On the Book Thickness of k-Trees

Vida Dujmović1 and David R. Wood2

1School of Computer Science, Carleton University, Ottawa, Canada
2Department of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia

received 25th November 2010, accepted 26th September 2011.

Every k-tree has book thickness at most $k + 1$, and this bound is best possible for all $k \geq 3$. Vandenbussche et al. [SIAM J. Discrete Math., 2009] proved that every k-tree that has a smooth degree-3 tree decomposition with width k has book thickness at most k. We prove this result is best possible for $k \geq 4$, by constructing a k-tree with book thickness $k + 1$ that has a smooth degree-4 tree decomposition with width k. This solves an open problem of Vandenbussche et al.

MSC: 05C62, 68R10

Keywords: graph, book embedding, book thickness, pagenumber, stacknumber, treewidth, tree decomposition

1 Introduction

Consider a drawing of a graph G in which the vertices are represented by distinct points on a circle in the plane, and each edge is a chord of the circle between the corresponding points. Suppose that each edge is assigned one of k colours such that crossing edges receive distinct colours. This structure is called a k-page book embedding of G: one can also think of the vertices as being ordered along the spine of a book, and the edges that receive the same colour being drawn on a single page of the book without crossings. The book thickness of G, denoted by $bt(G)$, is the minimum integer k for which there is a k-page book embedding of G. Book embeddings, first defined by Olumann (1973), are ubiquitous structures with a variety of applications; see (Dujmović and Wood, 2004) for a survey with over 50 references. A book embedding is also called a stack layout, and book thickness is also called stacknumber, pagenumber and fixed outerthickness.

This paper focuses on the book thickness of k-trees. A vertex v in a graph G is k-simplicial if its neighbourhood, $N_G(v)$, is a k-clique. For $k \geq 1$, a k-tree is a graph G such that either $G \simeq K_{k+1}$, or G has a k-simplicial vertex v and $G - v$ is a k-tree. In the latter case, we say that G is obtained from $G - v$ by adding v onto the k-clique $N_G(v)$.
What is the maximum book thickness of a k-tree? Observe that 1-trees are precisely the trees. [Bernhart and Kainen (1979)] proved that every 1-tree has a 1-page book embedding. In fact, a graph has a 1-page book embedding if and only if it is outerplanar. [Bernhart and Kainen (1979)] showed that 2-trees are the edge-maximal series-parallel graphs. [Rengarajan and Veni Madhavan (1995)] proved that every series parallel graph, and thus every 2-tree, has a 2-page book embedding (also see [Di Giacomo et al. 2006]). This bound is best possible, since $K_{2,3}$ is series parallel and is not outerplanar. [Ganley and Heath (2001)] proved that every k-tree has a $(k+1)$-page book embedding; see [Dujmović and Wood (2007)] for an alternative proof. Ganley and Heath (2001) also conjectured that every k-tree has a k-page book embedding. This conjecture was refuted by Dujmović and Wood (2007), who constructed a k-tree with book thickness $k+1$ for all $k \geq 3$. Vandenbussche et al. (2009) independently proved the same result. Therefore the maximum book thickness of a k-tree is k for $k \leq 2$ and is $k+1$ for $k \geq 3$.

Which families of k-trees have k-page book embeddings? [Togasaki and Yamazaki (2002)] proved that every graph with pathwidth k has a k-page book embedding (and there are graphs with pathwidth k and book thickness k). This result is equivalent to saying that every k-tree that has a smooth degree-2 tree decomposition of width k has a k-page book embedding. [Vandenbussche et al. (2009)] extended this result by showing that every k-tree that has a smooth degree-3 tree decomposition of width k has a k-page book embedding. [Vandenbussche et al. (2009)] then introduced the following natural definition. Let $m(k)$ be the maximum integer d such that every k-tree of width k has a smooth degree-d tree decomposition of width k. [Vandenbussche et al. (2009)] proved that $3 \leq m(k) \leq k+1$, and state that determining $m(k)$ is an open problem. However, it is easily seen that the k-tree with book thickness $k+1$ constructed in [Dujmović and Wood (2007)] has a smooth degree-5 tree decomposition with width k. Thus $m(k) \leq 4$ for all $k \geq 3$. The main result of this note is to refine the construction in [Dujmović and Wood (2007)] to give a k-tree with book thickness $k+1$ that has a smooth degree-4 tree decomposition with width k for all $k \geq 4$. This proves that $m(k) = 3$ for all $k \geq 4$. It is open whether $m(3) = 3$ or 4. We conjecture that $m(3) = 3$.

2 Construction

Theorem 1 For all $k \geq 4$ and $n \geq 11(2k^2+1)+k$, there is an n-vertex k-tree Q, such that $bt(Q) = k+1$ and Q has a smooth degree-4 tree decomposition of width k.

Proof: Start with the complete split graph $K_{k,2k^2+1}^*$. That is, $K_{k,2k^2+1}^*$ is the k-tree obtained by adding a set S of $2k^2+1$ vertices onto a k-clique $K = \{u_1, u_2, \ldots, u_k\}$, as illustrated in Figure 1. For each vertex $v \in S$ add a vertex onto the k-clique $(K \cup \{v\}) \setminus \{u_1\}$. Let T be the set of vertices added in this step. For each vertex $w \in T$, if v is the neighbour of w in S, then add a set $T_2(w)$ of three simplicial vertices onto the k-clique $(K \cup \{v, w\}) \setminus \{u_1, u_2\}$, add a set $T_3(w)$ of three simplicial vertices onto the k-clique $(K \cup \{v, w\}) \setminus \{u_1, u_3\}$, and add a set $T_4(w)$ of three simplicial vertices onto the k-clique $(K \cup \{v, w\}) \setminus \{u_1, u_4\}$. This step is well defined since $k \geq 4$. For each vertex $w \in T$, let $T(w) := T_2(w) \cup T_3(w) \cup T_4(w)$. By construction, Q is a k-tree, and as illustrated in Figure 2, Q has a smooth degree-4 tree decomposition of width k.

(iii) See [Diestel (2000)] for the definition of tree decomposition and treewidth. Note that k-trees are the edge maximal graphs with treewidth k. A tree decomposition of width k is smooth if every bag has size exactly $k+1$ and any two adjacent bags have exactly k vertices in common. Any tree decomposition of a graph G can be converted into a smooth tree decomposition of G with the same width. A tree decomposition is degree-d if the host tree has maximum degree at most d.

It remains to prove that $\text{bt}(Q) \geq k + 1$. Suppose, for the sake of contradiction, that Q has a k-page book embedding. Say the edge colours are $1, 2, \ldots, k$. For each ordered pair of vertices $v, w \in V(Q)$, let $\hat{v} \hat{w}$ be the list of vertices in clockwise order from v to w (not including v and w).

Say $K = (u_1, u_2, \ldots, u_k)$ in anticlockwise order. Since there are $2k^2 + 1$ vertices in S, by the pigeonhole principle, without loss of generality, there are at least $2k + 1$ vertices in $S \cap \hat{u}_1 \hat{u}_k$. Let $(v_1, v_2, \ldots, v_{2k+1})$ be $2k + 1$ vertices in $S \cap \hat{u}_1 \hat{u}_k$ in clockwise order.

Observe that the k edges $\{u_iv_{k-i+1} : 1 \leq i \leq k\}$ are pairwise crossing, and thus receive distinct colours, as illustrated in Figure 3(a). Without loss of generality, each u_iv_{k-i+1} is coloured i. As illustrated in Figure 3(b), this implies that u_1v_{2k+1} is coloured 1, since u_3v_{2k+1} crosses all of $\{u_iv_{k-i+1} : 2 \leq i \leq k\}$ which are coloured $2, 3, \ldots, k$. As illustrated in Figure 3(c), this in turn implies that u_2v_{2k} is coloured 2, and so on. By an easy induction, u_iv_{2k+2-i} is coloured i for each $i \in \{1, 2, \ldots, k\}$, as illustrated in Figure 3(d). It follows that for all $i \in \{1, 2, \ldots, k\}$ and $j \in \{k-i+1, k-i+2, \ldots, 2k+2-i\}$, the edge u_iv_j is coloured i, as illustrated in Figure 3(e). Moreover, as illustrated in Figure 3(f):

![Figure 1: The complete split graph K^*_4](image)

![Figure 2: A smooth degree-4 tree decomposition of Q](image)
If \(qu_i \in E(Q) \) and \(q \in v_kv_{k+2} \), then \(qu_i \) is coloured \(i \).

(a)

![Diagram](a)

(b)

![Diagram](b)

(c)

![Diagram](c)

(d)

![Diagram](d)

(e)

![Diagram](e)

(f)

![Diagram](f)

Fig. 3: Illustration of the proof of Theorem 1 with \(k = 4 \).

Note that the argument up to now is the same as in [Dujmović and Wood, 2007]. Let \(w \) be the vertex in \(T \) adjacent to \(v_{k+1} \). Recall that \(w \) is adjacent to each vertex in \(K \setminus \{u_1\} \). Vertex \(w \) is in \(v_kv_{k+2} \), as otherwise the edge \(uv_{k+1} \) crosses \(k \) edges of \(Q[\{v_k, v_{k+2}\}; K] \) that are all coloured differently. Without loss of generality, \(w \) is in \(v_kv_{k+1} \). Each vertex \(x \in T(w) \) is in \(v_kv_{k+1} \), as otherwise \(xw \) crosses \(k \) edges in \(Q[\{v_k, v_{k+1}\}; K] \) that are all coloured differently. Therefore, all nine vertices in \(T(w) \) are in \(v_kv_{k+1} \). By the pigeonhole principle, at least one of \(vkw \) or \(uv_{k+1} \) contains two vertices from \(T_i(w) \) and two vertices from \(T_j(w) \) for some \(i, j \in \{2, 3, 4\} \) with \(i \neq j \). Let \(x_1, x_2, x_3, x_4 \) be these four vertices in clockwise order in \(v_kv_{k+1} \).

Case 1. \(x_1, x_2, x_3, x_4 \) are in \(vkw \): By \((*) \), the edges in \(Q[\{w\}; K] \) are coloured \(2, 3, \ldots, k \). Thus \(x_2v_{k+1} \), which crosses all the edges in \(Q[\{w\}; K] \), is coloured 1. At least one of the vertices in \(\{x_2, x_3, x_4\} \) is adjacent to \(K \setminus \{u_1, u_i\} \) and at least one to \(K \setminus \{u_1, u_j\} \). Thus, by \((*) \), the edges in \(Q[\{x_2, x_3, x_4\}; K] \) are coloured \(2, 3, \ldots, k \). Thus \(x_1w \), which crosses all the edges of \(Q[\{x_2, x_3, x_4\}; K] \) is coloured 1. Thus \(x_2v_{k+1} \) and \(x_1w \) cross and are both coloured 1, which is the desired contradiction.

Case 2. \(x_1, x_2, x_3, x_4 \) are in \(uv_{k+1} \): As in Case 1, the edges in \(Q[\{x_2, x_3, x_4\}; K] \) are coloured \(2, 3, \ldots, k \). Thus \(x_1v_{k+1} \), which crosses all the edges in \(Q[\{x_2, x_3, x_4\}; K] \), is coloured 2. Since the edges in \(Q[\{x_1, x_2, x_3\}; K] \) are coloured \(2, 3, \ldots, k \), the edge \(x_3w \), which crosses all the edges of
On the Book Thickness of k-Trees

$Q[\{x_1, x_2, x_3\}; K]$, is coloured 1. Thus x_1v_{k+1} and x_4w cross and are both coloured 1, which is the desired contradiction.

Finally, observe that $|V(Q)| = |K| + |S| + |T| + \sum_{w \in Q} |T(w)| = |K| + 11|S| = k + 11(2k^2 + 1)$. Adding more k-simplicial vertices to Q does not reduce its book thickness. Moreover, it is simple to verify that the graph obtained from Q by adding simplicial vertices onto K has a smooth degree-4 tree decomposition of width k. Thus for all $n \geq 11(2k^2 + 1) + k$, there is a k-tree G with n vertices and $\text{bt}(G) = k + 1$ that has the desired tree decomposition.

3 Final Thoughts

For $k \geq 3$, the minimum book thickness of a k-tree is $\lceil \frac{k+1}{2} \rceil$ (since every k-tree contains K_{k+1}, and $\text{bt}(K_{k+1}) = \lceil \frac{k+1}{2} \rceil$; see (Bernhart and Kainen, 1979)). However, we now show that the range of book thicknesses of sufficiently large k-trees is very limited.

Proposition 1 Every k-tree G with at least $\frac{1}{2} k(k + 1)$ vertices has book thickness $k - 1$, k or $k + 1$.

Proof: Ganley and Heath (2001) proved that $\text{bt}(G) \leq k + 1$. It remains to prove that $\text{bt}(G) \geq k - 1$ assuming $|V(G)| \geq \frac{1}{2} k(k + 1)$. Numerous authors (Bernhart and Kainen, 1979; Cottafava and D’Antona, 1984; Keys, 1975) observed that $|E(G)| < (\text{bt}(G) + 1)|V(G)|$ for every graph G. Thus

$$(k - 1)|V(G)| \leq k|V(G)| - \frac{1}{2} k(k + 1) = |E(G)| < (\text{bt}(G) + 1)|V(G)|.$$

Hence $k - 1 < \text{bt}(G) + 1$. Since k and $\text{bt}(G)$ are integers, $\text{bt}(G) \geq k - 1$. □

We conclude the paper by discussing some natural open problems regarding the computational complexity of calculating the book thickness for various classes of graphs.

Proposition 1 begs the question: Is there a characterisation of the k-trees with book thickness $k - 1$, k or $k + 1$? And somewhat more generally, is there a polynomial-time algorithm to determine the book thickness of a given k-tree? Note that the k-th power of paths are an infinite class of k-trees with book thickness $k - 1$; see (Swaminathan et al., 1995).

k-trees are the edge-maximal chordal graphs with no $(k + 2)$-clique, and also are the edge-maximal graphs with treewidth k. Is there a polynomial-time algorithm to determine the book thickness of a given chordal graph? Is there a polynomial-time algorithm to determine the book thickness of a given graph with bounded treewidth?
References

