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On the minimal distance of a polynomial code
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For a polynomial f(z) € Zz|[x] it is natural to consider the near-ring code generated by the polynomials f o x, f o
x2,...,f oz® as a vectorspace. It is a 19 year old conjecture of Giinter Pilz that for the polynomial f (z) =
™ + 2" 4 ... 4 z the minimal distance of this code is n.

The conjecture is equivalent to the following purely number theoretical problem. Let m = {1,2,...,m}and A C N
be an arbitrary finite subset of N. Show that the number of products that occur odd many times in n - A is at least n.
Pilz also formulated the conjecture for the special case when A = k. We show that for A = k the conjecture holds
and that the minimal distance of the code is at least n/(log n)%223.

While proving the case A = k we use different number theoretical methods depending on the size of k (respect to n).
Furthermore, we apply several estimates on the distribution of primes.
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1 Introduction

For two finite subsets of the positive integers, A and B let A+« B = {ab|a € A, b € B and ab occurs
odd many times in A - B}. In other words, if A = {a1,...,ax}, then Ax B = a1 BA --- Aay B, where
A denotes the symmetric difference. For a positive integer m let m = {1,2,...,m}.

Conjecture 1 If n, k are positive integers, then |n x k| > n.

For an arbitrary finite subset A C N it was proved that |m * A| > w(m) + 1, where 7(z) is the prime
counting function, and the following conjecture was formulated (Pilz (1992)):

Conjecture 2 Let n be a positive integer and K C N be a finite set of integers. Then |n x K| > n.

These purely number theoretical problems originate in the theory of near-ring codes. A near-ring can be
described as a ring, where the addition is not necessarily commutative and only one of the distributive
laws is required. A typical example is the near-ring of polynomials, where the addition is the usual poly-
nomial addition, and multiplication is the composition of the polynomials. In this example the addition
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is commutative and only the right distributive law holds. Near-rings play an important role in combi-
natorics: They are used to construct block designs that give rise to efficient error correcting codes. For
more information on these codes see Eggetsberger| (201 1)), Pilz|(1983) and |Pilz|(2011). A special and very
interesting near-ring code is defined in the following way: Let f € Zs[xz] be a polynomial and C'(f, k) the
code generated (as a subspace) by the polynomials f = fox, fox?,..., fox® For f = x422+-- 42"

a typical codeword is
Sreri= ¥ o
ie K JEK*n

where K is a finite subset of k. As C(f, k) is a linear code, its minimal distance is equal to the minimal
weight of any nonzero codeword. Hence the minimum distance of C(f, k) is the minimal value of |n * K|
for some K C k.

In this paper we settle Conjecture 1, and prove that for arbitrary » € N and finite set K’ C N we have

[nx K| >c- ﬁ for some ¢ > 0. Note that the minimal distance in C( f, k) depends heavily on f.

If, for example, we start with f(z) =z + 22 + 2% + .- + 22" then fox+ fox?=x+ 22" hence
the minimal distance of the corresponding code is 2.
The natural logarithm will be denoted by log through the whole paper.

2 The general case

Let us denote by ¢g(n) the minimal size of the set n x I, where K is a finite subset of the positive integers.
In|PilZ| (1992) it is proved that g(n) > 7(n) + 1. In this section we improve this lower bound and prove

that g(n) > c- for some ¢ > 0. The proof is based on the following lemma:

10g0.223 n

Proposition 1 For every positive integer n

g(n) = 3 g(In/pv)).

p<n

where the sum goes over the primes less than n, and «, is the largest integer such that p*» < n.

Proof: Let p < n be a prime and K,, C K the subset of K containing the elements that are divisible by
the largest power of p occuring as divisor of some element of K (possibly p = 1). Similarly, let n,<n
be the set of elements of n that are divisible by p®». Note that n,, is never empty. By the maximality of
the exponents of p in K, and n,, for any a € n,, be Kyandcen,d e Kifab= cd, thenc € n, and
d € K, hold. We prove that for p < ¢ < n different primes n, K, and ng - K, are disjoint. If for some
a€nandb e Kwehaveabeﬂp~Kpﬂﬂq~Kq,thena€Qpﬂﬂq. Thus a = pgd’, and @ = pd’ < a
is in n. The exponent of p in a is larger than the one in a, which is contradiction. Hence, n * K contains
the disjoint union of the sets n, - K, forp <n,so

nx K| > |n, * K. )

p<n
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As p» <n < potl clearly, n, = {p®®,2p°,..., [n/p®® |p®r}, where [n/p®r | < p. Dividing by
p°r, we obtain that |n, * Kp| = |[n/p®? | * Kp|, thus by the definition of g we get
|y, * Kp| = |[n/p® | * Kp| = g([n/p®"]).

By () we have
g(n) = > g(In/p°*]),

p<n

and this is what we wanted to prove. O

Theorem 2 For every \ > X there exists a ¢ = ¢(\) > 0 such that for every n > 1

n

n)>c- ,
9(n) log’\n

Ao
2 1
where )\ satisﬁes/ () rdy = 1. Note that \y ~ 0.2223...
Y -y
0

Proof: Fix 1 > X > )\g. We claim that there exists some ¢ > 0 such that the inequality

n

g(n) > c 2

. log>‘ n
holds for every n > 1. The proof is by induction on n. First we discuss the induction step. Assume that
@) holds for n < m. Now, we show that it holds for n = m, as well. The value of ¢ will be chosen later.
By Proposition [T]and the induction hypothesis:

g(m) = ﬁ%;mg(L /p]) = mq-;m/z o (]}
o Lm/pl Lom/p=1
ngim/g log*(|m/p)) Z\/Rzp;mm log*(|m/p])
_ m/p B Z . 1 3)

s i) 2, o i)

In Rosser and Schoenfeld|(1962) it is proved that 7r(m) < 123206 for every m > 1, hence 7(m/2) —

logm

m(v/m) < m(m) < 1.5- %. For the second term of the last line of (3) we obtain:
m

1 1 m c m
- < : <15 ——. =o[———), @
Z ¢ log’\(Lm/pJ) - Z ¢ (log2)* — logm log2 © <log’\m> “)

Vm<p<m/2 Vm<p<m/2

since A < 1.
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. . . 1
Now we estimate the main term. By Mertens’ theorem, there exists a constant M such that Z - =

p<z p

loglog x + M + o(1). Hence, for every € > 0 there exists B = B(e) such that for B < a <b

1
Z — —loglogb +logloga| < e (5)
a<p<b

holds. For m > 225 we have m3+ 2% < m/2. Applying (3) to the interval I, = (m2+sx ,m3+z2k],
where h is an integer satisfying 1 < A < K — 1 we obtain that

1 K+h
- >log ———— —¢. 6
Zp>OgK+h—1 € (6)
p€El}

If p € I, then log™(m/p) < log*(m)(£5AEL) . Substituting into the main term of the last line of (3,
omitting the integer parts and rearranging we get that

D TR S S ) B

Jrepemya 108" (lm/p]) f<p<m /o 1087 (m/p)
( )/\ 1
Z ) -2
log m = oo K—-h+1 D
K-1 A K—-1 A
cm 2K K+h 2K
> E — ) log——+— — E _— . @
105‘5/\m<h—1 <K_h+1> OgK+h_1 6h—1< _h+1> ) "
Now we show that there exists some K such that
K—1 A
2K K+h
S = _ log — > 1. 8
K ;(Kh+1> T ®
2\* 1 N 1
Let fx(y) = (> K -log (1 + ) and f(y) = (> ——. The sequence of functions
( ) Yy K(2—y) ( ) Y 2—y

fx converges to f. Then

I (f)‘FfK(%) "‘*‘fK(%) _ fK(%).

Sk = I

Let

fE) +F(@) + 4 1(E)

Tk = %

As 1> A > )y, the Riemann-sum 7}, converges to fol f>1. As fg(3)/K converges to 0, it is easy to
see that S — T converges to 0. Hence we can fix a K such that S > 1. Now, we can choose some
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€ > 0 such that

K—-1 A K-1 A
2K K+h 2K
- 1 —1- = .
K ;(K—h—&-l) K Yh—1 g}Z(K—h—&—l) >0

According to (4) there exists some 12 such that if R < m, then

1 m
2 gy ST

NN
Jm<p<m/2 log™m

log™m

By (@) and (7) we obtain that g(m) > ¢ - T holds. If we choose ¢ > 0 such that (2) holds for
n < max(225, B?(¢), R), then (3) is gained. O

3 Thecase K =k

In this section we prove Conjecture |I} We distinguish cases according to how large is k£ according to n.
The conjecture is true for &£ < 8. (Pilz/(1992))

Case 1: 9< k<134 -logn

We show that in this case the number of elements that occur exactly once in the product n - k is at least
n. We shall need the following two observations.

Lemma 3 Letn/2 < a < nandb € k such that a is relatively prime to every number less than k. Then
ab occurs once inn - k.

Proof: Let us assume that a1, as € n and by, by € k satisfy the conditions of the lemma, and a1b7 = a2bs.
Now, a1 |asbs and a1 and bs are relatively prime, hence aq|as. As a; > n/2 we have 2a; > n > as, thus
a1 = ag, which implies b; = bs. O

1 .
Lemma 4 Ifk;214,thenH 1—-1]> 05.
Sk P log k

Proof: InRosser and Schoenfeld| (1962) it is shown that for & > 1

i ( : ) ( 1)
1— < || 1—-—

2 f— bl
log k log” k o<k P

where ~y is the Euler constant. For £ > 21 by using the monotonicity of the logarithm function and

e~ 7 > 0.56 we get that
e <1 1 ) S 0.56 (1 1 ) - 0.5
log k log? k log k log? 22 logk’
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For 14 < k < 21 it is enough to check the statement when k = 14, 17 and 19. For these numbers the
1

values of (log k) - H (1 - ) are 0.506, 0.511 and 0.503, respectively, hence the statement holds. O
p

p<k
Proposition 5 Let 9 < k < 1.34 -logn. Then |nx k| > n.

Proof: We show that there are at least n products satisfying the conditions of Lemma 3] For this we need
to estimate the number of integers between n/2 and n that are not divisible by a prime less than k. This
number will be denoted by D. By the inclusion-exclusion principle

oty 8wl EED @

1<ii<...<ip <r - Pin

where 7(k) = r and py, ..., p, are the primes up to k. Applying z — 1 < 2] < z to all 2"*! terms of
the right side we get that

h=1 1<iy <...<ip<r - Pin
n 1
= — —— ] =2". (10)
2 H ( p)

If k > 14, Lemma ] applies, and

P log k
p<k

[\)

As k < 1.341ogn, for k > 14 we have the estimation

o) i L n
=2 = 100logk ¢ = 1001logk

0.24
Hence, D > 172 Using Lemma 3| we obtain |n % k| > Dk. The function x/logx is monotone
0g

increasing on [1, c0), thus
0.24k 0.24-14

k| > Dk > > .
[ k| 2 - logkn_ log 14 nen

For 9 < k < 13 we have

1
nxk|> Dk > ﬁH (1—) — 2R | k.
2 p
p<k
For 10 < k < 13 it is obtained by calculation that the right hand side is greater than n if n > /134,
For k = 9 the inequality holds if n > 5040. By brute force the statement can be checked for k¥ = 9 and
n < 5040. Thus we obtained |n * k| > n. 0
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0.22-n

Case 2: 1.34-logn <k <n-— and n > 1410.

logn

Let k; = max(k,n/7) and k1 < p < n a prime. As k < p, the set of elements of n * k, which are
divisible by p is {p,2p, ..., [n/p|p} * k. This set has the same cardinality as the set |n/p]| * k. Now,
n/p| < 6, hence ||n/p]| * k| > k. Itis easy to see that for p > ¢ > n/7 an element of n * k cannot be
divisible by both p and ¢. Hence, |n * k| > (7(n) — w(k1))k.

At first, suppose that k£ < n/7. By a theorem of Dusart|Dusart (1999) for = > 17

1.2762
x < r(@) < x 14 76
log x log x log x

holds. Hence, 7(n) — 7(n/7) > 0.749 - o

forn > 1410. As 1.34 - logn < k, we have
logn

|nx k| >1.34-0.749 - n > n.

Secondly, let us consider the case when n/7 < k < n/2. Asw(n) —n(n/2) > 17,
Inxk| > (r(n) —n(k1))k >7-n/7T=n.

0.22-n
logn
at least two primes between k and n if n > 90000. It can be checked that this also holds for n > 1410.

Thus

Finally, letn/2 < k <n —

. Then by the estimates in [Dusart| (1999) and [Robin| (1983)) there are

nx k| > (w(n) — 7(k))k = 2(n/2) = n.

We continue with the case when k is "large", that is, n — logofﬁ < k. By calculation we have
0.4 0.22-
n_mgn_ lognnforn24.
. 0.4 -
Case 3: n———="" < k<nandn > 5000.
logn + 1,02

Ifk=n,thenk-n=1{1,...,n} - {1,...,n}. If a # b, then pairing ab with ba only the products of
the form a - a are left, hence n x k = {12,2% ... n?}. Thus

|n* k| = n.
Assume now that £ < n. Then
In k| = |(kxE)A((n\ k)« k)| = |k« k| +[(n\ k) « k| = 2[(k «E) N ((n\ k) xk)[. (D
For the first term on the right side of we have

|k x k| = [{12,2%,... k*}| = k. (12)
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Lemma 6 For the second term of we have
(n\ k) * k| > 2k —n. (13)
Proof: We use the following observation: If

i <
“n—k

and k+1<j<n,

then ij appears exactly once in (n \ k) - k, so ij € (n\ k) = k. Let us assume that ij = '’ such that

k
1<i <kandk+1<j <n.Ifi=1i thenj=j Ifi' <ithenl <i < kandk+1 <j <n.
n—

. ./
i
Now, changing the roles of (4, j) and (¢, ;') we may assume that ¢ < i’. As ij = i’j’, we have 7= ‘7—

J
and
1 1 —k_ k k+1 !
—< < —n-k 2 < <l
T+l T Al om o T
which is a contradiction. For (n \ k) * k we obtain that
\E) k> |~ k> (e c1 ) k) mk— (k) =2%—n. (14
— T T n—k “\n—-k o - '
O
Now, we focus on the third term of (TT).
Lemma 7 For the third second term of (I1))
(k% k) N ((n\ k) * k)| < 0.431 - . (15)
holds.
Proof: It is enough to show that among the numbers 12,22, ..., k2 at most 0.431k many has a divisor in

the interval [k + 1,n]. Let k+1 < m < n and m = a,,b2,, where b2, is the largest square divisor of
m. Since a,, is squarefree, m/|i? if and only if a,,b,,|i. Let S denote the following upper bound of the

number of elements of the set {12,272, ... k?} which have a divisor in [k + 1,7n]:
. k . k —~ b
S = < — mo
I D D
m=k+1 m=k+1 m=k+1

Recall that m = a,,b2,, where a,, is squarefree. Now, summing by j = b,, < \/m:

Lvn] . Lvn]

7 . 1
SIS SHD SIE TS D S
- m " m

=t g% m, =t g2 m,
k+1<m<n, k+1<m<n

lu(m/5%)1=1
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Rewrite S = k(S1 + S2), where

Lvn/2] v

Z Z % and Sy := Z j Z %
3% lm, Jj=lvn/2]+1 3%|m
k+1<m<n k+1<m

First, we give an upper bound for S;.

Lemma 8 :
2
S < ogn +0.31 ) (logn —log k) + M (16)
2 8k
k41
Proof: Letr; = [ J—z —‘ and s; = [an} Then
W2l s o el 1
S L ILET ;Z T an
j 1 = j:l l=r rj

The function % is a nonnegative decreasing function on (0, 00), hence we can estimate the inside sum by

Z /1/:10—!—— log s; — logrj+—

l=r; i

k
As = <rjand s; < % we have
J J

) 72
log s; —logr; = log i—J <log ZZ2 =logn — logk.
J
Substituting into (T7) we obtain
Lvn/2l 4 1 [vn/2] 1 o
51 < Z ‘(logsj—logrj—i—r_) < Z _(1ogn—logk:+jk). (18)
= 7 J = 7
Since
vn/2] logn log n
> ;glogL\/ﬁ/ﬂ—s—lgT—l g2+1< —— +03L (19)
j=1
and
WL me) (a2 + 1) ntaya
> i= > < (20)
j=1

from the inequalities (T8)), (T9), 20) we get (16). O
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Now we give an upper bound for Ss.

(n—k)vn  3vn 21

Lemma 9
1 1 n—k n  3yn
Sy < 1++>~ . +—<115 +
< (4 54 78) B
Proof: Lvn] j
Sy — J
-y ¥ @)
i=lvn/2]+1  j%|m,
k+1<m<n
In (22) for every j we have
n
n>j? > ([vVn/2] +1)* > T
Hence m = j2 or 252 or 352. As k < m < n, form = ij2 (i = 1,2, 3) we get
3 .
\/7. <j< \/ﬁ and Ex < @
i i m k
For fixed i, the number of j such that m = 452 is at most:

VioVkl _[L n-k 11 n—k
{ Vi w{f¢w¢w<ﬂ2ﬁ+L
L) nok vn 3vn 5. (0 ;3]'2‘/5+3‘f,

thus
So< |14+ —=+ ) .
? ( V2 0k k| k
and this is what we wanted to show. O

Summarizing the results, from (T6) and (ZI) we obtain:

(n - )\/ﬁ+3\f}. 23)

S =k(S1+ 52) <
logn n+2y/n
{( +O.31> (logn—logk)+87k+1.15~ 1372
We assumed that n — bgpfﬁ < k and n > 5000. By using the inequality e™% < m we obtain that
0.2
L =N — partios < k- Asn > 5000, we have that £ > 0.958.

Bt -
B0l < T

ne
m+0 31
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By easy calculation from these inequalities the following ones can be deduced:

1
( Oin + 0.31) (logn — log k) < 0.2, (24)
n+2yn
— ¥ <01 2
TS 0.135, (25
(n—k)vn 3yn
L15 - g + S < 0.096. (26)
Adding @24)), 23) and (26) using (23) we arrive at:
S < k(0.2 + 0.135 + 0.096) = 0.431 - k. 27)

Then from inequalities (I2)), (I3) and (I3) in case k/n > 0.958 we get
lkxn|>k+2k—n—25>2138-k—n >n,

thus we proved the statement in Case 3 as well. a

We proved the statement for all pairs n, k¥ where n > 5000. Cases k£ < n < 5000 can be checked by
brute force.
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