x$ is connected. If $H - x$ is complete, then we are done. Otherwise, we have $H - x = K_r \lor (K_p \cup K_q)$ for some $p, q, r \geq 1$ by induction hypothesis. As H is connected, x is adjacent to some vertex in K_p or K_q, or else H contains an induced 3-star. Thus x must be completely connected to K_r, or else H contains a P_4 or C_4. Moreover, x is either completely connected or disconnected from K_p and K_q, or else H contains a 3-star or P_4. Hence without loss of generality, x is completely connected to K_r and K_p and either completely connected to or disconnected from K_q. □

Lemma [15] allows us to characterise the inner structures of G_1, G_2 and G_3 as follows.

Lemma 16. G_1 has at most one non-complete component. Moreover, N is an ear graph.

Proof: If G_1 had two non-complete components, then each component would contain an induced P_3 which, together with x_1, would induce a double fan (F_3). Now let N be a non-complete component of G_1. We apply Lemma [15] as N contains no induced P_3, C_4 or 3-star. A P_4 would induce an F_3 together with x_2, a C_4 would induce an F_7 together with x_2 and a 3-star would induce a split 3-star (F_5) together with x_1. □

Lemma 17. G_3 is a possibly degenerate ear graph.

Proof: Note that no set of three vertices in G_3 is independent, or else it would induce a split 3-star together with x_1 and x_2. This implies that G_3 is either connected or has at most two components which are both complete. If G_3 is complete or has two components, then we are done. Hence let G_3 be connected and not complete. By assumption, G_3 has no induced 3-star, P_3 or C_4, as they respectively induce a split 3-star (F_3), 4-fan (F_4) or 4-wheel (F_8) together with x_1, and we can apply Lemma [15] □.

4.2 The adjacency relations between G_1 and G_2

In this subsection we study the possible adjacency relations between G_1 and G_2. Our first lemma establishes that G_1 and G_2 must be almost completely connected in a specific, well-defined way. This result will be used frequently.

Lemma 18. Let G_1 and G_2 both be non-empty. With the exception of one pair of components (X, Y), where X is a component of G_1 and Y is a component of G_2, every component of G_1 is completely connected to every component of G_2. X and Y may be completely connected, partially connected or disconnected.

Note that if G_1 and G_2 consist of the single components X and Y, respectively, then Lemma [18] trivially states that G_1 and G_2 may be disconnected, partially connected or completely connected.

Proof of Lemma [18]: If both G_1 and G_2 consist of a single component, the statement holds vacuously. Hence assume without loss of generality that G_1 has at least two components X and X'. Suppose neither X nor X' is completely connected to G_2. Then there exists a vertex $a \in X$ not adjacent to some $v \in G_2$ and a vertex $b \in X'$ not adjacent to some $w \in G_2$. If $v = w$, then the vertices a, b, w, x_1 and x_2 induce a chair (F_1). Now assume that $v \neq w$: we distinguish between two cases due to symmetry. If there is no edge between a and w, then the same vertices again induce a chair (F_1). If the edges aw and bv both exist, then the vertices a, b, v, w and x_1 induce a P_5 (F_3) or C_5 (F_6), depending on whether v and w are adjacent in G_2. Hence all but one component of G_1 must be completely connected to G_2 and by symmetry, all but one component in G_2 must be completely connected to G_1. □
The next lemma shows what constraints the existence of a non-complete component of G_1 places on G_2.

Lemma 19. If G_1 has an ear graph component $N = K_r \lor (K_p \lor K_q)$ with $p, q, r \geq 1$, then the following holds.

(i) G_2 has at most one vertex v.

(ii) If G_2 is a singleton graph, then it is completely connected to K_p and K_q and disconnected from K_r.

(iii) If $p, q \geq 2$, then G_2 is null.

Proof: Let $a \in K_p$, $b \in K_r$, $c \in K_q$ be three vertices in N that induce a P_3. We first show that any vertex v in G_2 must be completely connected to K_p and K_q and disconnected from K_r. If v is adjacent to none of the three vertices a, b and c, then the vertices a, c, v, x_1 and x_2 induce a chair (F_3). If v is adjacent to exactly one of the three, then the vertices a, b, c, v and x_2 induce a chair (F_3) or a F_5 (F_2). Finally, if v is adjacent to a and b, to b and c, or all three, then the vertices a, b, c, v and x_1 induce a 4-fan (F_4) or 4-wheel (F_5). This proves (i).

Now suppose G_2 has two vertices v and w. Then they are both adjacent to a and c and not adjacent to b. If v and w are not adjacent, then the vertices b, v, w, x_1 and x_2 induce a chair (F_3), otherwise the vertices a, c, v, w and x_2 induce a split 3-star (F_5). This proves (i).

To prove the second part of (ii), let v be the vertex of G_2, and suppose d is a vertex in a second component of G_1. As v and N are not completely connected, Lemma 18 implies that d is adjacent to v and the vertices a, b, d, v and x_2 induce a chair (F_3).

Finally, to prove (iii), suppose that $p, q \geq 2$ and let a' and c' be additional vertices in K_p, K_q, respectively. If G_2 contains a vertex v, then it is adjacent to a, a', c, c' by (ii) and the vertices a, a', c, c', v, x_1 and x_2 induce an F_3.

The next four lemmas are useful in situations where we know that neither G_1 nor G_2 is null.

Lemma 20. If G_1 has two adjacent vertices a and b, and G_2 has two non-adjacent vertices u and v, then u and v cannot both be adjacent to a and b.

Proof: If the vertices u and v are both adjacent to a and b, then the vertices a, b, u, v and x_1 induce a split 3-star (F_5).

Lemma 21. Let G_1 and G_2 respectively contain components C and W of order at least 2. If G_1 has a vertex d not in C, then C and W are either disconnected or completely connected.

Proof: Suppose C and D are partially connected. Then there exist adjacent vertices a, $b \in C$ and adjacent vertices u, $v \in W$ that are partially connected and by Lemma 18 d must be adjacent to u and v. By Lemma 20 neither vertex a nor b is adjacent to both u and v, leading to two possibilities due to symmetry. If a is adjacent to u and b is not, then the vertices a, b, d, u and x_2 induce a chair (F_3). If both a and b are adjacent to u, then the vertices a, b, d, u, v, x_1 and x_2 induce an F_3.
Lemma 22. Unless G_2 is null, G_1 has at most one component of order at least 2.

Proof: Assume G_1 has two components of order at least 2 and let v be a vertex of G_2. Pick two adjacent vertices from each of the two components in G_1 and denote them by a, b and c, d, respectively. Due to Lemma 18 we assume without loss of generality that v is adjacent to a and b, which leads to three possibilities due to symmetry. If v is adjacent to neither c nor d, then the vertices a, b, c, d, v, x_1 and x_2 induce an F_{12}. If v is adjacent to c and not to d, then the vertices a, c, d, v and x_2 induce a chair (F_1). If v is adjacent to both c and d, then the vertices a, b, c, d, v, x_1 and x_2 induce an F_{14}.

Lemma 23. If G_1 has a component A of order at least 2, then G_2 has at most two components.

Proof: Let A be a component of G_1 of order at least 2 and a, b be two adjacent vertices in A. Suppose G_2 has three components C, D and E. Then without loss of generality, A is completely connected to C and D by Lemma 18, so a and b together with any $c \in C$, $d \in D$ and x_1 induce a split 3-star (F_3).

The following important structural result holds if both G_1 and G_2 are complete subgraphs.

Lemma 24. If G_1 and G_2 are both non-null complete subgraphs, then G_1 and G_2 can be partitioned into subgraphs $G_1 = A_R, A_1, \ldots, A_k$ and $G_2 = Z_R, Z_1, \ldots, Z_k$ for some $k \geq 0$ such that

- for all $i, j \in \{1, \ldots, k\}$ with $i \neq j$, A_i is completely connected to Z_i and disconnected from Z_j.
- A_R and Z_R are disconnected from all Z_i and A_i, respectively, and from each other.

This is illustrated by the graph class E_5 in Figure 3.

Proof: If both G_1 and G_2 consist of a single vertex, then the lemma is trivially true. Hence assume that G_1 has at least two vertices a and b, and let S_a be the set of vertices in G_2 adjacent to a. Note that b is either completely connected to or disconnected from S_a. To see this, suppose $v \in S_a$ is adjacent to a and b, and $w \in S_a$ is adjacent only to a. As G_1 and G_2 are complete, the vertices a, b, v, w and x_1 induce a 4-fan (F_4). This fact implies that for every two vertices $a, b \in G_1$, S_a and S_b are either disjoint or equal, which partitions G_2 as follows. The Z_1, \ldots, Z_k are all the possible distinct subgraphs of G_2 induced by S_a for some $a \in G_1$, while Z_R is the subgraph of G_2 induced by all vertices not adjacent to G_1.

From the partition of G_2 we also obtain a partition A_R, A_1, \ldots, A_k. Clearly, every vertex a in G_1 is adjacent to at most one subgraph Z_i, $1 \leq i \leq k$. Hence we define by A_i the subgraph induced by the subset of all vertices in G_1 adjacent to Z_i, and by A_R the subgraph of G_1 induced by all vertices not adjacent to any vertex in G_2.

4.3 The relationship between G_1/G_2 and G_3

Now that we have seen how different configurations of G_1 can be connected to G_2 and vice versa, regardless of the shape of G_3, we investigate how the existence and configuration of a non-null G_3 constrains the other two subgraphs. The following lemmas refer to a series of case distinctions on whether G_3 or G_1/G_2 contain a non-complete component. If G_3 is not complete, the case is simple and completely described by Lemma 25.

Lemma 25. If G_3 is not complete, G_3 is disconnected from G_1 and G_2. Moreover, neither G_1 nor G_2 contain a non-complete component.
Proof: Let \(y_1 \) and \(y_2 \) be two non-adjacent vertices in \(G_3 \), and let \(a \) be a vertex in \(G_1 \) (or \(G_2 \)). If \(a \) is adjacent to \(y_1 \) and/or \(y_2 \), then the vertices \(a, x_1, x_2, y_1 \) and \(y_2 \) induce a 4-fan (\(F_4 \)) or 4-wheel (\(F_8 \)). This shows that vertices \(y \in G_3 \) not dominating \(G_3 \) are disconnected from \(G_1 \) and \(G_2 \). Now suppose \(G_3 \) has a vertex \(y_3 \) dominating \(G_3 \). If \(a \) is adjacent to \(y_3 \), then the vertices \(a, x_1, y_1, y_2 \) and \(y_3 \) induce a split 3-star (\(F_5 \)). Hence no vertex in \(G_3 \) can be adjacent to \(G_1 \) or \(G_2 \). Secondly, suppose \(G_1 \) has a non-complete component \(N \). As this \(N \) contains an induced \(P_3 \) and none of the vertices in this \(P_3 \) are adjacent to \(y_1 \) or \(y_2 \), the \(P_3 \) and the vertices \(x_1, x_2, y_1 \) and \(y_2 \) induce a double fan (\(F_9 \)).

If \(G_3 \) is a non-null complete subgraph, the situation is a little more complex. The analysis of this case comprises the remainder of this subsection. We first assume that \(G_1 \) has a non-complete component.

Lemma 26. Let \(G_3 \) be non-null and complete. If \(G_1 \) contains a non-complete component \(N \), then \(G_1 \) and \(G_3 \) are disconnected and \(G_2 \) is null.

Proof: Recall from Lemma [16] that \(N = K_r \lor (K_p \cup K_q) \) and let \(a \in K_p, b \in K_r, c \in K_q \), as well as \(y \in G_3 \). Firstly, note that \(N \) and \(G_3 \) are disconnected. To see this, suppose \(y \) is adjacent to some non-empty subset of \(\{a, b, c\} \). This yields two cases due to symmetry. If \(y \) is adjacent to \(a \) and not adjacent to \(b \) (or vice versa), then the vertices \(a, b, x_1, x_2 \) and \(y \) induce a 4-fan (\(F_4 \)). If \(y \) is adjacent to \(a, b \) and \(c \), then the vertices \(a, c, x_1, x_2 \) and \(y \) induce a split 3-star (\(F_5 \)). Secondly, let \(d \in G_1 \) be a vertex not in \(N \) and assume it is adjacent to \(y \in G_3 \). Then the vertices \(a, b, c, v, x_1, x_2 \) and \(y \) induce a double fan (\(F_9 \)). Lastly suppose that \(G_2 \) has a vertex \(v \). By Lemma [19] \(v \) is adjacent to \(a, c \) and not adjacent to \(b \). If \(v \) is not adjacent to \(y \), then the vertices \(a, c, v, x_2 \) and \(y \) induce a chair (\(F_1 \)) and if \(v \) is adjacent to \(y \), then the vertices \(a, b, c, v, x_1, x_2 \) and \(y \) induce an \(F_{15} \).

From now on we assume that neither \(G_1 \) nor \(G_2 \) has a non-complete component. \(G_3 \) is still complete and non-null.

Lemma 27. Let \(G_3 \) be a non-null complete subgraph.

(i) At most one component of \(G_1 \) is connected to \(G_3 \). The same holds for \(G_2 \).

(ii) If \(A \) and \(V \) are respective components of \(G_1 \) and \(G_2 \) that are both connected to \(G_3 \), then \(A \) is connected to different vertices of \(G_3 \) than \(V \).

Proof: (i) Suppose \(a \) and \(b \) are vertices from two components of \(G_1 \) connected to \(G_3 \). If \(a \) and \(b \) are both adjacent to the same vertex \(y \) in \(G_3 \), then the vertices \(a, b, x_1, x_2 \) and \(y \) induce a split 3-star (\(F_5 \)). If \(a \) is adjacent to \(y_1 \in G_3 \) and \(b \) is adjacent to \(y_2 \in G_3 \), then the vertices \(a, b, x_1, y_1 \) and \(y_2 \) induce a 4-fan (\(F_4 \)).

(ii) Suppose \(G_3 \) is connected to a component in \(G_1 \) and a component in \(G_2 \). Thus there exist two vertices \(a \in G_1 \) and \(v \in G_2 \) that are both adjacent to a vertex in \(G_3 \). If \(a \) and \(v \) are both adjacent to the same vertex \(y \) in \(G_3 \), then the vertices \(a, v, x_1, x_2 \) and \(y \) induce a 4-fan (\(F_4 \)) or a 4-wheel (\(F_8 \)), depending on the presence of edge \(av \).

Lemma 28. If \(G_3 \) is a non-null complete subgraph and \(y \) is a vertex of \(G_3 \), then every complete component of \(G_1 \) is either completely connected to or disconnected from \(y \).

Proof: Suppose that a complete component \(A \) of \(G_1 \) is partially connected to a vertex \(y \) in \(G_3 \). Then there exist a vertex \(a \in A \) adjacent to \(y \) and a vertex \(b \in A \) not adjacent to \(y \), and the vertices \(a, b, x_1, x_2 \) and \(y \) induce a 4-fan (\(F_4 \)).

\(\square \)
Lemma 33. Let G_3 be a complete subgraph. By Lemma 27, at most one component from each G_1 and G_2 is connected to G_3. In case such components exist, we denote the two respective components of G_1 and G_2 connected to G_3 by A and V. If no component in G_1 (or G_2) is connected to G_3, then we assume that A or V is null. By Lemma 28 and Lemma 27, a vertex of G_3 is either completely connected to A or to V or disconnected from A or V. This yields the following partition of G_3 into three complete subgraphs

$$G_3 = G_3^A \cup G_3^V \cup G_3^R,$$

defined as follows.

Definition 29. By G_3^A we denote the subgraph of G_3 induced by the vertices in G_3 adjacent to A, by G_3^V the subgraph of G_3 induced by the vertices in G_3 adjacent to V, and by G_3^R the subgraph induced by the vertices in G_3 only adjacent to x_1 and x_2.

Note that G_3^A, G_3^V and G_3^R may be null graphs.

Lemma 30. Let G_3 be complete and G_1 contain a component C of order at least 2 as well as an additional vertex d not in C. If G_2 and G_3^A are non-null, then G_3^A is completely connected to C and disconnected from any other vertices in G_1.

Proof: Let a, b be vertices in C, v be a vertex in G_2 and y be a vertex in G_3^A. By Definition 29, G_3^A is completely connected to exactly one component in G_1 and disconnected from all others. We show that this component is C by assuming, conversely, that G_3^A is completely connected to d. By Lemma 18, the vertex v is completely connected to d or C, or both. If v is adjacent to a, b and d, then the vertices a, b, d, v, x_1, x_2 and y induce an F_{15}. Otherwise, if v is not adjacent to a or d, the vertices a, d, v, x_2 and y induce an F_2, F_3 or F_7. \hfill \Box

Lemma 31. If G_3 is complete, G_3^A is non-null and G_1 has at least two components, then any vertex in G_2 must be adjacent to all vertices in G_1.

Proof: Let a, b be vertices from two components in G_1 and v be a vertex in G_2. Without loss of generality, assume that a is adjacent to $y \in G_3^A$. By Lemma 18, v is adjacent to a or b. Hence if v is not adjacent to a, then the vertices a, b, v, x_2 and y induce a P_5, and if v is not adjacent to b, then the same vertices induce an F_3. \hfill \Box

If G_3 has a vertex not adjacent to any vertices in G_1 or G_2, (i.e. G_3^R is not null), we can say the following about G_1 and G_2.

Lemma 32. Let G_3 be complete and G_3^R be non-null. Then G_1 and G_2 are either null or complete.

Proof: Let y be a vertex in G_3^R. By definition, y is not adjacent to any vertices in G_1 or G_2. Suppose G_1 has two non-adjacent vertices a and b and let $v \in G_2$. If neither a nor b is adjacent to v, then the vertices a, b, v, x_1 and x_2 induce a chair (F_1). If only one vertex is adjacent to v, then the vertices a, b, v, x_2 and y induce an F_3. Finally, if both a and b are adjacent to v, then the same vertices induce a chair (F_1). \hfill \Box

Lemma 33. Let G_3 be complete and G_3^R be non-null. If both G_1 and G_2 contain more than one vertex, then G_1 and G_2 are completely connected to each other.
Proof: Let \(y \) be a vertex in \(G_3^R \). By Lemma \[22\] \(G_1 \) and \(G_2 \) are both complete. Let \(a, b \) be two vertices of \(G_1 \) and \(v, w \) be two vertices of \(G_2 \). We check two cases due to symmetry. If \(a, b \) and \(v, w \) are disconnected, then the vertices \(a, b, v, w, x_1, x_2 \) and \(y \) induce an \(F_{11} \). If \(a \) is adjacent to \(v \) and not adjacent to \(w \), then the vertices \(a, v, w, x_1 \) and \(y \) induce a \(P_5 \). \(\square \)

If \(G_3^R \) is null but \(G_3 \) is non-null and complete, we can state the following two lemmas.

Lemma 34. Let \(G_3 \) be complete. If \(G_1 \) contains a component \(C \) of order at least 2 and \(G_3^A \) is non-null, then \(G_1 \) and \(G_2 \) each consist of a single component. The same holds if \(G_2 \) contains a component of order at least 2 and \(G_3^A \) is non-null.

Proof: Let \(a, b \) be two vertices in \(C \) and \(y \in G_3^V \). Then, by assumption, there exists a vertex \(v \in G_2 \) that is adjacent to \(y \). First we show that \(G_1 \) consists of a single component and this is complete by Lemmas \[25\] and \[26\]. Assume that \(c \) is a vertex from a second component in \(G_1 \). We distinguish between three cases. If \(C \) is not connected to \(v \), then \(c \) must be adjacent to \(v \) by Lemma \[18\] and the vertices \(a, b, c, v, x_1, x_2 \) and \(y \) induce an \(F_{12} \). Secondly, if \(C \) is partially connected to \(v \), we can assume that \(a \) is adjacent to \(v \) whereas \(b \) is not. As \(c \) and \(v \) must be adjacent, the vertices \(a, b, c, v, x_1, x_2, y \) induce a chair (\(F_1 \)). Lastly, if \(C \) and \(v \) are completely connected and \(c \) is adjacent to \(v \), then the vertices \(a, b, c, v, x_1, x_2, y \) induce an \(F_{13} \) while if \(c \) is not adjacent to \(v \), then the same vertices induce an \(F_{14} \).

Now we show that \(G_2 \) also consists of a single component. Assume that \(w \) is a vertex from a second component in \(G_2 \). As \(y \) is adjacent to \(v \), it cannot be adjacent to \(w \) by Lemma \[27\] (i). We show that the existence of \(w \) leads to a forbidden induced subgraph. Vertices \(a, b \) cannot both be adjacent to \(v \) and \(w \), otherwise the vertices \(a, b, v, w, x_1 \) induce a split 3-star (\(F_5 \)). Without loss of generality assume that it is vertex \(a \) that is not adjacent to both \(v \) and \(w \). If \(a \) is neither adjacent to \(v \) nor to \(w \), then the vertices \(a, v, w, x_1 \) and \(y \) induce an \(F_3 \). If \(a \) is adjacent to \(v \) only, then the same vertices induce an \(F_7 \). If \(a \) is adjacent to \(w \) only, then the same vertices induce a \(P_5 \). \(\square \)

Lemma 35. If \(G_1 \) has a component of order at least 2, \(G_2 \) and \(G_3 \) are non-null and \(G_3 \) is complete, then \(G_1 \) and \(G_2 \) each have at most two components.

Proof: By Lemma \[19\] and Lemma \[22\], \(G_2 \) has at most two components. We now show the same for \(G_1 \). Assume that \(G_1 \) has three components and let \(a, b, c \) be vertices from these three components. Let \(v \) be a vertex in \(G_2 \). By Lemmas \[34\] and \[32\], \(G_3^V \) and \(G_3^A \) are null, i.e. \(G_3 = G_3^A \). Let \(y_A \) be a vertex in \(G_3^A \) and without loss of generality let \(G_3^A \) be completely connected to \(a \). By Lemma \[18\], no more than one vertex of \(a, b, c \) is non-adjacent to \(v \). If \(b \) and \(c \) are adjacent to \(v \), then the vertices \(b, c, v, x_2, y_A \) induce a chair (\(F_1 \)). Otherwise we can assume that \(b \) is not adjacent to \(v \) and the vertices \(a, b, v, x_2, y_A \) induce an \(F_3 \). \(\square \)

5 Case distinctions

In this section we establish that connected graphs without induced subgraphs \(F_1 \) to \(F_{15} \) belong to one of the nine classes of graphs \(E_1^T, E_2, \ldots, E_9 \). Together with Theorem \[5\] this concludes the proof of the implication (ii) \(\Rightarrow \) (iii) of Theorem \[3\].

Again, let \(G \) be a connected graph of order at least 2 without induced \(F_1 \) to \(F_{15} \). Recall from Section 4 the dominating edge decomposition: \(G \) has a dominating edge \(x_1, x_2 \) and induced subgraphs \(G_1, G_2 \).
and G_3 as defined in Definition 13. Lemma 36 consists of a series of case distinctions that collectively cover all possible structural configurations of these subgraphs. For each case, we prove that G is an instance of one of the graph classes $E_1^G, E_2^G, \ldots, E_9$. The proof utilises the structural results developed in Section 4.

Lemma 36. Let G be a connected graph without induced F_1 to F_{15}. Assume we have a decomposition of G into a dominating edge x_1x_2 and induced subgraphs G_1, G_2 and G_3 as above.

(a) If G_1 or G_2 is null, then G is an instance of the graph class E_1.

From now on, let neither G_1 nor G_2 be null.

(b) If G_3 is not complete, then G is an instance of E_2.

(c) If G_3 is complete and G_1 or G_2 has a non-complete component N, then G_3 is null and G is an instance of E_3.

(d) If G_3 is complete and G_1 and G_2 consist only of isolated vertices, then G is an instance of E_3, E_6, E_7 or E_8.

(e) Let G_3 be complete. If one of G_1 and G_2 consists only of isolated vertices and the other consists of complete components only, at least one of them with cardinality at least 2, then G is an instance of E_3, E_6, E_7 or E_8.

(f) Let G_3 be complete. If G_1 and G_2 consist of complete components only and both contain at least one component of order at least 2, then G is an instance of E_3, E_4 or E_5.

Proof of Lemma 36(a): Without loss of generality assume that G_2 is null. By Lemma 16, G_1 consists of at most one non-complete component $N = K_r \lor (K_p \cup K_q)$ with $p, q, r \geq 1$ and any number of complete components. Our aim is to show that G is in E_1. We distinguish between the case that G_1 has a non-complete component N and the case that G_1 has no such component.

Case 1: Assume G_1 has a non-complete component N. By Lemmas 25 and 26, G_3 must be complete and disconnected from G_1. It follows that G is in E_1 with $H_0 := \emptyset$, $H_1 := G_3 \lor x_2$ and H_2, \ldots, H_k consisting of the complete components of G_1.

Case 2: Next assume that G_1 has no non-complete component. G_3 may be complete or not complete.

If G_3 is not complete, then it is disconnected from all components in G_1 by Lemma 25 and G_3 is a possibly degenerate ear graph, by Lemma 17. It follows that G is in E_1 with $H_0 := \emptyset$, $H_1 := G_3 \lor x_2$ and H_2, \ldots, H_k consisting of the complete components of G_1.

Now assume that G_3 is complete. By Lemma 27(i), only one component A of G_1 can be adjacent to vertices in G_3. If no such A exists, then G is in E_1 with H_0 null, $H_1 := G_3 \lor x_2$ and H_2, \ldots, H_k consisting of the components of G_1. If A does exist, it is completely connected to a subgraph G_3^A of G_3 and disconnected from $G_3 \setminus G_3^A$ by Lemma 28 and Definition 29. It follows that G is in E_1 with $H_0 := G_3^A \lor (A \lor (x_2 \lor G \setminus G_3^A))$ and H_1, \ldots, H_k consisting of the components of G_1 except A.

\square
particular, we distinguish between four cases that comprehensively cover all configurations of a component and that both

Proof of Lemma 36 (b): Let a and v be vertices in G_1 and G_2, respectively. By assumption, G_3 is not complete and contains at least two non-adjacent vertices y_1 and y_2. By Lemma 25, y_1 and y_2 are disconnected from G_1 and G_2. Next note that G_1 and G_2 are disconnected, otherwise we can assume that a and v are adjacent and thus the vertices a, v, x_1, y_1 and y_2 induce a chair (F_1). Lastly, both G_1 and G_2 contain exactly one vertex. Indeed, assume on the contrary that G_2 contains an additional vertex w. By the above, vertex a is not adjacent to v or w. If v and w are not adjacent, then the vertices a, v, w, x_1 and x_2 induce a chair (F_1). If v and w are adjacent, then the vertices a, v, w, x_1, y_1 and y_2 induce an F_{10}. By Lemma 17, G_3 is a possibly degenerate ear graph and it follows that G is an instance of E_2.

Proof of Lemma 36 (c): Without loss of generality, assume that G_1 has a non-complete component N. By Lemma 26, G_3 is null. As G_2 is non-null by assumption, Lemma 19 implies that G_1 consists entirely of the non-complete component $N = K_r \lor (K_1 \cup K_b)$ and G_2 consists of a single vertex that is completely connected to the K_1 and K_b of N and disconnected from K_r. It follows that G is an E_3.

Proof of Lemma 36 (d): Assume that G_1 and G_2 consist only of K_1 components, i.e. isolated vertices. In particular, we distinguish between four cases that comprehensively cover all configurations of G_1 and G_2. We investigate how each case affects the structural possibilities for the subgraph $G_3 = G_3^A \lor G_3^C \lor G_3^R$ (see Definition 29). In Cases 2 to 4, G_1 or G_2 consists of two or more components and, by Lemma 32, G_3^R is null.

Case 1: Assume $G_1 = K_1$ and $G_2 = K_1$. Then G is in E_6 with $K_6 := G_1, K_b := x_1 \lor G_3^A, K_c := G_3^R, K_d := x_2 \lor G_3^A$ and $e := G_2$. Subgraphs G_1 and G_2 may or may not be adjacent.

Case 2: Assume $G_1 = K_1$ and $G_2 = K_1 \cup K_1$. Let a be the vertex in G_1 and v, w be the two vertices in G_2. We distinguish between the two possibilities that G_3^v is null or non-null. If G_3^v is null, then, by Lemma 27 (i), we can assume without loss of generality that v is connected to G_3^A and w is not. Furthermore, by Lemma 31, the vertex a is adjacent to both v and w and G is in E_3 with $K_a := x_1 \lor G_3^A$ and $K_m := G_3^A$. If G_3^v is null, then by Lemma 18, a is adjacent to at least one of v or w and G is in E_7 with $K_n := x_1 \lor G_3^A$.

Case 3: Assume $G_1 = K_1$ and $G_2 = K_1 \cup K_1 \cup K_1 \cup \ldots \cup K_1$, where G_2 has at least three K_1 components. Let a denote the vertex in G_1 and u, v, w be three isolated vertices in G_2. We see that G_3^v is null: if G_3^v is not null, then, by Lemma 27 (i), we can assume without loss of generality that u is connected to G_3^A and v and w are not. Furthermore, by Lemma 31, a is adjacent to u, v and w and thus the vertices a, v, w, x_1 together with any vertex $y \in G_3^A$ induce a chair (F_1). As a is adjacent to all but one vertex in G_2 by Lemma 18, it follows that G is in E_7 with $K_n := x_1 \lor G_3^A$.
Characterising and recognising game-perfect graphs

Case 4: Assume G_1 and G_2 both consist of two or more K_1 components. Let a, b be two vertices in G_1 and v, w be two vertices in G_2. We see that G_3^A and G_3^Y are null by assuming the contrary. If G_3^A is non-null with $y \in G_3^A$ and a is the neighbour of y in G_1, then a and b are both adjacent to v and w by Lemma 31 and the vertices b, v, w, y and x_1 induce a chair (F_1). By symmetry we see that G_3^Y is also null and it follows immediately that G_3 is null. By Lemma 18, no more than one pair of vertices (a, v) in $G_1 \times G_2$ is non-adjacent, so G is in E_9.

\[\square \]

Proof of Lemma 36(e): Assume that G_1 contains a component of order at least 2 and G_2 only contains K_1 components. By Lemma 23, G_2 has exactly one or two K_1 components. We distinguish between these two cases which in turn also divide into various subcases.

Case 1: Assume that G_2 consists of a single K_1 component denoted by vertex v. We treat the two possibilities $G_1 = K_n$ and $G_1 = K_n \cup K_1 \cup \cdots \cup K_1$, where $n \geq 2$, separately.

Case 1.1: Assume that G_1 is complete, $G_1 = K_n$. If G_3^R is not null, then G_1 and G_2 are either disconnected or completely connected: if vertices a and b in G_1 existed such that a is adjacent to v and b is not, vertices a, b, v, x_2 and any vertex in G_3^R would induce a P_5. It follows that G is in E_6 (with $K_n = G_1$, $K_b = G_b^A \cup x_1$, $K_c = G_c^R$, $K_d = G_d^Y \cup x_2$, and $e = G_2$). If G_3^R is null, then G_1 and G_2 can have any adjacency relation and by Lemma 24, G is in E_6 with $A_1 := x_1 \vee G_3^A$ and $Z_1 := x_2 \vee G_3^Y$.

Case 1.2: Secondly, assume that G_1 contains one or more K_1 components in addition to the K_1, so $G_1 = K_n \cup K_1 \cup \cdots \cup K_1$. Let a be a vertex in the K_n and c be a vertex in a K_1 of G_1. By Lemmas 32 and 34, G_3^R and G_3^Y are null. G_3^A can be null or non-null and we examine both possibilities.

First let G_3^A be non-null and $y \in G_3^A$. Then we have $G_1 = K_n \cup K_1$ by Lemma 35. Furthermore, by Lemma 30, G_3^A is completely connected to K_n and disconnected from c. Vertex v is completely connected to G_1, otherwise the vertices a, c, v, x_2 and y induce an F_3, F_2 or P_3. Hence G is in E_3 (with $K_m = G_3^A$, $K_n = K_n$, $a = v$, $b = x_2$, $c = x_1$, $d = c$).

Next let G_3^A be null and let C denote the K_n in G_1. Then C and G_2 must be disconnected or completely connected. Indeed, assume to the contrary that the vertex v of G_2 is adjacent to a and not adjacent to b in C. Then vertex c is adjacent to v by Lemma 18 and the vertices a, b, c, v and x_2 induce a chair (F_1).

If C and G_2 are disconnected, then all K_1 components in G_1 are connected to G_2 by Lemma 18 and G is in E_7. If C and G_2 are completely connected, then at most one K_1 component in G_1 is disconnected from G_2 by Lemma 18 and G is also in E_7.

Case 2: Now assume that $G_2 := K_1 \cup K_1$ has two K_1 components, denoted by vertices u and v. By Lemmas 32 and 34, G_3^R and G_3^Y are null and G_3^A may be null or non-null. Without loss of generality assume by Lemma 18 that vertex u is completely connected to G_1. As in Case 1, G_1 may have the structure $G_1 = K_n$ or $G_1 = K_n \cup K_1 \cup \cdots \cup K_1$, where $n \geq 2$.
Proof of Lemma 36 (f): Assume that both G_1 and G_2 contain a component of order at least 2. By Lemma 23, G_1 and G_2 have at most one additional K_1 component each. We distinguish between three cases due to symmetry.

Case 1: Assume $G_1 = K_n$ with $n \geq 2$. By Lemma 20, vertex v is adjacent to no more than one vertex \tilde{a} in the K_n. It follows that G is in E_3 (with $K_m = G_1 \setminus \tilde{a}$, $K_n = G_3^A \cup x_1$, $a = x_2$, $b = u$, $c = \tilde{a}$, and $d = v$).

Case 2: Assume that G_1 has one or more K_1 components in addition to the K_n. Let C denote the component of order at least 2 in G_1 and d denote a K_1 component in G_1. First we note that, by Lemma 20, vertex v is adjacent to at most one vertex in C. Hence by Lemma 18, the vertex v is completely connected to every K_1 component of G_1. It follows that v is completely connected to C: otherwise, if v is adjacent to $a \in C$ and not adjacent to $b \in C$, the vertices a, b, d, v and x_2 would induce a chair (F_1). Next we see that G_3^A must be null. Assume to the contrary that y is a vertex in G_3^A and let $b \in C$. By Lemma 18, vertex d is adjacent to v and v and by Lemma 30, $y \in G_3^A$ is adjacent to b and not to d. It follows that the vertices b, d, v, x_2 and y induce a P_5. In conclusion, we have $G \in E_8$.

Proof of Lemma 36 (f): Assume that both G_1 and G_2 contain a component of order at least 2. By Lemma 23, G_1 and G_2 have at most one additional K_1 component each. We distinguish between three cases due to symmetry.

Case 1: Assume $G_1 = K_n$ and $G_2 = K_m$ with $m, n \geq 2$. If G_3^R is not null, then G_1 and G_2 are completely connected, by Lemma 33 and G is in E_5. If G_3^R is null, we see with the help of Lemma 24 that G is also in E_5.

Case 2: Assume $G_1 = K_n$ and $G_2 = K_m \cup K_1$ with $m, n \geq 2$. Let v denote the K_1 in G_2. By Lemma 32, G_3^R is null and by Lemma 34, all of G_3 is null. Lemma 21 shows that G_1 and the K_m in G_2 are either disconnected or completely connected. If G_1 and the K_m are disconnected, then vertex v is completely connected to G_1 by Lemma 18 and G is in E_4. If G_1 and the K_m are completely connected, then vertex v cannot be connected to more than one vertex in G_1, by Lemma 20 and G is in E_3.

Case 3: Assume $G_1 = K_n \cup K_1$ and $G_2 = K_m \cup K_1$ with $m, n \geq 2$. Let a and C denote the K_1 and K_n in G_1, respectively, and let v and W denote the K_1 and K_m in G_2. By Lemmas 32 and 34, G_3 is null. Lemma 21 indicates that C and W are either disconnected or completely connected. We see that C and W are disconnected. Indeed, if they are completely connected, Lemma 20 says that vertex a cannot be completely connected to W and vertex v cannot be completely connected to C, contradicting Lemma 18. Hence, as C and W are thus disconnected, Lemma 18 states that vertices a and v are completely connected to G_2 and G_1, respectively, and G is in E_4.

□
6 Strategies for Alice on E

In this section we show that Alice has a winning strategy on each $G \in E$ with $\omega(G)$ colours. As the class E is hereditary by Lemma [8](that is, $H \in E$ for any induced subgraph H of G), this proves the implication (iii) \(\Rightarrow\) (i) of Theorem [4].

The strategies presented here are not ‘colourblind’ but rely on Alice being able to react to specific colours that Bob uses. An effort has been made to generalise the strategies as much as possible. In particular, some of Alice’s moves are derived from strategies for small base graph structures discussed in Section [6.1]. However, the main parts of the strategies (described in Sections [6.2]-[6.5]) are specific to each graph class. To the best of our knowledge, it is not possible to unify these strategies further.

6.1 Preparations

A subgraph is fully coloured if all its vertices are coloured, uncoloured if none of its vertices are coloured and partially coloured otherwise. A vertex is critical if it is uncoloured and the sum of the number of adjacent colours and the number of uncoloured neighbours is at least $\omega(G)$, and safe otherwise. A subgraph is critical if it contains a critical vertex, otherwise it is safe. We make a number of observations.

Observation 37. A vertex is made safe either by colouring it or by reducing the number of uncoloured neighbours to less than the difference of $\omega(G)$ and the number of adjacent colours.

Observation 38. Once a vertex is safe, it remains so.

Observation 39. Alice wins once all vertices are safe.

Observation 40. Alice wins once all uncoloured vertices in the partially coloured graph only admit a single colour and these colours together with the coloured vertices yield a proper colouring.

Here, we refer to $K_{1,k}$ as k-stars. We present simple strategies for k-stars, ear graphs, the bull and the dragon graph, shown in Figure 6. These strategies constitute the building blocks from which we construct the strategies for each E_i. In the description of each strategy we refer to the vertex labels provided in the figure.

![Fig. 6: We provide simple strategies for these four graphs.](image_url)

Lemma 41 (k-star strategy). Alice wins the game g_B on a k-star with two colours.

Proof: Note that x is the only critical vertex. If Bob colours x in his first move, then all vertices are safe and Alice wins. Otherwise Alice colours x in her first move and wins. \(\square\)
Lemma 42 (ear graph strategy). Alice wins the game g_B on an ear graph G with $\omega(G)$ colours.

Proof: Assuming without loss of generality that $b \leq c$, we have $\omega(G) = a + c$, so only K_a is critical initially. By Observation 37 we can make the vertices of K_a safe either by colouring them or by ensuring that every vertex in K_b has a vertex in K_c with the same colour, leading to the following simple strategy for Alice. If Bob colours a vertex in K_b or K_c, Alice applies the same colour to a vertex in the other clique. If K_b is now fully coloured, Alice wins. If Bob colours a vertex in K_a, Alice attempts to colour another vertex in K_a. If the clique K_a is now fully coloured, Alice wins. □

Lemma 43 (bull strategy). Alice wins the game g_B on a bull with three colours.

Proof: At the start, vertices x_1, x_2 are critical. If Bob colours vertex x_i or y_i, Alice applies the same colour to the other vertex and wins. If Bob instead colours vertex a, Alice applies the same colour to y_2, which makes x_1 safe. If Bob now colours x_2, Alice wins, otherwise she colours x_2 herself to win. □

Lemma 44 (dragon strategies). Alice wins the game g_B on a dragon with two colours.

Proof: In the beginning, vertices x_1, x_2, y_1, y_2 are critical. Note that Alice can win in one round by ensuring one of three possibilities: x_1, x_2 are coloured the same, x_2, y_1 are coloured differently or x_1, z are coloured differently. In all three cases Bob can no longer win. Hence if Bob colours a vertex in one of these three pairs, Alice’s approach is to colour the other vertex in the appropriate colour. As x_1 and x_2 appear in multiple pairs, any strategy using this approach is well-defined only once we define an order in which Alice tries to complete a pair colouring. In the pairing dragon strategy, this order is given by $(x_1, x_2), (y_1, x_2), (z, x_1)$ while the order in the bipartite dragon strategy is given by $(y_1, x_2), (y_2, x_2), (z, x_1)$. □

Using these preparations, Sections 6.2 – 6.5 contain winning strategies for Alice on each graph $G \in E$ with $\omega(G)$ colours.

6.2 Strategies for Alice on the base structures (E_1^\downarrow and E_5)

We prove that Alice has a winning strategy on each graph $G \in E$ with $\omega(G)$ colours. First we discuss the most general structures E_1^\downarrow and E_5, which we call base structures, and then the other seven, more specialised graph classes. The strategy on E_1^\downarrow combines the k-star and the ear graph strategies. The strategy on E_5 follows a pairing argument similar to the pairing argument in the ear graph strategy.

Proposition 45 (E_1^\downarrow). Alice wins on $G \in E_1^\downarrow$ with $\omega(G)$ colours.

Proof: We can prove this proposition non-constructively as follows. As the graph $G \cup G$ is an instance of E_1^\downarrow with at least two connected components, it is g_B-perfect by Theorem 3. This implies that Alice can win on its induced subgraph G with $\omega(G)$ colours.

Alternatively, we provide explicit strategies for Alice to win on graphs in E_1 and E_1^\downarrow. Suppose first that $G \in E_1$ and assume without loss of generality that $b \leq c$. Then $\omega(G) = 1 + \max\{a + c, |H_1|, \ldots, |H_k|\}$. If $a + c < |H_i|$ for some H_i or $b = 0$, then only x is critical and Alice can follow the same strategy as on the k-star (see Lemma 44). If $a + c \geq |H_i|$ for all H_i and $b \geq 1$, then the vertices of K_a and x are critical. In this case we combine the k-star and ear graph strategies (cf. Lemmas 44 and 45) as follows.
1. While neither K_a nor K_b is fully coloured:
 (i) If Bob colours x, Alice colours a vertex in K_a.
 (ii) If Bob colours a vertex in K_b or K_c, Alice applies the same colour to a vertex in the other clique.
 (iii) Suppose Bob colours a vertex in K_a or in some H_i. If x and K_a are now fully coloured, Alice wins by Observation 39. If x is uncoloured, Alice colours it. If x is coloured but there is an uncoloured vertex in K_a, Alice colours such a vertex.

2. Suppose K_a or K_b is fully coloured. If x is coloured, Alice wins. Otherwise she ensures on her next move that x is coloured and wins.

Now suppose $G \in E_{1} \cup E_{2}$ with at least two connected components. Alice always responds to Bob’s move by colouring a vertex in the same component as Bob according to the above strategy, unless Bob just coloured the last vertex in a component. We consider the latter case in more detail. If x and K_a are safe in every other component of G, Alice wins. Otherwise there exists a component with an uncoloured x or an uncoloured vertex in K_a. If there is an uncoloured x, she colours x. Otherwise she colours an uncoloured vertex in K_a.

Observe that the strategies for E_1 and $E_1 \cup E_2$ are correct since, after every move by Alice, the following invariants hold.

1. Every vertex in K_b has the same colour as a vertex in K_c, as in the ear graph strategy.
2. The central vertex is uncoloured only if K_a is not fully coloured and the H_i are completely uncoloured. Together with 1., this guarantees that x can be coloured later, as in the star strategy.

\[\text{Proposition 46 (E_5). Alice wins on an expanded cocobi } G \in E_5 \text{ with}\]
\[
\max \{|A_R| + \sum_{i=1}^{k} |A_i|, |Z_R| + \sum_{i=1}^{k} |Z_i|, \max_{i=1,...,k} \{|A_i| + |Z_i|\}\]
\]
\[\text{colours.}\]

\textbf{Proof:} Denote
\[A := A_R \cup \bigcup_{i=1}^{k} A_i, \quad Z := Z_R \cup \bigcup_{i=1}^{k} Z_i,\]
and assume without loss of generality that $|A| \geq |Z|$ and $|A_1| + |Z_1| \geq |A_i| + |Z_i|$ for all $1 \leq i \leq k$. We show that Alice can win on G with $\omega(G)$ colours. For this, we distinguish between two cases.
Case 1. $|A_1| + |Z_1| > |A|$.

In this case, the clique number of G is $\omega(G) = |A_1| + |Z_1|$. Observe that

$$|A_1| > |A| - |Z_1| \geq |Z| - |Z_1|,$$

(1)

$$|Z_1| > |A| - |A_1|.$$ (2)

The following instructions suffice for Alice to win on G with $\omega(G)$ colours. We give Alice’s moves when Bob colours a vertex in Z_1 or $A \setminus A_1$. By symmetry, analogous instructions hold for A_1 and $Z \setminus Z_1$.

1. Suppose Bob colours a vertex in Z_1.

 (i) If $A \setminus A_1$ is not fully coloured, Alice applies the same colour to a vertex in $A \setminus A_1$.

 (ii) If $A \setminus A_1$ is fully coloured and Z_1 is not, Alice colours another vertex in Z_1, as A_1 and Z_2, \ldots, Z_k are safe.

 (iii) If $A \setminus A_1$ and Z_1 are fully coloured, every vertex is safe and Alice wins.

2. If Bob colours a vertex in $A \setminus A_1$, Alice applies the same colour to a vertex in Z_1. Such a vertex exists due to (2) (or (1) for the symmetric case).

Case 2. $|A_1| + |Z_1| \leq |A|$.

In this case, $\omega(G) = |A|$ and we have exactly $|A|$ colours available in the game. Since G is the complement of a bipartite graph with bipartition (A, Z), the graph G is perfect (cf. Lovász (1972)). In particular, G has a proper vertex colouring with $|A| = \omega(G)$ colours. Moreover, every colour class consists of at most two vertices. If a vertex a in A has a vertex v with the same colour in Z, we say that a and v are paired. Otherwise we call the vertex unpaired. Since every colour appears in A, every vertex of Z is paired. The following modification of the vertex colouring results in another valid vertex colouring: Let a be an unpaired vertex in A_i (or in A_R) and let v be a vertex in $Z \setminus Z_i$ (or in Z) that is paired with $b \in A$, respectively. We can pair a and v by assigning v the colour of a. This means v and b are no longer coloured the same, and b is now an unpaired vertex. Alice wins using the following strategy.

1. If Bob colours a paired vertex, Alice applies the same colour to the other vertex of the pair. If Z is then fully coloured, Alice wins.

2. Suppose Bob colours an unpaired vertex a in A_i, $1 \leq i \leq k$ (or A_R). By rule 1, he uses a new colour.

 (i) If $Z \setminus Z_i$ (or Z) is not fully coloured, Alice applies the same colour to any other vertex v in $Z \setminus Z_i$ (or Z). This pairs up vertices a and v and unpairs the vertex that v was originally paired with.

 (ii) If $Z \setminus Z_i$ is already fully coloured, both $Z \setminus Z_i$ and $A \setminus A_i$ are safe and any uncoloured vertex in A_i is an unpaired vertex.

 (a) If there is an uncoloured vertex in A_i, Alice colours another vertex in A_i.

 (b) If all vertices in A_i are coloured, the only uncoloured vertices are in $A \setminus A_i$ and Z_i. Thus every vertex is safe and Alice wins.
Note that Bob can only win if a pair is coloured in two different colours and there is no possibility to unpair it. However, Alice’s strategy avoids this situation, since the following invariants hold after every move by Alice.

1. The two vertices in each pair are either both coloured or both uncoloured. This can be seen as a generalisation of the pairing argument in the ear graph strategy given in Lemma 42.

2. Unpaired vertices are only coloured once all paired vertices are coloured.

This proves the correctness of the strategy described above.

6.3 Strategies for Alice on the bipartite structures \((E_9, E_7 \text{ and } E_8)\)

It is known \cite{Andres} that Alice wins on \(G \in E_9\) with \(\omega(G)\) colours. In our proof of Proposition 47, we give an explicit strategy, the bipartite strategy, that also underlies the strategies for \(E_7\) and \(E_8\) below.

Proposition 47 \((E_9)\). Alice wins on an (almost) complete bipartite graph \(G \in E_9\) with \(\omega(G)\) colours.

Proof: Let \(G \in E_9\) be a complete bipartite graph \(K_{m,n}\) or almost complete bipartite graph \(K_{m,n} - uv\), for some edge \(uv\). Further, let \((U,V)\) be the vertex partition of \(G\) with \(|U| = m\) and \(|V| = n\). We assume without loss of generality that \(\min\{m,n\} \geq 2\), or else the graph \(G\) is in \(E_5 \cup E_9\). Hence \(\omega(G) = 2\) and \(G\) is connected. The following strategy generalises the bipartite dragon strategy (see Lemma 44).

Suppose first that \(G\) is complete bipartite. Then if Bob colours a vertex in \(U\) or \(V\), Alice applies the second colour to a vertex in the other vertex set and wins by Observation 40. Now suppose that \(G\) is almost complete bipartite and \(uv\) is the missing edge in \(G\). If Bob colours \(u\) or \(v\), Alice applies the second colour to the other vertex. If Bob colours a vertex in \(U - u\) or \(V - v\), Alice applies the second colour to a vertex in the other vertex set. Again Alice wins by Observation 40.

In order to give strategies for Alice to win on \(E_7\) and \(E_8\), we effectively follow the bipartite strategy and the pairing dragon strategy at the same time.

Proposition 48 \((E_7)\). Alice wins on \(G \in E_7\) with \(\max\{2, n + 1\}\) colours.

Proof: Let \(m\) be the number of vertices in the bottom row. Without loss of generality, we assume that \(\min\{m,n\} \geq 2\), or else \(G\) is an instance of \(E_5\) or \(E_9\). Note that the vertices of the bottom row are safe, since \(\omega(G) = n + 1 \geq 3\). Recall that \(c\) is completely connected to \(b\) or \(K_n\) \cite{Section 2}.

First assume that \(c\) and \(K_n\) are disconnected. Then only \(a\) and \(c\) are critical and Alice wins in at most two moves, as follows. If Bob colours \(a\) or \(c\), Alice applies the same colour to the other vertex and wins by Observation 39. Otherwise, Alice colours \(a\) in her first move and ensures that \(c\) is coloured after her second move. Since at most two colours have been used for neighbours of \(c\) before Alice’s second move and \(\omega(G) \geq 3\), she can use the third colour for \(c\) and win by Observation 39.

Now suppose that \(K_n\) and \(c\) are completely connected. Then the vertices \(a\) and \(c\) as well as the clique \(K_n\) are critical. Note that every vertex is safe once \(a\) and \(c\) have the same colour and Alice wins by Observation 39. On the other hand, if they are coloured differently, Alice loses. Alice’s strategy consists in forcing \(a\) and \(c\) to receive the same colour. We divide Alice’s strategy into two phases. Throughout, she makes sure that the colours of the bottom row form a subset of the colours in \(K_n\).
Phase 1: The first phase consists of up to \(\min\{n-1, m\} \) rounds with the following rules.

1. If Bob colours \(a \) or \(c \), Alice wins by applying the same colour to the other vertex.

2. If Bob colours a vertex in \(K_n \), Alice colours a vertex of the bottom row, and vice versa. While doing so, she makes sure to choose a colour so that the bottom row only contains colours also found in \(K_n \).

If \(a \) and \(c \) are not yet coloured at the end of Phase 1, Alice proceeds to Phase 2.

Phase 2: As in Phase 1, Alice responds to Bob colouring \(a \) or \(c \) by applying the same colour to the other of the two vertices and wins by Observation 39. For her other responses to Bob’s moves, we distinguish between three cases.

Case 1: Suppose \(m < n \). Then the bottom row is fully coloured and \(K_n \) contains all its colours. If Bob colours a vertex in \(K_n \), Alice colours another vertex in \(K_n \) unless the clique is fully coloured, in which case \(a \) and \(c \) are the only uncoloured vertices left and only admit a single colour \(n+1 \), allowing Alice to win by Observation 40.

For the remaining two cases, we note that colours 1 to \(n-1 \) have been used so far to colour \(K_n \) and the bottom row. Clearly, the single remaining uncoloured vertex in \(K_n \) only admits colour \(n \).

Case 2: Suppose \(m = n \). Then \(K_n \) and the bottom row each contain one uncoloured vertex. If Bob colours the vertex in \(K_n \) in colour \(n \), Alice applies the same colour to the uncoloured vertex in the bottom row. Conversely, if Bob colours the vertex in the bottom row, Alice colours the vertex in \(K_n \) in colour \(n \). As in Case 1, Alice wins by Observation 40.

Case 3: Suppose \(m > n \). Then to begin with, \(K_n \) has one uncoloured vertex and the bottom row has at least two. We can assume that the colours used so far are 1, \ldots, \(n-1 \), and \(a \) and \(b \) are still uncoloured.

1. If Bob colours the uncoloured vertex in \(K_n \), Alice colours \(a \) with colour \(n+1 \). Hence, as colour \(n+1 \) is not feasible for the bottom row any more and \(c \) is guaranteed to admit colour \(n+1 \), Alice wins.

2. If Bob colours \(b \) in colour \(n \), Alice applies colour \(n+1 \) to \(c \) and wins.

3. If Bob colours any other uncoloured vertex in the bottom row in colour \(n \), Alice applies colour \(n+1 \) to \(a \) and wins.

4. Suppose Bob colours a vertex of the bottom row with a colour from \(\{1, \ldots, n-1\} \). If the bottom row is fully coloured, Alice wins by colouring the last vertex in \(K_n \). If the bottom row has an uncoloured vertex, Alice applies the same colour to it.

In all three cases, Alice maintains the invariant that the bottom row only contains colours also found in \(K_n \). This implies that the bottom row only ever contains colours 1 to \(n \), so that \(a \) and \(c \) admit colour \(n+1 \). Hence once all the vertices are coloured, \(a \) and \(c \) are guaranteed to be safe.

The following proposition is proved in a similar way.
Proposition 49 (E_8). *Alice wins on $G \in E_8$ with $\max\{2, n + 1\}$ colours.*

Proof: Without loss of generality, we assume that $n \geq 2$, or else $G \in E_9$. Moreover, we assume that $m \geq 2$, as $G \in E_1^\uparrow$ for $m = 0$ and $G \in E_5$ for $m = 1$. Note that for $n = 2$, every vertex is critical and for $n > 2$, vertices a, c, d and the clique K_n are critical. If a and c have the same colour, every vertex apart from d is safe. On the other hand, if a and c have different colours, Alice loses. Therefore Alice’s strategy focuses on forcing a and c to have the same colour and making d safe. Hence we follow the same two-phase strategy as for E_7 with minor changes to accommodate for vertex d.

Phase 1: The first phase consists of up to $\min\{n - 1, m\}$ rounds with the following rules.

1. If Bob colours a or c, Alice applies the same colour to the other vertex. As the only remaining critical vertex is d and the bottom row contains at most $n - 1$ colours so far, Alice wins on her next move by colouring d with colour $n + 1$.

2. If Bob colours a vertex in K_n, then Alice colours a vertex of the bottom row, and vice versa. While doing so, she makes sure to choose a colour so that the bottom row only contains colours also found in K_n.

3. Suppose Bob colours d with some colour α. Note that there are now at least two uncoloured vertices in K_n, prior to Alice’s response, as Phase 1 has at most $n - 1$ rounds and at most one vertex in K_n is coloured in each round. Hence, if α does not already appear as a colour in K_n, Alice colours a vertex in K_n with α, otherwise she colours a vertex in K_n with a new colour.

Phase 2: Suppose Alice has not won in Phase 1 and vertices a and c remain uncoloured. There are two cases which we consider separately for the second phase. We can assume that the colours used so far are $1, \ldots, \min\{n - 1, m\}$.

Case 1: Suppose the bottom row is fully coloured. Then K_n has at least one uncoloured vertex and d is safe. If Bob colours a or c, Alice wins by applying the same colour to the other. If Bob colours any other vertex, Alice wins by colouring a vertex in K_n until the clique is fully coloured.

Case 2: Suppose the bottom row is not fully coloured. In this case we have $\min\{n - 1, m\} = n - 1$ and the strategy of Phase 1 implies that K_n has exactly one uncoloured vertex.

1. If Bob colours d, Alice colours a with colour $n + 1$, guaranteeing the feasibility of colour $n + 1$ for vertex c forever, and winning in the process.

2. If Bob colours a or c, Alice applies the same colour to the other vertices. If, at this point, d is already coloured, she wins immediately, otherwise she wins on her next move by colouring d with the same colour as a and c.

3. If Bob colours the vertex in K_n or a vertex in the bottom row with colour n, Alice colours a with colour $n + 1$, ensuring that no vertex in the bottom row admits $n + 1$ any more. This makes vertices a, c and d safe and Alice wins.
4. Suppose Bob colours a vertex in the bottom row using an existing colour from the row. We can assume that K_n is still not completely coloured, otherwise Alice would have won already. If Bob fills the bottom row with his move, Alice colours the last uncoloured vertex in K_n and wins as a, c, and d are now safe. If he does not fill the row, Alice applies the same colour to another vertex in the row. If the row is now fully coloured, Case 1 applies.

\[\square\]

6.4 Strategies for Alice on the bull structures (E_2 and E_6)

We call E_2 and E_6 bull structures, as the strategies described below are (partially) based on the bull strategy (Lemma 43).

Proposition 50 (E_2). Alice wins on $G \in E_2$ with $\omega(G) = 2 + a + \max\{b,c\}$ colours.

Proof: Without loss of generality, assume $b \leq c$. At the start, vertices x_1, x_2 and the clique K_a are critical. The clique K_a is safe once all its vertices are coloured or the following condition holds:

(A) K_b is completely coloured and its colours form a subset of the colours used for K_c.

Vertex x_i is safe once it is coloured or conditions (A) and (B) hold.

(B) Vertex y_i is coloured and has the same colour as x_i or some vertex in K_a, K_b or K_c.

We give the following strategy. Note that the set of rules 1, 2, 5 and 6 below mirrors the bull strategy (Lemma 43) while rules 3 and 4 follow the ear graph strategy (Lemma 42).

1. If Bob colours x_i, Alice applies the same colour to y_i.
2. If Bob colours y_i with a colour from K_a, K_b or K_c, Alice applies a new colour to x_i, while if Bob colours y_i with a new colour, Alice applies the same colour to x_i.
3. If K_b is not fully coloured and Bob colours a vertex in K_b or K_c, Alice applies the same colour to a vertex in the other clique.
4. If K_a has at least two uncoloured vertices and Bob colours one, Alice colours another.
5. Suppose K_a has exactly one uncoloured vertex and Bob colours it with α. If vertices x_i, y_i are coloured, Alice colours x_{3-i} to win and if x_i, y_i are uncoloured for both $i = 1, 2$, she first colours y_2 with α and then x_2 with any feasible colour in the next round to win.
6. Suppose K_b is fully coloured and Bob colours a vertex in K_c. Alice wins immediately if x_i, y_i are coloured for some i. Otherwise she applies the same colour to y_2 and wins by making sure that x_2 is coloured in the next round.

Observe that Alice’s second move (colouring x_2) in the last two rules is feasible, since at most $1 + a + c$ colours have been used at that point. The first three rules ensure conditions (A) and (B) for the safety of x_i and K_a. Alice follows the first two rules at most twice and the third rule at most $|K_b|$ many times, while rules 5 and 6 immediately lead to winning moves. As long as Alice follows rules 1 to 4, vertices x_i, y_i are
either both uncoloured or both coloured. Furthermore, in the latter case the vertex y_i has the same colour as x_i or some vertex in K_a, K_b or K_c. Hence, as K_a is safe when rule 5 or 6 is invoked and vertices x_1 and x_2 are already safe or made safe by the winning move, Alice wins.

Proposition 51 (E_6). Alice wins on $G \in E_6$ with $\max\{b + c + d, a + b\}$ colours.

Proof: We have $\omega(G) = b + \max\{a, c + d\}$, hence K_b and K_d are critical. The vertex e and clique K_a may also be critical if they are completely connected. The following strategy again combines elements of the ear graph and the bull strategies (cf. Lemmas 42 and 43).

1. If neither K_a nor $K_e \lor K_d$ is fully coloured and Bob colours a vertex in one of these cliques, then Alice applies the same colour to the other clique.

2. Suppose K_a or $K_e \lor K_d$ is fully coloured. If Bob colours a vertex in the larger clique and fills it, Alice wins (as K_d is fully coloured and K_b is safe by assumption). Otherwise Alice colours another vertex in the larger clique (and wins by the same argument if she fills it).

3. If e is uncoloured and Bob colours a vertex in K_b, Alice applies the same colour to e.

4. Suppose Bob colours e with colour α. Then rule 3 implies that K_b is uncoloured and Alice can colour one of its vertices v. Hence if α is a colour that has not been used in K_a or K_c, Alice applies α to v, otherwise she colours v in a new colour.

5. Now suppose e is coloured (with a colour from K_b or K_c). If Bob colours a vertex in K_b and fills it, Alice wins. Otherwise she colours another vertex in K_b (and wins if she fills it).

Observe that the strategy is correct because of the pairing (K_b, e) and $(K_a, K_c \lor K_d)$ of the cliques of G: for each pair, the colours of the smaller clique are a subset of those of the larger clique in the pair after each of Alice’s move. This guarantees that there is a feasible colour for the chosen vertex at any given time in the game.

6.5 Strategies for Alice on the dragon structures (E_4 and E_3)

Here we present strategies for E_3 and E_4 that combine the two dragon strategies (cf. Lemma 44).

Proposition 52 (E_4). Alice wins on $G \in E_4$ with $\max\{m + 1, n + 1\}$ colours.

Proof: Without loss of generality, we can assume $m \leq n$. Indeed, if vertex b is missing and $m > n$, vertex a is the only critical vertex and Alice wins by ensuring that it is coloured on her first move. If vertex b is present, we can assume $m \leq n$ by symmetry. Note that every vertex may be critical at the beginning. Consider the case $m = n = 1$. Then G without vertex b is a dragon and Alice wins by Lemma 44. If b is present, then G is an almost complete bipartite graph instance of E_9 and Alice wins. Hence we assume from now on that $n \geq 2$ and we have at least three colours at our disposal.

We give a strategy for Alice in two phases. In Phase 1, her basic strategy is to make sure that K_m contains the same colours as K_n until there is only one uncoloured vertex left in K_n. For Phase 2, we distinguish three different cases that represent different end games depending on the game state she finds herself in. Alice transitions from Phase 1 to Phase 2 if explicitly instructed in the rules below or once K_n contains exactly one uncoloured vertex. Note that rule 1 in Phase 1 mirrors the pairing dragon strategy while rule 1 in Case 1 of Phase 2 is inspired by the bipartite dragon strategy.
Phase 1: As long as there are at least two uncoloured vertices in K_n before Bob’s move, Alice uses the following rule-based strategy.

1. If vertex b does not exist and Bob colours vertex a, Alice applies the same colour to a vertex in K_n. Otherwise, if b exists, and Bob colours a vertex in pair (a, b) or (c, d), Alice applies the same colour to the other vertex in the pair. In either case she proceeds to Case 3 of Phase 2.

2. If K_n and K_m both contain uncoloured vertices and Bob colours a vertex in one of them, Alice applies the same colour to a vertex in the other clique.

3. Suppose K_m is fully coloured and Bob colours a vertex in K_n with colour α. Alice’s response depends on the number of uncoloured vertices left in K_n.

 (i) If K_n has at least three uncoloured vertices, Alice colours one of them.

 (ii) If K_n has exactly two uncoloured vertices, Alice applies colour α to vertex a and proceeds to Case 2 of Phase 2.

 (iii) If K_n has exactly one uncoloured vertex, Alice colours a with α. Now the remaining uncoloured vertices (b, c, d) and the last vertex of K_n induce a C_4 or P_3, depending on the presence of vertex b. Each of these vertices admits at least colours n and $n+1$ and it is Bob’s turn. Since C_4 is obviously g_B-perfect, Alice wins in the next round.

Phase 2:

Case 1: In this case, vertices a, b, c, d are still uncoloured and Alice entered Phase 2 because K_n has exactly one uncoloured vertex. In fact, observe that we have $m \in \{n-1, n\}$, so K_m has at most one uncoloured vertex. We assume without loss of generality that the colours of K_m and K_n are $1, \ldots, n-1$. Alice proceeds by the following rules.

1. If Bob colours a or b with colour n, Alice colours c with colour $n+1$. Similarly, if Bob colours c or d with colour n, Alice colours a with colour $n+1$ and wins.

2. If Bob colours the last uncoloured vertex of K_n or K_m with colour n, Alice wins by colouring the last vertex of the other clique with colour $n+1$. If K_m is already fully coloured, she instead colours c with colour $n+1$ to win.

Case 2: In this case, Alice transitioned into Phase 2 from rule 2 in Phase 1. Hence K_m is fully coloured with a subset of colours $1, \ldots, n-3$, the clique K_n is coloured with colours $\{1, \ldots, n-2\}$ and has exactly two uncoloured vertices, vertex a is coloured with colour $n-2$, and b (if present), c and d are uncoloured. Alice wins in a single round, as follows.

1. If Bob colours c or d, Alice wins by applying the same colour to other vertex.

2. If Bob colours b, Alice wins by colouring an uncoloured vertex of K_n such that b has the same colour as a vertex in K_n.

3. If Bob colours an uncoloured vertex of K_n, Alice colours b with colour $n-2$ if b is present, otherwise the last uncoloured vertex of K_n with any feasible colour. In any case, she wins.
Case 3: In this case, Alice entered Phase 2 because Bob coloured vertex \(a, b, c\) or \(d\). If \(b\) is present, then either pair \((a, b)\) or pair \((c, d)\) is coloured and \(K_n\) has at least two uncoloured vertices. If \(b\) is not present, then either \((c, d)\) is coloured, \(a\) is uncoloured and \(K_n\) has at least two uncoloured vertices, or \(a\) is coloured with a colour from \(K_n\), \((c, d)\) is uncoloured and \(K_n\) has at least one uncoloured vertex. This guarantees the feasibility of Alice’s following moves.

Note that if \(b\) does not exist and pair \((c, d)\) is coloured, then only vertex \(a\) is critical and Alice wins by ensuring that \(a\) is coloured on her next move. If \(b\) exists, \((c, d)\) is coloured and \(m < n\), then all vertices are safe and Alice wins immediately. Otherwise, if \(m = n\), we can relabel \((a, b)\) to \((c, d)\) and \(K_m\) to \(K_n\) (and vice versa). Hence we assume without loss of generality that \(a\) is coloured and \((c, d)\) is not. Alice proceeds by the following rules. If Bob colours \(c\) or \(d\), Alice wins by colouring the other vertex the same. If Bob instead colours a vertex in \(K_m\) or \(K_n\), Alice colours a vertex in \(K_n\). The first time she does this, she makes \(c\) and \(d\) safe by ensuring that \(K_n\) contains the colour of \(a\). Once \(K_n\) is fully coloured, she wins.

}\(\square\)

Proposition 53 \((E_3)\). Alice wins on \(G \in E_3\) with \(\omega(G)\) colours.

Proof: First, let \(G\) be a graph in \(E_3\) without vertex \(c\). Without loss of generality, assume \(m \geq 1, n \geq 2\), as \(G \in E_4\) for \(n = 1\). The clique number of \(G\) is \(\omega(G) = m + n \geq m + 2\). The cliques \(K_m\) and \(K_n\) and possibly vertex \(a\) are critical. Note that every critical vertex can be saved by colouring two neighbours with the same colour. Thus in her strategy, Alice simply makes sure that \(a\) is coloured the same as a vertex in \(K_m\) and \(b\) is coloured the same as a vertex in \(K_n\). This procedure follows the pairing dragon strategy.

1. Suppose \(a\) is uncoloured. If Bob colours \(a\) or a vertex in \(K_m\), Alice applies the same colour to the other option. This saves \(b\) and \(K_n\).

2. Suppose \(a\) is coloured. If Bob colours a vertex in \(K_m\), Alice colours another vertex in \(K_m\). If \(K_m\) is completely coloured at that point or before her move, then every vertex is safe and Alice wins by Observation\(39\).

3. If Bob colours \(b\) or \(K_n\), Alice follows rules 1 and 2 with \((a, K_m)\) substituted by \((b, K_n)\).

4. Lastly, if Bob colours \(d\), Alice colours a vertex in \(K_n\). If possible, she uses the same colour as Bob, otherwise a new colour. If \(K_n\) is fully coloured before or after her move, then every vertex is safe and Alice wins by Observation\(39\).

Now let \(G\) be an instance of \(E_3\) with vertex \(c\). By definition, \(m, n \geq 1\) and the only non-critical vertex is \(d\). For a colouring with \(\omega(G) = m + n + 1\) colours,

1. vertex \(b\) must be coloured the same as a vertex in \(K_n\),
2. vertex \(a\) must be coloured the same as \(c\) or a vertex in \(K_m\), and
3. vertex \(d\) must be coloured the same as a vertex in \(K_m\) or \(K_n\).
Therefore, we propose the following strategy for Alice, which is inspired by the proper colouring of the base graph of G shown Figure 7.

1. If Bob colours a with a colour from K_m, Alice colours c with a new colour. Otherwise, if Bob colours a or c, Alice applies the same colour to the other vertex.

2. Suppose K_n is completely uncoloured and Bob colours b or a vertex in K_n. Then Alice applies the same colour to the other option.

3. Suppose Bob colours a vertex in K_n that already has coloured vertices. If K_n and d are now fully coloured, Alice wins. Otherwise, if K_n is fully coloured and d is uncoloured, she colours d with the colour Bob used last and wins. Finally, if K_n has uncoloured vertices, Alice colours one of these.

4. Suppose K_m is completely uncoloured and Bob colours d or a vertex in K_m. Then Alice applies the same colour to the other option.

5. Suppose Bob colours a vertex in K_m that already has coloured vertices. If K_m and a are now fully coloured, Alice wins. Otherwise, if K_m is fully coloured and a is uncoloured, she colours a with the same colour and wins. Finally, if K_m has uncoloured vertices, Alice colours one of these.

This strategy guarantees that every move is feasible and conditions (1), (2) and (3) are satisfied at the end. Hence Alice wins by Observation 39.

7 Complexity Results

7.1 The clique module decomposition

Let G be a graph with n vertices. Without loss of generality, we assume that the vertices are numbered from 1 to n. Throughout this section we use the adjacency matrix of the graph, which can be constructed in $O(n^2)$ time and enables us to check adjacency of two vertices in $O(1)$ time.

A subset $S \subseteq V(G)$ is called a module in G if every $v \in V(G) \setminus S$ is either adjacent to all or none of S. If S is also a clique, we call it a clique module. A clique module C is maximal if no other clique module C' with $C \subset C'$ exists. Finally, a clique module decomposition F_G of G is a partition of $V(G)$ into maximal clique modules. The base graph B_G of G is obtained by contracting each maximal clique module in F_G to a single vertex while respecting the adjacencies of the original graph G. Theorem 56
shows that this notion is well-defined. We call a vertex in the base graph a clique vertex if it is obtained by contracting two or more vertices, and a singleton vertex otherwise.

Algorithm 1 computes a clique module decomposition F_G of G in $O(n^2)$ time. In order to construct the base graph B_G, we identify its vertices with the sets in the clique module decomposition F_G. Next we query for every pair $C, T \in F_G$ whether the first vertex in C and T are adjacent and add the edge (C, T) in B_G if so. As there are $|F_G|^2$ pairs and $|F_G| \leq n$, this takes $O(n^2)$ time in total. Recall that $N[v] := N(v) \cup \{v\}$ denotes the set of neighbours of v together with v itself.

Algorithm 1 A simple clique module decomposition algorithm.

```
Set $F = \{\{1, \ldots, n\}\}$
for $v = 1, \ldots, n$ do
  for all $S$ in $F$ do
    Remove $S$ and add $S \cap N[v]$ and $S \setminus N[v]$ to $F$ unless the respective set is empty.
  Return $F$.
```

Lemma 54. Given a graph G, Algorithm 1 returns a clique module decomposition in $O(n^2)$ time.

Proof: Note that F is a partition of $V(G)$ throughout the running time of the algorithm. Let F^* be the final partition that is returned on running the algorithm on G. First we show that every $C \in F^*$ is a clique module. Note that after k executions of the outer loop we know that for any vertex $1 \leq v \leq k$, all vertices in the unique set C containing v are adjacent to v. In particular, for $k = n$ this implies that every $C \in F^*$ is a clique. Now fix $C \in F^*$. Suppose C is not a module, i.e. there exist vertices $v, w \in C$ and $z \in V(G) \setminus C$ with $vz \in E(G)$ and $wz \notin E(G)$. But this is impossible, as v and w would have been separated on the z-th execution of the outer loop and can no longer be in the same set. Finally, we note that the clique modules in F^* are maximal. For this, let D be a maximal clique module in G. Every time a superset $S \supseteq D$ is replaced by $S \cap N[v]$ and $S \setminus N[v]$, D is either a subset of the former or the latter. This implies $D \subseteq C$ for some $C \in F^*$.

Clearly, the outer loop runs n times. On the other hand, determining $S \cap N[v]$ and $S \setminus N[v]$ can be done in $O(|S|)$ time for each $S \in F$. Hence for each execution of the outer loop, the inner loop takes $\sum_{S \in F} O(|S|) = O(n)$ time. In total, we get a running time of $O(n^2)$. \qed

Lemma 55. If C and D are clique modules in G that share a vertex v, then their union $C \cup D$ is also a clique module.

Proof: To see that $C \cup D$ is a clique, first note that C and D are cliques. Then, for any $x \in C$ and $y \in D$, the existence of edge xy is implied by $vy \in E$, as x and v are in the same clique module C. Now let $z \in V \setminus (C \cup D)$. Then z is adjacent to v if and only if it is adjacent to all vertices of C and D, as the two clique modules share the vertex v. \qed

Theorem 56. Every graph G has a unique clique module decomposition.

Proof: By Lemma 54, we know that every graph G has a clique module decomposition. Now suppose F and F' are two such decompositions. Fix a vertex $v \in V$ and $C \in F$ and $D \in F'$ with $v \in C \cap D$. By Lemma 55, we know that $C \cup D$ is also a clique module. This implies that, in order for C and D to both be maximal clique modules, we must have $C = D$. It follows that $F = F'$. \qed
7.2 Complexity results

Deciding whether a given graph G is g_B-perfect is in P. This follows immediately from our forbidden subgraph characterisation, which implies the $\Theta(n^7)$-time Algorithm 2. We can significantly improve on this by utilising our explicit structural characterisation. Exploiting the clique module decomposition technique, we can determine in quadratic time whether G is in E_i for any $e \in \{1, \ldots, 15\}$. This implies our complexity results, restated below for convenience.

Algorithm 2 A naive algorithm for checking g_B-perfectness

for all 5-subsets S of $V(G)$ do
 Return false if the subgraph of G induced by S matches one of F_1, \ldots, F_8.
for all 7-subsets S of $V(G)$ do
 Return false if the subgraph of G induced by S matches one of F_9, \ldots, F_{15}.
Return true.

Theorem 5 There is an $O(n^2)$ time algorithm deciding whether a graph G with n vertices is g_B-perfect (or g_A-perfect).

Proof: We show that deciding whether a graph G with n vertices is an instance of one of the graph classes $E_1^\cup, E_2, \ldots, E_9$ takes time $O(n^2)$. Hence, by Theorem 4 we can recognise g_B-perfect graphs in $O(n^2)$ time. Consider the following simple subroutines to determine membership in each graph class $E_1^\cup, E_2, \ldots, E_9$.

Subroutine for E_1. Compute the base graph B_G of G and store it as H. If H has a dominating vertex x, then remove it, else return false. Remove all isolated vertices in H. If H is null or a P_3, then return true, else false.

Subroutine for E_1^\cup. Compute the components of G and run the above subroutine for E_1 on each. Return true if and only if each component is in E_1.

Subroutines for E_2, E_3, E_4 and E_6. Compute B_G and its order n. If $n \neq |B_{E_i}|$, then return false. Return true if one of the permutations π of $V(B_G)$ is an isomorphism from B_G to B_E, mapping every clique vertex in B_G to a clique vertex in B_E.

Subroutine for E_5. Compute the complement $\overline{B_G}$ of B_G and the bipartition (A, Z) of $\overline{B_G}$ or return false if the graph is not bipartite. Remove any vertex in A or Z that is adjacent to every vertex in the other set. Return true if $|A| = |Z|$ and the graph is $(|A| - 1)$-regular, otherwise return false.

Subroutine for E_7. Compute the number m of edges in B_G and the bipartition (U, V) of B_G or return false if the graph is not bipartite. Return false if $|U| \neq 2 \neq |V|$, else without loss of generality we have $|U| = 2$. Return true if $m \in \{2|V| - 1, 2|V|\}$, U has no clique vertices and V has at most one clique vertex, otherwise return false.

Subroutine for E_8. Compute the number m of edges in B_G and the bipartition (U, V) of B_G or return false if the graph is not bipartite. Return false if $|U| \neq 3 \neq |V|$, else without loss of generality we have $|U| = 3$. Return true if $m = 3|V|$, U has no clique vertices and V has at most one clique vertex, otherwise return false.
Subroutine for E_9. Compute the bipartition (U, V) of G (not B_G) or return false if G is not bipartite. If G has $|U||V| - 1$ or $|U||V|$ edges, then return true, else false.

By Lemma 54, computing the base graph takes $O(n^2)$ time. In the subroutines for E_2, E_3, E_4 and E_6, note that $|B_{E_i}| \leq 7$ for $i \in \{2, 3, 4, 6\}$, so that checking for isomorphisms takes constant time. Finally, removing dominating or isolated vertices as well as computing the complement and the bipartition of a graph also uses quadratic time, so each subroutine is quadratic. As remarked above this proves that we can recognise g_B-perfect graphs in $O(n^2)$ time.

The following subroutine tests whether a given graph G is g_A-perfect and runs in quadratic time by the same arguments as in the proof above.

Subroutine for g_A-perfect graphs. Compute the components of G and run the subroutine for E_1 on each of them. Return true if all components are in E_1 and false if at least two components are not in E_1. Suppose exactly one component C_1 is not in E_1. If C_1 has no dominating vertex, then return false. Else run the subroutine for E_1 on each component of $C_1 - x$, where x is a dominating vertex of C_1, and return true if and only if each component is in E_1.

This proves that we can also recognise g_A-perfect graphs in $O(n^2)$ time.

We now discuss some consequences of Theorem 5. First we consider Corollary 6 restated below for convenience.

Corollary 6. Alice can win on any g_A- or g_B-perfect graph G with $\omega(G)$ colours using only $O(n^2)$ computational time.

Proof: By Theorem 5, Alice can check in quadratic time whether the graph G is game-perfect. If it is not, Alice is guaranteed to lose. If it is, Alice can identify, using the subroutines from the proof of Theorem 5 to which class E_1^1, E_2, \ldots, E_9 the graph belongs and uses the strategy for this class from Section 3 for game g_B and the instructions from the simple strategy given by Andres (2012) for game g_A. It is easy to check that following instructions from each strategy requires at most quadratic time. Thus Alice can win on any g_A- or g_B-perfect graph in quadratic time.

Next we turn to Corollary 7 restated for convenience.

Corollary 7. **HAMILTON CYCLE** is in P for g_A- and g_B-perfect graphs.

A result by Babel et al. (2001) shows that **HAMILTON CYCLE** on graphs with “few” P_4s takes linear time ($O(n + m)$) for a such graphs with n vertices and m edges. As this class of graphs contains the g_A-perfect graphs, Corollary 7 holds for the game g_A.

Theorem 57 (Babel et al. (2001)). A $(q, q-4)$-graph is a graph such that every set of at most q vertices contains at most $q-4$ distinct induced P_4s. For every integer $q \geq 4$ there exists a linear time algorithm that decides whether a $(q, q-4)$-graph is Hamiltonian.

Corollary 58. **HAMILTON CYCLE** is in P for g_A-perfect graphs.

Proof: By Theorem 2 g_A-perfect graphs are P_4-free and thus $(4, 0)$-graphs.

When considering the game g_B, we note that graphs in E_1^1, E_2 and E_7 are $(q, q-4)$-graphs but this approach breaks down for the remaining classes. Instead, our proof argues about the structure of graphs using the clique module decomposition and the following three observations.
Observation 59. A graph is Hamiltonian if its base graph is (but the converse need not be true).

Observation 60. A graph with a cut vertex is non-Hamiltonian.

Observation 61. A non-empty complete bipartite graph $K_{n,m}$ is Hamiltonian if and only if $m = n \geq 2$. An almost complete bipartite graph $K_{m,n} - e$ is Hamiltonian if and only if $m = n \geq 3$.

Proof of Corollary 7: Let $G = (V,E)$ be a g_B-perfect graph. By Theorem 5, we can determine in quadratic time which class(es) G belongs to. We give Hamiltonicity criteria for each graph class that can be efficiently checked, which implies our result.

Graphs in E_1 are Hamiltonian only if $a,b,c \geq 1$ and $k = 0$ or $a = b = c = 0$, $k = 1$ and $|V| \geq 3$. Hence the graph is Hamiltonian if and only if $|V| \geq 3$ and its base graph is either a single clique vertex or a P_3 with a clique vertex as its middle vertex.

Observations 60 and 59 imply that graphs in E_2 are non-Hamiltonian, and graphs in E_3 and E_4 are Hamiltonian if and only if the optional vertex is present.

As the base graph of graphs in E_5 with $k \geq 2$ is Hamiltonian, the graph itself is also Hamiltonian. Additionally, if $k = 1$, the graph is Hamiltonian if and only if A_1 and Z_1 both contain at least two vertices, or $A_R(Z_R)$ is empty and $Z_1(A_1)$ contains at least two vertices.

Extended house graphs (E_6) are Hamiltonian, by Observation 59. Extended bull graphs (E_6) are Hamiltonian if and only if $b,d \geq 2$, by Observation 60. The same observation also implies that a graph in E_7 is Hamiltonian only if c is connected to both K_n and b. Hence by Observation 51 such a graph is Hamiltonian if and only if its base graph is a $K_{2,2}$. Similarly, a graph in E_8 is Hamiltonian if and only if its base graph is a $K_{3,3}$ and a graph in E_9 is Hamiltonian if it satisfies the condition in Observation 61 together with the observation that the null graph, which is a member of E_9, is Hamiltonian.

8 Further work

Following the characterisation of g_B-perfect graphs by means of forbidden induced subgraphs and explicit structural descriptions, we ask whether such characterisations can be obtained for the remaining uncharacterised games g_B,A and g_A,A.

Problem 62. Characterise the g_B,A and g_A,A-perfect graphs by a set of forbidden induced subgraphs and/or explicit structural descriptions.

Partial progress on this has been made. Lock (2016) performed an exhaustive computer search to determine all minimal forbidden configurations with at most 10 vertices for the games g_B,A and g_A,A.

For the game g_B,A, this has yielded the minimal induced forbidden subgraphs $F_1, F_2, F_5, F_6, F_9, F_{10}, F_{11}$ (see Figure 1), the seven graphs depicted in Figure 8 and the odd antiholes C_7 and C_9. For the game g_A,A, 73 minimal forbidden induced subgraphs were found. In addition, we note that the disjoint union of two double fans is minimally forbidden for g_A,A, demonstrating that minimal forbidden subgraphs with more than 10 vertices exist for this game. These results suggest that the classes of g_A,A-perfect and g_B,A-perfect graphs are substantially richer than the g_B-perfect graphs and new ideas are required to characterise these.

The following known results imply that the set of minimal induced forbidden subgraphs is infinite. In particular, Corollary 65 states that all odd antiholes (C_k with odd $k \geq 5$) are minimal forbidden induced subgraphs for the games g_B,A and g_A,A. Note that in the context of game g_B, the odd antiholes of order
$k \geq 7$ are also forbidden induced subgraphs but are not minimal forbidden since they contain a forbidden induced 4-fan (F_4 in Figure 1).

Theorem 63 (Andres (2009)). Complements of bipartite graphs are $g_{A,A}$-perfect.

Theorem 64. Complements of bipartite graphs are $g_{B,A}$-perfect.

Proof: Identical to the proof of Theorem 63.

Corollary 65. Odd antiholes are minimal forbidden configurations in $g_{B,A}$- and $g_{A,A}$-perfect graphs.

Proof: Odd antiholes are forbidden, since they are not even perfect. Every proper induced subgraph of an odd antihole is a complement of a forest of paths and thus the complement of a bipartite graph. Hence we can apply Theorem 63 and Theorem 64, respectively.

These results motivate us to conjecture the following.

Conjecture 66. A graph is $g_{B,A}$-perfect if and only if it contains no odd antihole of order $k \geq 7$ or any of the 14 configurations listed above as an induced subgraph.

Recall that Chudnovsky et al. (2006) characterised the class of perfect graphs as the graphs without induced odd holes and odd antiholes, while a characterisation in terms of explicit structural descriptions remains elusive. Such a result might be of major algorithmic interest in computer science, and could also lead to a new proof of the Strong Perfect Graph Theorem using a triple equivalence as in the formulation of Theorem 4. Since characterising game-perfectness for the games $g_{B,A}$ and $g_{A,A}$ involves odd antiholes by Corollary 65, methods developed towards a solution of Problem 62 might provide some insights into Problem 67.

Problem 67. Characterise the class of perfect graphs by means of explicit structural descriptions.
Acknowledgements

We thank Vaidy Sivaraman for valuable comments and an anonymous reviewer for their helpful suggestions on the presentation of the paper.

References

