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In 2001, Erwin introduced broadcast domination in graphs. It is a variant of classical domination where selected

vertices may have different domination powers. The minimum cost of a dominating broadcast in a graph G is denoted

γb(G). The dual of this problem is called multipacking: a multipacking is a set M ⊆ V (G) such that for any vertex

v and any positive integer r, the ball of radius r around v contains at most r vertices of M . The maximum size of a

multipacking in a graph G is denoted mp(G). Naturally mp(G) ≤ γb(G). Earlier results by Farber and by Lubiw

show that broadcast and multipacking numbers are equal for strongly chordal graphs.

In this paper, we show that all large grids (height at least 4 and width at least 7), which are far from being chordal,

have their broadcast and multipacking numbers equal.

Keywords: grid graph, broadcast number, multipacking number

Introduction

Given a graph G with vertex set V and edge set E, a dominating broadcast of G is a function f from V to

N such that for any vertex u in V , there is a vertex v in V with f(v) positive and greater than the distance

from u to v. Define the ball of radius r around v by Nr(v) = {u : d(u, v) ≤ r}. Thus a dominating

broadcast is a cover of the graph with balls of several positive radii. The cost of a dominating broadcast

f is
∑

v∈V f(v) and the minimum cost of a dominating broadcast in G, its broadcast number, is denoted

γb(G).

Remark. One may consider the cost to be any function of the powers (for example the sum of the squares),

see e.g. [10]. We shall stick to the classical convention of linear cost.

The dual problem of broadcast domination is multipacking. A multipacking in a graph G is a subset

M of its vertices such that for any positive integer r and any vertex v in V , the ball of radius r centred

at v contains at most r vertices of M . The maximum size of a multipacking of G, its multipacking

number, is denoted mp(G). We may write γb and mp when the graph in question is clear from context or

unimportant.

Broadcast domination was introduced by Erwin [7, 8] in his doctoral thesis in 2001. Multipacking was

then defined in Teshima’s Master’s Thesis [13] in 2012, see also [1]. However, this work fits into the
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general study of coverings and packings, which has a rich history in Graph Theory, see for example the

monograph by Cornuéjols [3].

Since minimum dominating broadcast and multipacking are dual problems, we know that for any graph

G,

mp(G) ≤ γb(G).

A natural question comes to mind. Under which conditions are they equal? For example, it is known

that strongly chordal graphs have their broadcast and multipacking numbers equal. This follows from a

primal-dual algorithm of Farber [9] applied to Γ-free matrices, used to solve the (weighted) dominating

set problem for strongly chordal graphs. The work of Lubiw [11, 12] shows the vertex-neighbourhood

ball incidence matrix is Γ-free for strongly chordal graphs, and hence the primal-dual algorithm can also

be used to solve the broadcast domination problem for strongly chordal graphs. For trees, direct proofs of

mp(T ) = γb(T ) and linear-time algorithms to find mp(T ) appear in [1, 2] (see also [4, 5]). For strongly

chordal graphs, Farber’s algorithm runs in O(n3) time. The general broadcast domination problem can be

solved in O(n6) time [10]. In this paper we study grid graphs which are far from being strongly chordal

(or even chordal). We show the following theorem.

Theorem 1. For any pair of integers n ≥ 4 and m ≥ 4,

mp(Pn✷Pm) = γb(Pn✷Pm).

with the exception of P4✷P6 where mp(P4✷P6) = 4 and γb(P4✷P6) = 5.

This gives an infinite family of non-chordal graphs for which mp = γb. Another such family is the

cycles of length 0 modulo 3. It is trivial to verify that mp(C3k) = γb(C3k) = k.

Dunbar et al. [6] gave the exact value of the broadcast number for grids.

Theorem 2 (Dunbar et al. [6, Th. 28]). For any pair of positive integers n and m,

γb(Pn✷Pm) =
⌊n

2

⌋

+
⌊m

2

⌋

.

Remark. The value of γb(Pn✷Pm) given by Theorem 2 is the radius of the grid. Since there is always a

dominating broadcast with cost rad(G) [6, 8], and our proof of Theorem 1 yields a multipacking of size

rad(G), this paper gives an alternative proof of Theorem 2.

1 Preliminaries and small grids

We use standard notation throughout the paper. Specific to our work is the following: the grid Pn✷Pm

has n rows and m columns. We may also say the grid has height n and length m. The vertex in row i
and column j is denoted vi,j . As a convention, the vertex v0,0 is the bottom, left corner of the grid. The

integers between k and ℓ inclusive are denoted Jk, ℓK.

The proof of Theorem 1 is technical. In order to ease the process, we start with an easy counting lemma.

Lemma 3. Let G be a graph, k be a positive integer and u0, . . . , u3k be an isometric path in G. Let

P = {u3i : i ∈ J0, kK} be the set of every third vertex on this path. Then, for any positive integer r and

any ball B of radius r in G,

|B ∩ P | ≤

⌈

2r + 1

3

⌉

.
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Proof: Let B be a ball of radius r in G, then any two vertices in B are at distance at most 2r. Since the

path (u0, . . . , u3k) is isometric the intersection of the path and B is included in a subpath of length 2r.

This subpath contains at most 2r + 1 vertices and only one third of those vertices can be in P .

For the sake of completeness, we also determine the multipacking numbers of grids with height 2 and

3.

Proposition 4. Let n be a positive integer. Then

mp(Pn✷P2) =

⌈

2n

5

⌉

Proof: Let P be a maximum multipacking of Pn✷P2. We claim that no five consecutive columns contain

three members of P . Suppose to the contrary that columns i to i + 4 contain three members of P . No

two consecutive columns each contain a member of P , as any pair of vertices in P2✷P2 are at distance

at most 2 apart (and thus in a ball of radius 1). Hence, the three elements are without loss of generality

{vi,0, vi+2,1, vi+4,0}. However, this implies |N2[vi+2,0] ∩ P | = 3, a contradiction.

Writing n = 5q + r, 0 ≤ r ≤ 4, we conclude that the first 5q columns of the grid contain at most

2q elements of P . Next, it is easy to verify that mp(P1✷P2) = mp(P2✷P2) = 1, and mp(P3✷P2) =
mp(P4✷P2) = 2. Let s be the number of elements of P in the final r columns of the grid. Then, s = 0 if

r = 0, s ≤ 1 if r = 1, 2 and s ≤ 2 if r = 3, 4. Thus, |P | ≤ 2q + ⌈2r/5⌉. Equivalently, |P | ≤
⌈

2n
5

⌉

.

On the other hand, consider the set P defined as follows.

vi,0 ∈ P for i ≡ 0 (mod 5)

vi,1 ∈ P for i ≡ 2 (mod 5)

Consider a ball B of radius r ≥ 2. It contains vertices from at most 2r + 1 consecutive columns of

Pn✷P2. By construction, every five consecutive columns contain at most 2 elements of P .

|B ∩ P | ≤ 2

⌈

(2r + 1)

5

⌉

It is straightforward to check that, 2⌈(2r + 1)/5⌉ ≤ r for r 6= 1, 3, 5. (For r < 10, simply evaluate

2⌈(2r + 1)/5⌉. For r ≥ 10, 2⌈(2r + 1)/5⌉ ≤ 2(2r/5 + 1) ≤ r.) It is easy to check that each ball of

radius 1 contains at most one element of P . When r = 3, B contains vertices from 7 columns of which at

most 3 columns may contain packing vertices. Similarly, when r = 5, we observe that any 11 consecutive

columns contain at most 5 packing vertices.

We now turn to the special case when m = 3. The following result gives mp(Pn✷P3). Since

γb(Pn✷P3) = ⌊n
2 ⌋+ 1, we note that mp = γb for n 6≡ 0 (mod 4).

Proposition 5. Let n be a positive integer. Then

mp(Pn✷P3) =

{
⌊

n
2

⌋

if n ≡ 0 (mod 4)
⌊

n
2

⌋

+ 1 if n ≡ 1, 2, 3 (mod 4)
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Proof: Since rad(Pn✷P3) = ⌊n/2⌋+ ⌊3/2⌋, we know that mp(Pn✷P3) ≤ ⌊n/2⌋+ 1. Given a multi-

packing P of Pn✷P3 and any four consecutive columns say i, i+ 1, i+ 2, i+ 3, if P has three members

in these columns, then without loss of generality they belong to columns i, i+2, i+3. Moreover, we can

assume that the two in columns i+2, i+3 are vi+2,2 and vi+3,0. The only vertices that are not within dis-

tance 2 of either of these two packing vertices are vi,0 and vi,1. However, all three of these vertices are in a

ball of radius 2 centred at vi+2,0 in the former case and vi+2,1 in the latter, a contradiction. Thus, the four

columns contain at most 2 packing vertices. Specifically, in the case n = 4q, mp(Pn✷P3) ≤ 2q = ⌊n/2⌋.

On the other hand, consider the set P defined as follows.

vi,0 ∈ P for i ≡ 0 (mod 4)

vi,2 ∈ P for i ≡ 1 (mod 4)

As the minimum distance between vertices in P is 3, no ball of radius 1 contains more than one element

of P . Consider a ball B of radius r ≥ 2. The ball contains vertices from at most 2r + 1 consecutive

columns. We need to confirm that the ball has at most r elements of P . First, suppose that r = 2t. By

symmetry, we may assume that the left most column of B is in {0, 1, 2, 3}. If the left most column is 2
or 3, then B contains vertices from columns {4, 5, . . . , 4t + 2, 4t + 3}. Each contiguous block of four

columns contains two members of P , giving B has a total of at most 2t = r vertices of P . If the left most

column of B is 0 or 1, then B covers columns 0, 1, . . . , 4t or 1, . . . , 4t, 4t+1. In both cases, B has exactly

2t+ 1 columns with a vertex of P . However, in both cases v1,2 and v4t,0 are at distance 4t+ 1 = 2r + 1
apart and thus, at most one belongs to B. In all cases, |B ∩ P | ≤ r. If r = 2t+ 1, the analysis is similar.

Either the 4t+3 columns of B contain at most 2t+1 = r vertices of P , or the ball B has 2t+2 = r+1
columns containing vertices of P , but there is a pair (for example {v0,0, v4t+1,2}) at distance 2r + 1, in

which case B itself contains at most r vertices of P .

2 Multipacking number for large grids

In this section, we prove Theorem 1. The radius of a grid graphPn✷Pm is ⌊n
2 ⌋+⌊m

2 ⌋. Since the broadcast

number of a graph is at most its radius, it is sufficient to find a multipacking of size ⌊n
2 ⌋+ ⌊m

2 ⌋. We now

proceed with the construction of such multipackings.

2.1 Restriction to even sizes

First, we shall prove that we can restrict ourselves to cases when n and m are both even numbers. Because

of the singularity for the grid of size 4 × 6, we need to check the grids of sizes 5 × 6 and 4 × 7 by hand

(see Figure 1). Now, suppose that n is odd. Then, n− 1 is even and is at least 4. Moreover the n− 1×m
grid is not 4 × 6 since we ruled out the 5 × 6 and 4 × 7 cases. Thus, if we know that the grid of size

n − 1 ×m has a multipacking of size n−1
2 + ⌊m

2 ⌋, which is equal to ⌊n
2 ⌋ + ⌊m

2 ⌋, we can add an empty

column in the middle of this grid. We obtain a multipacking of the desired size for our grid. Indeed, given

a vertex v from the smaller grid, the ball of radius r with centre v in the larger grid only contains vertices

of the packing which were at distance at most r from v in the smaller grid. A ball of radius r centred at

a vertex of the new column only contains vertices of the packing which are within distance r of both its

neighbours from the former grid. Thus, these balls cannot contain more than r elements of the packing

which satisfies our claim. The same reasoning works for m.
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Fig. 1: Multipackings of order 5 for grids of size 5× 6 and 4× 7

The remainder of the proof is concerned with grids with even dimensions. Small cases require some

specific care so that we will treat them after the general case. In all cases, we shall use a systematic way

of selecting vertices along the sides of the grid. We describe them in the following paragraph.

2.2 The i-pattern

Fix an integer i. Given a path v0v1 . . . vz−1 of order z greater than or equal to 3i, the i-pattern on this

path consists in selecting every third vertex from v0 to v3(i−1) and then every fourth vertex starting from

v3i (if it exists). Note that the i-pattern on a path of order z selects exactly i vertices from the beginning

and one fourth (rounded up) of the rest. This amounts to i+ ⌈ z−3i
4 ⌉ which can be simplified.

The i-pattern on a path of order z selects exactly

⌈

z + i

4

⌉

vertices. (1)

Moreover, the density of the i-pattern is bounded above by a function of i. By this, we mean that a subpath

of length ℓ of v0v1 . . . vz−1 cannot hit too many vertices of the i-pattern. If ℓ is at least 3i, it could take the

whole beginning (i vertices) and a fourth of the rest. This amounts to i+⌈ ℓ+1−3i
4 ⌉ which equals ⌈ ℓ+1+i

4 ⌉.

Whenever ℓ is strictly less than 3i, it would take at most ⌈ ℓ+1
3 ⌉ vertices. But in that case,

⌈

ℓ+ 1

3

⌉

≤

⌈

4ℓ+ 4

12

⌉

≤

⌈

3ℓ+ 3 + ℓ+ 1

12

⌉

≤

⌈

3ℓ+ 3 + 3i

12

⌉

(since ℓ+ 1 ≤ 3i)

≤

⌈

ℓ+ 1 + i

4

⌉

.

In the end, we may state that

a subpath of length ℓ hits at most

⌈

ℓ+ 1 + i

4

⌉

vertices on a i-pattern. (2)

2.3 Large grids

As said before, small grids require some extra-care. In this part, we only consider grids with dimensions

at least 8 in both directions. Fix n and m two even integers greater than or equal to 8. We let k = n/2
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and k′ = m/2. We view each side of the grid as a path from which we remove the last three vertices (see

Figure 2). In these paths, we pack an adequate number of vertices using a specific i-pattern. Finally, we

will estimate an upper bound on the number of such vertices in a ball of size r. This will cover most of

the radii but the last few ones will be treated using some tailor-made arguments.

(n − 1, 2)

(n − 1, 1)

(n − 1, 0)
(0, 0)

(n − 1, m − 1)

Fig. 2: General sketch, packing on the perimeter.

We use the i-patterns (where i = 0, 1, or 2) to select vertices on “horizontal” and “vertical” sides.

The packing on the horizontal sides is as follows (with the vertical sides being similar). Our choice of i
depends on the parity of k. In all cases, 2k − 4 ≥ 3i. If k is even, then we use a 1-pattern on the top

(0,m − 1), (3,m − 1), (7,m − 1), . . . , (n − 5,m − 1) and a 1-pattern on the bottom (n − 1, 0), (n −
4, 0), (n− 8, 0), . . . , (4, 0). In this case we shall write it = ib = 1. If k is odd, we use a 2-pattern on the

top (0,m − 1), (3,m − 1), (6,m − 1), (10,m − 1), . . . , (n − 4,m − 1) and a 0-pattern on the bottom

(n − 1, 0), (n − 5, 0), . . . , (5, 0). In this case we write it = 2 and ib = 0. Using (1), we see there are

exactly k
2 vertices selected on a (horizontal) side, when k is even. When k is odd ⌊k

2 ⌋ are selected on the

bottom while ⌈k
2 ⌉ are selected on the top. In all cases n

2 = k vertices are selected. These selections are

depicted on Figure 3 for n = 16 and n = 18 (only the top and bottom sides of the grid are drawn). We

call H the set of vertices selected on the horizontal paths. Similarly we select a total of k′ vertices on the

vertical sides and let V denote these vertices. After this process, we have a set P of k + k′ vertices. We

shall prove that it is a valid multipacking.

n = 16

n = 18

Fig. 3: Selection of vertices on horizontal paths
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Most balls are valid. Let r be some integer between 1 and k + k′ − 5, and let B be a ball of radius r.

• If B does not intersect any side of the grid, then its intersection with P is empty and |B ∩ P | ≤ r
trivially.

• Suppose now that B intersects only one side of the grid, or two consecutive sides. Then its inter-

section with P lies on an isometric path of the grid where selected vertices are at distance at least

3 from each other. Thus the cardinality of B ∩ P is bounded above by
⌈

2r+1
3

⌉

which is at most r
since r is a positive integer (see Lemma 3).

• Now if B intersects two opposite sides of the grid (let them be top and bottom), let y denote the

ordinate of the center of B. Recall that bottom has ordinate 0 while top has ordinate m − 1. Now

observe that the metric induced by the grid is similar to ℓ1 metric. Thus B intersects the bottom

side on a subpath of length at most 2(r − y) and the top side on a subpath of length at most

2(r− 2k′ + 1+ y). We claim that in most cases |B ∩H | ≤ r− k′ +2. Only in very specific cases

can |B ∩H | be equal to r − k′ + 3.

Let xb be the difference between 2(r − y) and the actual length of the intersection between B and

the bottom part of H (recall that the bottom part of H does not include the last three vertices as

depicted on Figures 2 and 3). Similarly, we define xt for the top part of H . Then B intersect the

bottom part of H on a subpath of length 2(r − y)− xb. We now use (2):

|B ∩H | ≤

⌈

2(r − y)− xb + 1 + ib
4

⌉

+

⌈

2(r − 2k′ + 1 + y)− xt + 1 + it
4

⌉

≤

⌈

2(r − y) + 1 + ib − xb

4

⌉

+

⌈

2(r + y) + 3 + it − xt

4

⌉

− k′.

Notice that r − y and r + y have same parity. First suppose they are both odd. Then 2(r − y) − 2
and 2(r + y)− 2 are multiples of 4. We can rewrite our bound.

|B ∩H | ≤

⌈

2(r − y)− 2 + 3 + ib − xb

4

⌉

+

⌈

2(r + y)− 2 + 5 + it − xt

4

⌉

− k′

≤

⌈

3 + ib − xb

4

⌉

+

⌈

5 + it − xt

4

⌉

+ r − 1− k′.

Our pattern choice is either ib = it = 1 or ib = 0 and it = 2. In both cases, the ceilings add up to

at most 3. So |B ∩H | ≤ r − k′ + 2 when r − y is odd. Now suppose that r − y is even. Then the

rewriting is straightforward.

|B ∩H | ≤

⌈

2(r − y) + 1 + ib − xb

4

⌉

+

⌈

2(r + y) + 3 + it − xt

4

⌉

− k′

≤

⌈

1 + ib − xb

4

⌉

+

⌈

3 + it − xt

4

⌉

+ r − k′.

When the pattern is ib = it = 1, ceilings add up to at most 2 and once again |B ∩H | ≤ r− k′ +2.

When ib = 0 and it = 2, ceilings can unfortunately sum up to 3. But for this, both xb and xt must
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be 0. Let us be more precise. It means that both bottom and top intersections must be full (subpaths

of length 2(r− y) and 2(r− 2k′ +1+ y)). Moreover, B ∩H must use the corner vertex in the top

part since otherwise, it would be intersecting a path which is nothing but a 1-pattern (or a 0-pattern).

As a consequence, the center of B must be at distance exactly r from the top left corner. Moreover,

B cannot reach the top right corner of the grid (otherwise, xt would be strictly positive). Similarly,

B cannot reach the bottom left corner since it is out of the bottom part of H and it would require

xb to be strictly positive.

– If B intersects only the top and bottom part of H , then |B ∩H | ≤ r − k′ + 3 ≤ r since k′ is

at least 4.

– If B intersects also exactly one vertical side. This one can contribute at most for ⌈k′

2 ⌉ (by our

choice of P ). Thus, in most cases

|B ∩ P | ≤ r − k′ + 2 +

⌈

k′

2

⌉

≤ r − k′ + 2 +
k′

2
+

1

2

≤ r −
1

2
(k′ − 5)

which is at most r since k′ is not less than 4 (when k′ = 4 we observe |B∩P | ≤ r+ 1
2 implies

|B ∩ P | ≤ r since |B ∩ P | is an integer). In the special case when |B ∩ H | is r − k′ + 3,

recall that the vertical side cannot use the corner so it contributes at most for ⌈k′

2 ⌉ − 1 and the

same conclusion holds.

– Finally, if B intersects all four sides, we may use the corner observation to state that at most

one of the directions (vertical or horizontal) can contribute for r − k′ + 3 (or r − k + 3). The

other direction contributes at most for r − k + 2 (or r − k′ + 2) so that

|B ∩ P | = |B ∩H |+ |B ∩ V |

≤ 2r − (k + k′) + 5.

This quantity is less than or equal to r whenever r is k + k′ − 5 or less.

Balls with a big radius. To finish our proof, we only need to verify that balls with a radius r between

k + k′ − 4 and k + k′ − 1 verify our constraint.

Let us treat the maximum radius k + k′ − 1. Note that since n and m are both even, this grid, if seen

as a chequerboard, has two diagonally opposite white corners and two diagonally opposite black corners.

Suppose a ball of radius k + k′ − 1 contains all the vertices of P . Then it must contain the four corners

of the grid. Since opposite corners are at distance 2k + 2k′ − 2 it means that the centre of the ball is

the middle vertex of a shortest path between opposite corners. But this middle vertex must be white for

one pair of corners and must be black for the other pair, which is impossible. Thus every ball of radius

k + k′ − 1 misses at least one corner.

Now consider a ball of radius k+k′−2. Since both pairs of opposite corners are at distance 2k+2k′−2,

at most one corner of each pair can be in a ball of such radius. Thus, such a ball misses at least two corners.



On the multipacking number of grid graphs 9

Concerning radius, k + k′ − 4, we can match each corner vertex with the second selected vertex from

the opposite side. The distance between them is 2k + 2k′ − 5 (corner to a 2-pattern or to a 1-pattern) or

2k+2k′−6 (corner to a 0-pattern) depending on the chosen pattern. In any case, since vertices in the ball

cannot have distance more 2k + 2k′ − 8, such a ball misses at least 4 vertices from the total and is valid.

Finally, we are left with balls of radius k+k′−3. We may again consider the same matching. If k or k′

is even, we have at least one direction with two 1-patterns and so at least three of the pairs are at distance

2k+2k′− 5. So the ball misses at least three vertices and is valid. The last case is when both k and k′ are

odd. In that case, our matching has two pairs at distance 2k+2k′ − 5 (from which the ball misses at least

two vertices) and two pairs at distance 2k + 2k′ − 6. As for radius k + k′ − 1, both last pairs are on two

different colors of the chequerboard (black and white) so that at least one of the four concerned vertices

is missed. In the end, the ball misses at least three vertices and is valid.

This concludes the proof for grids with sizes at least 8 in both directions.

2.4 Long grids

The previous discussion leaves out all grids with one of their dimensions either 4 or 6. In this section, we

provide a way of tackling long grids (for which k ≥ 3k′ − ℓ where ℓ depends on the parity of k + k′). In

the end, there will only remain four cases to study.

We shall pack vertices only on the top and bottom sides of the grid. We consider the whole sides (not

the 2k − 3 first vertices as in Subsection 2.3). Recall to pack an i-pattern on a horizontal side requires

3i ≤ n− 1. If k and k′ have same parity, we use a (2k′ − 3)-pattern on both top and bottom sides. This

requires 3(2k′− 3) ≤ n− 1 or 3k′ − 4 ≤ k. If k and k′ have different parities, we use a (2k′ − 5)-pattern

on one side (say bottom) and a (2k′ − 1)-pattern on the other. This requires 3k′ − 1 ≤ k. By (1), this

process selects
⌈

2k + 2k′ − 3

4

⌉

+

⌈

2k + 2k′ − 3

4

⌉

or

⌈

2k + 2k′ − 1

4

⌉

+

⌈

2k + 2k′ − 5

4

⌉

vertices. In both cases, this can be simplified as k + k′ (in the first case, k + k′ is even, while it is odd in

the latter).

Now, if a ball B of radius r intersects only one horizontal side of the grid, this intersection lies on an

isometric path from which we selected at most every third vertex. Then by Lemma 3, it cannot contain

strictly more than r vertices. Suppose that the ball B intersects both paths. Like in the previous subsection,

if this ball has its centre on a vertex with ordinate y (0 being the bottom and m − 1 being the top), then

it intersects the bottom on a path of length at most 2(r − y) and the top on a path of length at most

2(r − 2k′ + 1 + y). Then we use (2). If both sides are packed with (2k′ − 3)-patterns,

|B ∩H | ≤

⌈

2(r − y) + 2k′ − 2

4

⌉

+

⌈

2(r − 2k′ + 1 + y) + 2k′ − 2

4

⌉

≤

⌈

2(r − y + k′)− 2

4

⌉

+

⌈

2(r − k′ + y)

4

⌉

.

And since r − y + k′ and r + y − k′ have same parity, one of the ceilings adds 1
2 , and

|B ∩H | ≤
2(r − y + k′)− 2

4
+

2(r − k′ + y)

4
+

1

2
≤ r.
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Similarly, if we use the (2k′ − 5)-pattern on bottom and the (2k′ − 1)-pattern on the top, we have

|B ∩H | ≤

⌈

2(r − y) + 2k′ − 4

4

⌉

+

⌈

2(r − 2k′ + 1 + y) + 2k′

4

⌉

≤

⌈

2(r − y + k′)− 4

4

⌉

+

⌈

2(r − k′ + y) + 2

4

⌉

.

Once again, the rounding adds at most 1
2 and

|B ∩H | ≤ r.

When k′ = 2 and k is even, we use a 2k′ − 3 = 1 pattern. Thus the previous paragraph is valid for all

even k ≥ 2. When k is odd we use a 0-pattern and a 3-pattern. This requires k ≥ 5. In particular, we have

valid multipackings for 4× n for any even n ≥ 4 and n 6= 6. In the same manner the previous paragraph

gives a valid multipacking of order k + k′ when k′ = 3 provided k ≥ 8 for even k and k ≥ 5 for odd k.

Consequently we have packings of grids with dimensions 6× n for even n 6= 6, 8, 12. This concludes the

proof for long grids. (We remark the above arguments show for a fixed k′ and sufficiently large k, there is

an optimal multipacking selecting vertices only on the horizontal sides.)

2.5 Remaining cases

Subsection 2.3 covers large grids (4 ≤ k ≤ k′), and Subsection 2.4 covers long grids (2 ≤ k′ ≤ (k+ℓ)/3).

There are four remaining cases that can be checked by hand, and have been verified using SageMath.

Three are depicted on Figure 4.

Fig. 4: Multipacking for 6× 6, 8× 6, and 12× 6 grids.

Finally, the 6 × 4 grid is the only grid with dimensions at least 4 and multipacking number strictly

smaller than expected. It is 4 while its broadcast domination number is 5. This completes the proof of

Theorem 1.
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