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Generalizing Turán’s classical extremal problem, Alon and Shikhelman investigated the problem of maximizing the

number of copies of T in an H-free graph, for a pair of graphs T and H . Whereas Alon and Shikhelman were

primarily interested in determining the order of magnitude for some classes of graphs H , we focus on the case when

T and H are paths, where we find asymptotic and exact results in some cases. We also consider other structures like

stars and the set of cycles of length at least k, where we derive asymptotically sharp estimates. Our results generalize

well-known extremal theorems of Erdős and Gallai.

Keywords: path, cycle, extremal, generalized Turán

1 Introduction

For a graph G, we let e(G) denote the number of edges in G, and for a given graph H , we let N (H,G)
denote the number of (not necessarily induced) copies of H in G. If there is no copy of H in G, we say

that G is H-free. We denote the path with k edges by Pk and the cycle with k edges by Ck. By C≥k we

mean the set of all cycles of length at least k. By Sk we denote the star on k+1 vertices. Given a graph G
containing a vertex v, we denote the neighborhood of v by N(v). The independence number, minimum

degree and number of vertices in G are denoted by α(G), δ(G) and v(G), respectively. The vertex and

edge sets of G are denoted by V (G) and E(G), respectively. Finally, given a set S ⊆ V (G), we denote

by G[S] the induced subgraph of G with vertex set S.

Following the notation of Alon and Shikhelman (2016), we let ex(n, T,H) be the maximum number

of (noninduced) copies of T in an H-free graph on n vertices. Observe that we have ex(n, P1, H) =
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Fig. 1: The graph Gn,k,a is pictured on the left, and the special case of Gn,k,t is pictured on the right. The dashed

edge appears only when k is even.

ex(n,H), the classical extremal number. If a set of graphs H is forbidden, then we define ex(n,H) (and

similarly ex(n, T,H)), in the obvious way.

We begin by recalling the famous theorem of Erdős and Gallai on Pk-free graphs as well as some recent

generalizations due to Luo, where the number of cliques is considered.

Theorem 1 (Erdős and Gallai (1959)). For all n ≥ k,

ex(n, Pk) ≤
(k − 1)n

2
,

and equality holds if and only if k divides n and G is the disjoint union of cliques of size k.

In their paper, Erdős and Gallai deduced Theorem 1 as a corollary of the following result about graphs

with no long cycles.

Theorem 2 (Erdős and Gallai (1959)). For all n ≥ k,

ex(n,C≥k) ≤
(k − 1)(n− 1)

2
,

and equality holds if and only if k − 2 divides n− 1 and G is a connected graph such that every block of

G is a clique of size k − 1.

As the extremal examples for Theorem 1 are disconnected, it is natural to consider a version of the

problem where the base graph is assumed to be connected. Kopylov (1977) settled this problem, and later

Balister et al. (2008) classified the extremal cases.

Definition 1. We denote by Gn,k,a the graph whose vertex set is partitioned into 3 classes, A,B and C
with |A| = a, |B| = n− k + a, |C| = k − 2a such that A ∪C induces a clique, B is an independent set

and all possible edges are taken between vertices of A and B. (See Figure 1.)

Throughout this paper we let t =
⌊

k−1
2

⌋

. In Gn,k,t, the class C has one vertex when k is odd or two

vertices when k is even. By grouping B and C together, we have that Gn,k,t is obtained from a complete

bipartite graph Kt,n−t by adding all edges in the color class of size t, and in the case that k is even, adding

one additional edge inside the color class of size n− t.

Theorem 3 (Kopylov (1977), Balister et al. (2008)). Let G be a connected n-vertex Pk-free graph, with

n ≥ k, then

e(G) ≤ max(e(Gn,k,t), e(Gn,k,1)).
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Moreover, the extremal graph is either Gn,k,t or Gn,k,1.

Note that if n ≥ 5k/4, this maximum is achieved by Gn,k,t. Also observe that

e(Gn,k,t) = t(n− t) +

(

t

2

)

+ ηk,

where ηk is 1, if k is even, and 0 otherwise. Thus, Theorems 1 and 3 yield the same bound asymptotically

as n tends to infinity.

The following theorem was deduced by Luo (2018) as a corollary of her main result but also follows

from Theorem 1 using a simple induction argument. We present this proof here.

Theorem 4 (Luo (2018)).

ex(n,Kr, Pk) ≤
n

k

(

k

r

)

.

Proof: We use induction on r, and the base is Theorem 1. Let G be an n-vertex graph containing no Pk.

We have

N (Kr, G) =
1

r

∑

v∈V (G)

N (Kr−1, G[N(v)]) ≤ 1

r

∑

v∈V (G)

v(G[N(v)])

k − 1

(

k − 1

r − 1

)

=
1

k(k − 1)

(

k

r

)

2e(G),

since G[N(v)] contains no Pk−1. By Theorem 1, we have e(G) ≤ (k−1)n
2 , and the result follows.

For our results we will need only that ex(n,Kr, Pk) ≤ ck,rn for some constant ck,r depending only on k
and r.

If we impose the additional condition that the graph is connected, then the situation is more complicated.

Luo proved the following sharp bounds.

Theorem 5 (Luo (2018)). Let n > k ≥ 3 and G be a connected n-vertex graph with no path of length k,

then

N (Kr, G) ≤ max (N (Kr, Gn,k,t),N (Kr, Gn,k,1)) .

Theorem 6 (Luo (2018)). Let n ≥ k ≥ 4 and G be a n-vertex graph with no cycle of length k or greater,

then

N (Kr, G) ≤ n− 1

k − 2

(

k − 1

r

)

.

Some recent generalizations of the Erdős–Gallai theorem and Luo’s results can be found in Ning and

Peng (2018). In the present paper we focus on results where paths or all sufficiently long cycles are

forbidden. The general problem of enumerating cycles of a fixed length when a fixed cycle is forbidden

has also been considered recently (see Gishboliner and Shapira (2018) and Gerbner et al. (2017) which

generalize earlier results for special cases, e.g., Bollobás and Győri (2008), Győri and Li (2012), Alon

and Shikhelman (2016)).

Alon and Shikhelman (2016) considered the problem of maximizing the number of copies of a tree T
in a graph which is H-free, for another tree H . Given two trees T and H , they introduced an integer

parameter m(T,H) and proved that ex(n, T,H) = Θ(nm(T,H)), thereby determining the correct order

of magnitude for all pairs of trees. A recent result due to Letzter (2018) extends the above result of Alon
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and Shikhelman to the case when only H is a tree and T is arbitrary. It is shown that, nonetheless, the

order of magnitude of ex(n, T,H) is a positive integer power of n.

In the present paper, we are interested in the case where the forbidden tree is a path, and we find correct

asymptotics and sometimes the exact bound for the maximum number of copies of a smaller path (as well

as for several other types of graphs). We also obtain asymptotic results for the problem of maximizing

copies of T in a graph with no cycles of length at least k, in the case when T is a path.

The paper is organized as follows: In Section 2, we determine asymptotically the maximum number of

paths and cycles in a Pk-free graph. For the case when k is even we provide a simple proof using a result

of Nikiforov on the spectral radius of Pk free graphs. Then, we give more precise estimates which are also

sharp in case when k is odd through double-counting arguments. In Section 3, we determine the order

of magnitude of ex(n,H, T ) when T is a tree for the class of graphs H which satisfy the condition that

v(H)−α(H) ≤
⌊

k−1
2

⌋

. In Section 4, we determine ex(n,H, Pk) exactly for several graphs H including

4-cycles, stars and short paths. In Section 5, we consider the problem of enumerating copies of Pk−1 in a

Pk-free graph. We determine the asymptotic result for copies of P5 in a P6-free graph and pose a general

conjecture.

2 Asymptotic Results

We write f(n, k)∼g(n, k) when lim
k→∞

(

lim
n→∞

f(n, k)

g(n, k)

)

= 1. We estimate on the number of copies of

paths and cycles in a Pk-free graph. For a fixed ℓ ∈ N, we prove the following asymptotic results:

Theorem 7.

ex(n, P2ℓ, Pk) ∼
kℓnℓ+1

2ℓ+1
.

Theorem 8.

ex(n, P2ℓ+1, Pk) ∼
(ℓ+ 2)kℓ+1nℓ+1

2ℓ+2
.

Theorem 9.

ex(n,C2ℓ, Pk) ∼
kℓnℓ

ℓ2ℓ+1
.

Theorem 10.

ex(n,C2ℓ+1, Pk) ∼
kℓ+1nℓ

2ℓ+2
.

The construction showing the lower bounds for Theorems 7 through 10 is the same as the extremal

construction for the connected version of the Erdős–Gallai theorem, Theorem 3. Because we are interested

in asymptotics, we will omit one edge from this construction which only occurs when k is even. Our n-

vertex graph G is defined by taking a clique on a set S of
⌊

k−1
2

⌋

vertices and connecting every vertex in

S to every vertex of an independent set U , defined on n−
⌊

k−1
2

⌋

vertices. It is easy to see that this graph

is Pk-free. In enumerating the copies of P2ℓ, the only paths which contribute asymptotically alternate

between S and U , starting and ending with U (the factor of 2 comes from counting the path in both

directions).

When enumerating the copies of P2ℓ+1, we have two kinds of paths which contribute asymptotically:

those that start and end in U , using an edge in S at some step, and those that start in U and end in S, never
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using an edge contained in S. For the first type, we condition on which step in the path we use the edge in

S (ℓ possibilities). Each such path gets counted twice, hence we divide by two. For the second type, each

path is counted once and so we do not have to divide by 2.

We begin by showing how Theorem 7 can be derived from a result about the spectral radius of Pk-

free graphs due to Nikiforov (2010). Recall that the spectral radius of a graph G is the maximum of the

eigenvalues of the adjacency matrix of G. He determined, for sufficiently large n, the maximal spectral

radius of a Pk-free graph on n vertices. We are interested in asymptotics so we will make use of the

following corollary which follows directly from the results in Nikiforov (2010).

Corollary 1 (Nikiforov (2010)). If n is sufficiently large and G is a Pk-free graph, then the spectral

radius of G is at most
√

⌊(k + 1)/2⌋n.

Proof of Theorem 7 using spectral bounds: Let G be a Pk-free graph on n vertices (for n large enough

to satisfy Corollary 1). Let A be the adjacency matrix of G, then we have

2 · N (P2ℓ, G)

n
≤ #2ℓ-walks in G

n
=

1
tA2ℓ

1

1t1
≤
(

√

⌊(k + 1)/2⌋n
)2ℓ

= (⌊(k + 1)/2⌋n)ℓ.

Where 1 is the all 1’s vector, and the second inequality comes from the fact that the spectral radius of a

Hermitian matrix M is the supremum of the quotient x∗Mx
x∗x , where x ranges over Cn\{0}. Therefore, for

every k ∈ N and n sufficiently large we have ex(n, P2ℓ, k) ≤ nℓ+1⌊(k + 1)/2⌋ℓ/2.

Unfortunately, it does not seem like this approach can be used to prove Theorem 8 as the bound it would

yield is off by a factor of order
√
n.

We will now prove the upper bounds from which Theorems 7 and 8 are immediate consequences. We

note that the upper bound we obtain for the P2ℓ-case is sharper than the proof using the spectral radius

yields.

Proposition 1. Let ℓ, k be positive integers with 2ℓ < k, then

ex(n, P2ℓ, Pk) ≤
kℓnℓ+1

2ℓ+1
+ O(nℓ).

Proposition 2. Let ℓ, k be positive integers with 2ℓ+ 1 < k, then

ex(n, P2ℓ+1, Pk) ≤
(ℓ + 2)kℓ+1nℓ+1

2ℓ+2
+O(nℓ).

The proofs of the propositions above will use a double-counting argument involving structures defined

using matchings. We will begin by estimating the maximum number of certain kinds of matchings occur-

ring in a Pk-free graph.

Let us define M ℓ
1 , M ℓ

2 and M ℓ
3 to be the following graphs: M ℓ

1 is an (ℓ − 1)-matching together with a

disjoint triangle, M ℓ
2 is an (ℓ − 1)-matching together with a disjoint K4 and M ℓ

3 is an (ℓ − 2)-matching

with two independent triangles, disjoint from the matching (see Figure 2).

Lemma 1. The number of copies of M ℓ
1 , M ℓ

2 and M ℓ
3 in an n-vertex Pk-free graph is O(nℓ).
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Proof: Let G be a Pk-free graph on n vertices. By Theorem 4, the number of triangles in G is at most

O(k2n). By Theorem 1 the total number of edges in G is at most (k − 1)n/2. It follows that the number

of copies of M ℓ
1 is bounded from above by

( kn
2

ℓ− 1

)

k2n = O(kℓ+1nℓ).

The proofs of the bound for M ℓ
2 and M ℓ

3 are similar.

Proof of Theorem 7: Let G be a Pk-free graph on n vertices. We will consider structures consisting

of a matching of ℓ edges and a vertex not contained in these edges. Namely, a matching structure is

an (ℓ + 1)-tuple (e1, e2, . . . , eℓ, v) where {e1, e2, . . . , eℓ} is a matching in G and v ∈ V (G) \ ∪ℓ
i=1ei.

We say that a path P2ℓ aligns with a matching structure (e1, e2, . . . , eℓ, v) if its edges are (consecu-

tively) e1, f1, e2, f2, . . . , eℓ, fℓ where v ∈ fℓ. We say that the matching structure spans the set of vertices

∪ℓ
i=1ei ∪ {v}.

Let A := {S ⊆ V : |S| = 2ℓ + 1,M ℓ
1 ⊆ G[S]}. By Lemma 1, we have |A| = O(nℓ). Let M be the

set of all the matching structures which span a set of vertices not contained in A.

Claim 1. At most one P2ℓ aligns with each matching structure in M.

Proof: Let (e1, e2, . . . , eℓ, v) be a matching structure in M and fix a P2ℓ which aligns with it, say

a1, b1, a2, b2 . . . , aℓ, bℓ, aℓ+1, where ei = {ai, bi} and v = aℓ+1. There is no edge from ai to ai+1, other-

wise e1, e2, . . . , ei−1, {bi+1, ai+2}, {bi+2, ai+3}, . . . , {bℓ, aℓ+1} together with the triangle {ai, bi, ai+1}
forms an M ℓ

1 . Since there is a unique P2ℓ spanning the matching structure and not containing an edge

{ai, ai+1}, the claim is proved. (See Figure 3.)

Next, we observe that for every P2ℓ, there are precisely two matching structures for which that P2ℓ

is aligned. Indeed, let the vertices of the P2ℓ be traversed in the order v1, v2, . . . , v2ℓ+1, then the two

matching structures with which the P2ℓ aligns are

({v1, v2}, {v3, v4}, . . . , {v2ℓ−1, v2ℓ}, v2ℓ+1) and ({v2ℓ+1, v2ℓ}, {v2ℓ−1, v2ℓ−2}, . . . , {v3, v2}, v1).

It follows that the if we define M := |M|, then the number of copies of P2ℓ is bounded from above by

M/2 +O(nℓ).
By Theorem 1, the number of edges in G is at most (k − 1)n/2. A matching structure is formed by

choosing ℓ edges in order followed by an additional vertex. Thus, we have the following upper bound on

M ℓ
1

· · ·

ℓ− 1

M ℓ
2

· · ·

ℓ− 1

M ℓ
3

· · ·

ℓ− 2

Fig. 2: Matching structures with negligible contribution.
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the number of matching structures in M:

M ≤
(nk

2

ℓ

)

ℓ!n.

Dividing by 2 yields the required bound on the number of copies of P2ℓ.

Proof of Theorem 8: We will now define matching structures in a slightly different way. A matching

structure is an (ℓ + 1)-tuple (e1, e2, . . . , eℓ+1), where {e1, e2, . . . , eℓ+1} is a matching in G. A path

P2ℓ+1 aligns with a matching structure (e1, e2, . . . , eℓ+1) if its edges are e1, f1, e2, f2, . . . , eℓ, fℓ, eℓ+1,

consecutively.

Let B := {S ⊆ V : |S| = 2ℓ + 2,M2 ⊆ G[S]} and C := {S ⊆ V : |S| = 2ℓ + 2,M3 ⊆ G[S]}. By

Lemma 1, we have |B| = O(nℓ) and |C| = O(nℓ). Let M be the set of matching structures which do not

span a vertex set in B or C.

Claim 2. There are at most ℓ+ 2 copies of P2ℓ+1 which align with each matching structure in M.

Proof: Consider a matching structure (e1, e2, . . . , eℓ+1) ∈ M. We will consider the edges in the matching

structure one by one and show that we can label the vertices of each edge ej with aj and bj in such a way

that there is no edge between aj and aj+1. Thus, every path which aligns with the matching structure will

be a subgraph of the graph pictured (on the top) in Figure 4. Given that the matching structure has this

form, we may easily upper bound the number of copies of P2ℓ+1 which can align with it. Indeed, if the

P2ℓ+1 starts with the vertex b1, there is at most one such path: b1, a1, b2, a2, . . . , bℓ+1, aℓ+1. If it starts

with the vertex a1, then for at most one i, 1 ≤ i ≤ ℓ, the path may use an edge {bi, bi+1}; all other choices

are forced. Thus, in total there are at most 1 + (ℓ + 1) = ℓ + 2 paths which align with such a matching

structure. We now prove that the desired labeling of the edges exists.

We may suppose there is at least one edge from ei to ei+1 for all i = 1, 2, . . . , ℓ, otherwise no P2ℓ+1

aligns with the matching structure. We also know ei ∪ ei+1 does not induce a K4, so there is at least

one edge missing among these 4 vertices. Now we may define e1 = {a1, b1} in such a way that there

is at least one edge missing from a1 to e2. Define e2 = {a2, b2} such that there is no edge between

a1 and a2. In general, suppose we have already labeled the edges e1, e2, . . . , ej in such a way that for

i ∈ {1, 2, . . . , j − 1}, ai is not connected to ai+1. We will show that ej+1 can be labeled by aj+1 and

bj+1 such that there is no edge between aj and aj+1.

We know there is an edge missing from ej to ej+1. If there is an edge missing between aj and ej+1,

then define ej+1 = {aj+1, bj+1} so that there is an edge from aj to aj+1. Otherwise {aj} ∪ ej+1 forms

a triangle. In this case, there is an edge missing from bj to ej+1; label ej+1 = {aj+1, bj+1} so that bj is

not adjacent to bj+1.

b1

a1

b2

a2

· · ·
bi

ai ai+1

bi+1

· · ·

aℓ

bℓ

aℓ+1

Fig. 3: Matching structure from the proof of Claim 1.
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Now if we do not have an edge from aj−1 to bj , then we switch the labels on ej and ej+1, and we are

done. (By switching the labels we mean that the vertex in ei previously labeled ai is now labeled bi, and

the vertex previously labeled bi is now labeled ai.) Thus, assume we have an edge from aj−1 to bj . Then

we have no edge from bj−1 to bj , for this would yield an M3. Next, consider ej−2. If there is no edge

from aj−2 to bj−1, then switch the labels on ej−1, ej and ej+1, and we are done. If there is an edge from

aj−2 to bj−1, we proceed similarly with ej−3. Continuing this procedure we will reach an edge er such

that switching the labels of er, er+1, . . . , ej+1 yields no edge between ai and ai+1 for any 1 ≤ i ≤ j.

(This procedure is illustrated in Figure 4.)

We now complete the proof of Theorem 8. Again we set M := |M|. By Theorem 1, there are at most

(k − 1)n/2 total edges in G. Thus,

|M| ≤
( nk

2

ℓ+ 1

)

(ℓ+ 1)! .

Since at most ℓ+2 paths P2ℓ+1 align with each matching structure from M, and every P2ℓ+1 aligns with

precisely two matching structures. It follows that the total number of copies of P2ℓ+1 in G is at most

(ℓ+ 2)M

2
+O(nℓ) ≤

(ℓ+ 2)
( nk

2

ℓ+1

)

(ℓ+ 1)!

2
+O(nℓ) =

(ℓ+ 2)kℓ+1nℓ+1

2ℓ+2
+O(nℓ).

The lower bound for Theorems 9 and 10 also comes from Gn,k,t. Similarly as before, the upper bounds

are consequence of the following propositions.

Proposition 3. Let 2ℓ < k, then

ex(n,C2ℓ, Pk) ≤
kℓnℓ

ℓ2ℓ+1
+O(nℓ−1).

Proposition 4. Let 2ℓ+ 1 < k, then

ex(n,C2ℓ+1, Pk) ≤
kℓ+1nℓ

2ℓ+2
+O(nℓ−1).

. . .

ℓ+ 1

b1

a1

b2

a2

· · ·
br−1

ar−1 ar

br
· · ·

bj

aj+1aj

bj+1

· · ·

Fig. 4: The structure of paths aligning with matching structures from M.
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It is enough to prove the following claims from which the propositions above follow (a proof of this

implication is included after the proof of the claim). Their proofs are similar, so we just give the proof of

the first claim.

Claim 3. For every k, ℓ ∈ N, there exists n0 ∈ N such that if n ≥ n0,

ex(n+ 1, C2ℓ, Pk)− ex(n,C2ℓ, Pk) ≤
kℓnℓ−1

2ℓ+1
+O(nℓ−2).

Claim 4. For every k, ℓ ∈ N, there exists n0 ∈ N such that if n ≥ n0,

ex(n+ 1, C2ℓ+1, Pk)− ex(n,C2ℓ+1, Pk) ≤
ℓkℓ+1nℓ−1

2ℓ+2
+O(nℓ−2).

Proof Proof of Claim 3: Let G be a Pk-free graph on n+ 1 vertices with maximum number of copies of

C2ℓ. If δ(G) > t, then by the classical argument of Dirac (1952), every connected component must have

size at most k, and then N (C2ℓ, G) ≤ k2ℓ−1n. So assume δ(G) ≤ t, and let v be a vertex of minimum

degree. Then every C2ℓ using v can be divided into two paths: v together with the vertex preceding it and

following it in the cycle (forming a P2), and the remaining 2ℓ− 3 vertices (forming a P2(ℓ−2)). Note that

every P2 and P2(ℓ−2) can be joined in at most two ways to make a C2ℓ; therefore, the number of copies

of C2ℓ containing v is at most

2

(

d(v)

2

)

ex(n, P2(ℓ−2), Pk) ≤ 2

(

t

2

)

kℓ−2nℓ−1

2ℓ−1
+O(nℓ−2) ≤ kℓnℓ−1

2ℓ+1
+O(nℓ−2).

We include a proof that Proposition 3 follows from Claim 3. Similar ideas are used throughout the

paper.

Proof Proof that Claim 3 implies Proposition 3: We have

ex(n,C2ℓ, Pk) = ex(n0, C2ℓ+1, Pk) +

n
∑

s=n0+1

(ex(s, C2ℓ+1, Pk)− ex(s− 1, C2ℓ+1))

≤ ex(n0, C2ℓ+1, Pk) +
kℓ

2ℓ+1

n
∑

s=1

(

sℓ−1 +O(nℓ−2)
)

≤ ex(n0, C2ℓ+1, Pk) +
kℓ

2ℓ+1

n
∑

s=1

(

(s+ 1)ℓ

ℓ
− sℓ

ℓ

)

+O(nℓ−1)

≤ kℓnℓ

ℓ2ℓ+1
+O(nℓ−1),

where in the first inequality we used Claim 3 and pulled the constant out of the sum, and the second

inequality follows from (s+1)ℓ = sℓ+ℓsℓ−1+O(sℓ−2). The final inequality follows from the telescoping

sum.
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3 The number of copies of H in graphs without a certain tree

Alon and Shikhelman, while considering the case when H is a bipartite graph and T is a tree, mention

that ex(n,H, T ) = O(nα(H)) is a consequence of a theorem from Alon (1981). We prove that, in fact,

this holds for general graphs H .

Theorem 11. Let H be any graph and let T be any tree, then ex(n,H, T ) = O(nα(H)).

Corollary 2. For any graph H such that v(H)− α(H) ≤ ⌊k−1
2 ⌋, we have ex(n,H, Pk) = Θ(nα(H)).

A construction yielding the lower bound in Corollary 2 is Gn,k,t. Indeed, for every subset of size α(H)
of the independent set in Gn,k,t we can find a copy of H by joining the t =

⌊

k−1
2

⌋

vertices involved in

the clique in Gn,k,t.

Theorem 11 follows as a simple consequence of the following lemma which will be proven by induction

on α(H).

Lemma 2. For any graph H and any tree T ,

ex(n+ 1, H, T )− ex(n,H, T ) = O(nα(H)−1).

Here, the constant given by the O notation depends only on H and T .

We start by proving the following well-known fact.

Proposition 5. Let H be a graph, and let u be a vertex of H . If H ′ is the graph obtained by removing u
together with its neighborhood, then α(H ′) ≤ α(H)− 1.

Proof: If X is a maximal independent set in H ′, then since no neighbor of u is in X , the set X ∪ {u} is

independent in H and so α(H ′) + 1 ≤ α(H).

We are now ready to prove Lemma 2.

Proof Proof of Lemma 2: For the base case of the induction, note that if α(H) = 1, then H is a clique

and it is easy to see that ex(n,Ks, T ) = O(n) for any s and T . (We may, for example, use the simple

bound of ex(n, T ) ≤ v(T )n, for any tree T , and apply an induction argument similar to the proof of

Theorem 4.)

To estimate ex(n + 1, H, T ) − ex(n,H, T ), we will start with a graph G on n + 1 vertices which is

T -free with maximum number of copies of H . We know that δ(G) < v(T ), otherwise T ⊆ G. Let v be

a vertex of minimum degree in G, and we will count the number of copies of H in G containing v as a

vertex.

Let V (H) = {u1, u2, . . . , uv(H)}, and let Hi be the graph obtained by removing ui together with its

neighbors. By Proposition 5, we know that α(Hi) ≤ α(H) − 1. Now for each copy of H using v as a

vertex, v must play the role of some ui, and the neighbors of ui must be embedded in the neighborhood

of v. Then the other vertices of H , that is the vertices of Hi, must be embedded in some way in the

remaining vertices of G. We have to choose dH(ui) vertices in N(v), so the number of copies of H using

v is at most

v(H)
∑

i=1

d(v)dH(ui)N (Hi, G) ≤
v(H)
∑

i=1

v(T )dH(ui)N (Hi, G) =

v(H)
∑

i=1

OHi
(nα(Hi)) = O(nα(H)−1).
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Thus, if G′ is the graph obtained from G by removing v, we have that

ex(n+ 1, H, T ) = N (H,G) = N (H,G′) +O(nα(H)−1) ≤ ex(n,H, T ) +O(nα(H)−1).

For some particular graphs H , by studying more carefully the number of copies of H that use some

fixed vertex, we can find a better recursion than the one from Lemma 2. In the following section, we

improve the recursion for several specific classes of graphs. For these graphs we will find an integer

valued function f(n) which is a lower bound of the extremal number ex(n,H, T ), such that f(n) grows

faster than ex(n,H, T ) (when they do not agree). Since both functions are integer valued they must

coincide eventually.

4 Exact Results

We now turn our attention to proving some exact results. Recall that we are using the notation t = ⌊k−1
2 ⌋.

4.1 Number of copies of C4

We begin by determining the maximal number of copies of C4 in a Pk-free graph.

Theorem 12. For every integer k ≥ 5, there exists n1 ∈ N such that if n ≥ n1,

ex(n,C4, Pk) = N (C4, Gn,k,t) =

(

n− t

2

)(

t

2

)

+ 3(n− t)

(

t

3

)

+ 3

(

t

4

)

+ 2ηk

(

t

2

)

,

where ηk = 1, if k is even, and 0 otherwise. Moreover, the only extremal graph is Gn,k,t.

To prove Theorem 12, we will prove the following claim from which the theorem follows simply by

induction on n.

Claim 5. There exists n0 ∈ N such that if n ≥ n0, ex(n + 1, C4, Pk) − ex(n,C4, Pk) ≤
(

t
2

)

(n − 2).
Equality can hold for this difference only if the unique extremal graph with n+ 1 vertices is Gn+1,k,t.

It is easy to see that N (C4, Gn+1,k,t) = N (C4, Gn,k,t)+
(

t
2

)

(n−2). By Claim 5, ex(n+1, C4, Pk) ≤
ex(n,C4, Pk)+

(

t
2

)

(n−2) with equality only if the unique extremal graph with n+1 vertices is Gn+1,k,t.

It follows that ex(n+1, C4, Pk)−N (C4, Gn+1,k,t) ≤ ex(n,C4, Pk)−N (C4, Gn,k,t) and so the sequence

ex(n,C4, Pk) − N (C4, Gn,k,t) is a non-increasing sequence of non-negative integers that is strictly de-

creasing after every non-zero term. Thus, this sequence is eventually the constant 0 sequence, and hence,

moreover, Gn,k,t is eventually the unique extremal graph.

We now prove Claim 5.

Proof: Let G be a Pk-free graph on n + 1 vertices with the maximum number of copies of C4; that is,

N (C4, G) = ex(n+ 1, C4, Pk).
If δ(G) > t, then by the classical argument of Dirac (1952), every connected component must have

size at most k, and therefore N(C4, G) ≤ n+1
k 3

(

k
4

)

= (n+1)(k−1)(k−2)(k−3)
8 . Then we can choose n0 so

that this number is less than N (C4, Gn,k,t) for n ≥ n0. Thus, we can assume δ(G) ≤ t.

Let v be a vertex of minimum degree. By removing v, we are removing at most
(

d(v)
2

)

(n − 2) ≤
(

t
2

)

(n − 2) copies of C4. Equality can hold only if d(v) = t and the neighbors of v have full degree. It
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follows that if equality holds, then G contains a complete bipartite graph with color classes of size t and

n+ 1− t respectively such that the size t class is a clique. If k is odd, we have that G = Gn+1,k,t. If k is

even, since G contains the maximum number of C4’s, it follows that G has an additional edge (it cannot

have 2 more for otherwise we would have a Pk). Thus, if k is even we also have G = Gn+1,k,t.

Therefore, either G = Gn+1,k,t or by removing a minimum degree vertex v we obtain a graph G′

with N (C4, G
′) > N (C4, G) −

(

t
2

)

(n − 2) = ex(n + 1, C4, Pk) −
(

t
2

)

(n − 2). Since ex(n,C4, Pk) ≥
N (C4, G

′), we have that ex(n+ 1, C4, Pk)− ex(n,C4, Pk) <
(

t
2

)

(n− 2).

The same argument proves the following.

Theorem 13. For every positive integer k ≥ 5, there exists n1 ∈ N such that if n ≥ n1

ex(n,C4, C≥k) = N (C4, Gn,k,t) =

(

n− t

2

)(

t

2

)

+ 3(n− t)

(

t

3

)

+ 3

(

t

4

)

+ 2ηk

(

t

2

)

,

where ηk = 1, if k is even, and 0 otherwise. Moreover, the only extremal graph is Gn,k,t.

4.2 Number of copies of Sr

We will prove the following theorem about the number of copies of P2. However, it will follow as a

consequence of a more general result about stars.

Theorem 14. For every positive integer k ≥ 3, there exists n1 ∈ N such that if n ≥ n1

ex(n, P2, Pk) = N (P2, Gn,k,t) = t

(

n− 1

2

)

+ (n− t)

(

t

2

)

+ 2tηk,

where ηk = 1, if k is even, and 0 otherwise. Moreover, the only extremal graph is Gn,k,t.

More generally we have,

Theorem 15. For every positive integer k ≥ 3 and r ≥ 2, there exists n1 ∈ N such that if n ≥ n1,

ex(n, Sr, Pk) = N (Sr, Gn,k,t) = t

(

n− 1

r

)

+ (n− t)

(

t

r

)

+ 2ηk

(

t

r − 1

)

,

where ηk = 1, if k is even, and 0 otherwise. Moreover, the only extremal graph is Gn,k,t, unless k is even

and t ≤ r − 2 in which case the only extremal graphs are Gn,k,t and Gn,k−1,t.

Again, the result follows from a claim about the difference of the values of two consecutive extremal

numbers. Let an = N (Sr, Gn+1,k,t)−N (Sr , Gn,k,t) =

(

t

r

)

+ t

(

n− 1

r − 1

)

.

Claim 6. There exists n0 ∈ N such that for every n ≥ n0, ex(n+ 1, Sr, Pk) − ex(n, Sr, Pk) ≤ an and

equality can hold only if either Gn+1,k,t is the only extremal graph on n+1 vertices or k is even, t ≤ r−2
and the only extremal graphs are Gn+1,k,t and Gn+1,k−1,t.

Proof: For any graph G, we have that N (Sr , G) =
∑

v∈V (G)

(

d(v)

r

)

. Let G be a Pk-free graph with n+1

vertices and maximum number of copies of Sr; that is, N (Sr, G) = ex(n+ 1, Sr, Pk). We will consider

cases depending on the minimum degree of G.
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If δ(G) > t, then every connected component of G must have at most k vertices. So the number of

copies of Sr is bounded by n
(

k−1
r

)

, then we choose n0 such that this number is less than N (Sr, Gn,k,t)
for n ≥ n0.

If δ(G) ≤ t, then by removing v a vertex of minimum degree, we remove at most

(

d(v)

r

)

+
∑

u∈N(v)

(

d(u)− 1

r − 1

)

≤
(

t

r

)

+ t

(

n− 1

r − 1

)

copies of Sr. Equality can hold only if δ(G) = t and t vertices have degree n, so G contains a complete

bipartite graph with color classes of size t and n + 1 − t such that class of size t is a clique. Then the

characterization of the extremal cases again follows from the maximality of G.

Remark 1. By checking more carefully the difference between the number of r-stars using v and the

number an, we can find a bound for n1 of order k3/2.

Similarly to before, the same method proves the following two results.

Theorem 16. For every positive integer k ≥ 5, there exists n1 ∈ N such that if n ≥ n1,

ex(n, P2, C≥k) = N (P2, Gn,k,t) = t

(

n− 1

2

)

+ (n− t)

(

t

2

)

+ 2tηk,

where ηk = 1, if k is even, and 0 otherwise. Moreover the only extremal graph is Gn,k,t.

Or more generally,

Theorem 17. For every positive integer k ≥ 5, there exists n1 ∈ N such that if n ≥ n1,

ex(n, Sr, C≥k) = N (Sr, Gn,k,t) = N (P2, Gn,k,t) = t

(

n− 1

r

)

+ (n− t)

(

t

r

)

+ 2ηk

(

t

r − 1

)

,

where ηk = 1, if k is even, and 0 otherwise. Moreover the only extremal graph is Gn,k,t, unless k is even

and t ≤ r − 2 in which case the only extremal graphs are Gn,k,t and Gn,k−1,t.

Remark 2. For k = 3, Theorem 16 also holds. Since G must be a tree and by convexity the number of

stars is maximized in a star of n vertices, we have Gn,3,1 = K1,n−1, and this graph has
(

n−1
r

)

stars. For

k = 4, a star with a perfect matching or almost perfect matching in the neighborhood of the center vertex

maximizes the number of copies of P2, with
(

n−1
2

)

+ (n− 1), when n is odd or
(

n−1
2

)

+ (n− 2), when n
is even. Any graph containing the n vertex star maximizes the number of copies of Sr for r ≥ 3.

4.3 Number of copies of P3

Theorem 18. For every positive integer k ≥ 5, there exists n1 ∈ N such that if n ≥ n1

ex(n, P3, Pk) = N (P3, Gn,k,t) =
3t(t− 1)

2
n2 +O(n).

Moreover the only extremal graph is Gn,k,t.

Let an = N (P3, Gn+1,k,t)−N (P3, Gn,k,t) = 2t

((

t− 1

2

)

+ (n− t)(t− 1) + ηk

)

+t(t−1)(n−2).

As in the previous results it is enough to prove the following claim.
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Claim 7. There exists n0 ∈ N such that for every n ≥ n0, ex(n+ 1, P3, Pk) − ex(n, P3, Pk) ≤ an and

equality can hold only if Gn+1,k,t is the only extremal graph on n vertices.

Proof: Let G be an (n + 1)-vertex graph with maximum number of copies of P3. We may assume that

δ(G) ≥ 2. (If a vertex has degree 1, then it is in at most 2(t(n− t) +
(

t
2

)

+ ηk) copies of P3.)

If δ(G) > t, then each connected component of G must have size at most k (by Dirac’s argument) and

so N (P3, G) ≤ 3
(

k
3

)

n+1
k . In this case, we can choose n0 such that for n ≥ n0, this number is less than

N (P3, Gn,k,t). Thus, we assume that δ(G) ≤ t.

Let v be a vertex in G with minimum degree, and consider the copies of P3 beginning containing v as

their second vertex. We may suppose G is connected and has enough vertices to apply Theorem 3. Then

the number of copies of P3 whose second vertex is v is bounded from above by

d(v)(d(v) − 1)(n− 2)− 2(d(v) − 2)

((

d(v)

2

)

− e(N(v))

)

.

Indeed, the first term is the trivial upper bound 2
(

d(v)
2

)

(n − 2) obtained if every pair of neighbors of v
could be extended to path of length 3 in any possible way. The subtraction comes from the fact that each

non-edge {a, b} in the neighborhood of v along with a third neighbor c ∈ N(v) uniquely forbids 2 copies

of P3 namely cvab and cvba. We have bounded from above the number of copies of P3 containing v as a

second vertex. Now we will obtain an estimate on the number of copies of P3 starting at v. We consider

the number of ways to take distinct u ∈ N(v), w ∈ N(u) and x ∈ N(w):

∑

u∈N(v)

∑

w∈N(u)
w 6=v

(

d(w) − 1− 1w∈N(v)

)

=
∑

u∈N(v)

(

∑

w∈N(u)
w 6=v

(

d(w)

)

− d(u) + 1

)

− 2e(N(v))

=
∑

u∈N(v)

(

∑

w∈V (G)

(

d(w)

)

−
∑

w 6∈N(u)
w 6=u

(

d(w)

)

− d(v) − 2d(u)

)

− 2e(N(v)) + d(v)

=
∑

u∈N(v)

(

2e(G)−
∑

w 6∈N(u)
w 6=u

(

d(w)

)

− 2d(u)

)

− 2e(N(v))− d(v)(d(v) − 1)

≤
∑

u∈N(v)

(

2e(G)− 2(n− d(u))− 2d(u)

)

− 2e(N(v))− d(v)(d(v) − 1)

= 2d(v)(e(G)− n)− 2e(N(v))− d(v)(d(v) − 1),

where the inequality uses that δ(G) ≥ 2.

The above sum is maximized when d(v) = t, and to achieve this maximum it is necessary that for every

neighbor u of v, we have that the non-neighbors of u have degree 2. Moreover, if t = 2 it is simple to

check that to maximize the expression the two neighbors of v must be adjacent. From here it follows that

the number of copies of P3 containing v is at most an.
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uw
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v

w x

y

Fig. 5: Constructing paths using v.

When t ≥ 3, we have the bound (conditioning on whether v is at the beginning or middle of the path)

2t(e(G)− n)− 2e(N(v))− t(t− 1) + t(t− 1)(n− 2)− 2(t− 2)

((

t

2

)

− e(N(v))

)

,

≤ 2t(e(G)− n)− 2t(t− 1) + t(t− 1)(n− 2).

From Theorem 3 it follows that this number is at most an. To obtain equality, in both cases it is necessary

that every neighbor of v has full degree and so by maximality we have that G = Gn+1,k,t.

Remark 3. For k = 4, it is simple to check that the only extremal graph is a balanced double star on n
vertices, which has ⌊n−1

2 ⌋⌈n−1
2 ⌉ copies of P3.

Next we consider paths of length 4.

4.4 Number of copies of P4

Theorem 19. For every positive integer k ≥ 5, there exists n1 ∈ N such that if n ≥ n1, then

ex(n, P4, Pk) = N (P4, Gn,k,t) =
t(t− 1)

2
n3 +O(n2).

Moreover the only extremal graph is Gn,k,t.

Let an := N (P4, Gn+1,k,t)−N (P4, Gn,k,t), defined similarly as before. We can check that

an = 2tN (P2, Gn−1,k−2,t−1) + 2t(t− 1)e(Gn−2,k−4,t−2) +
(

t
2

)

(n− 2)(n− 3).
As in the previous results it is enough to prove the following Claim.

Claim 8. There exists n0 ∈ N such that for every n ≥ n0, ex(n+ 1, P4, Pk) − ex(n, P4, Pk) ≤ an and

equality can hold only if Gn+1,k,t is the only extremal graph on n vertices.

Proof: Let G be an (n + 1)-vertex graph with maximum number of P4 copies. Assume that δ(G) ≥ 2.

(If a vertex v has degree 1, then it is in at most 2N (P2, Gn,k,t) < an copies of P4.)

If δ(G) > t then each component of G must have size at most k and so N (P4, G) ≤ 12
(

k
4

)

n+1
k so we

can choose n0 such that if n ≥ n0 this number is less than N (P4, Gn,k,t).
Suppose now that δ(G) ≤ t. Let v be a vertex of minimum degree. As before suppose G is connected.

To count the number of paths of length 4 starting at v, fix u ∈ N(v) and let G′ be the subgraph of G
obtained by removing v and u. Any path vuu1u2u3 can be decomposed as the edge vu together with the

ordered path u1u2u3 in G′ so the number of paths of the form vuu1u2u3 is at most 2N (P2, G
′), since

there are two orderings of any P2. It is easy to check that G′ cannot contain a cycle of length at least
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Fig. 6: Lemma of the cycle in Theorem 19.

k − 1, otherwise together with the edge uv we would have a copy of Pk. Thus, there are two cases:

a) Suppose first that G′ is does not contain a Ck−2. Then G′ is C≥k−2-free and so N (P2, G
′) ≤

ex(n−1, P2, C≥k) = N (Gn−1,k−2,t−1, P2). We will take n0 bigger than the constant from Theorem 16,

when k = 5, or k ≥ 7. When k = 6 we use the following lemma.

Lemma 3. If H is a graph on n vertices containing no cycle of length at least 4, then either H contains

a vertex of degree n− 1 or N (P2, H) <
(

n−1
2

)

+ 2.

Proof: Suppose H has no vertex of degree n−1. If H has degree 1 vertices, then the number of copies of

P2 is maximized when all these vertices are adjacent to the vertex of maximum degree, so suppose H has

no vertex of degree 1. Then
∑

v∈V (H) d(v) ≤ 3(n− 1) and 2 ≤ d(v) ≤ n − 2. Therefore by convexity

the number of copies of P2 is maximized when there is one vertex of degree n − 2, one of degree 3 and

n− 2 of degree 2. This yields
(

n−2
2

)

+ n+1 =
(

n−1
2

)

+3, however a graph with such a degree sequence

must have a cycle of length bigger than four. Thus we consider the second best is a graph with one vertex

of degree n− 2 and n− 1 vextex of degree 2 (if possible) which has
(

n−1
2

)

+ 1 copies of P2.

Now according to this lemma for k = 6, either N (P2, G
′) <

(

n−2
2

)

+ 2 = N (P2, Gn−1,4,1) or G′ has

a vertex of degree n− 2, call it w, and some edges t in NG′(w). The vertex u cannot be connected to two

different edges in NG′(w), otherwise G would contain a P6, and if u is connected to both vertices of one

of these edges and to all other vertices of G′, then the number of copies of P4 starting with vu would be

(n− 2t)(n− 3) + 2 + 2t ≤ (n− 2)(n− 1) + 4.

b) Now suppose that G′ contains a cycle of length k − 2, C. In this case we have the following.

Claim 9. If w is a vertex which is not in the cycle and w ∈ N(x) where x is a vertex of the cycle, then w
has at most one neighbor outside of C.

Proof: Suppose w1 and w2 are two neighbors of w. Since δ(G) > 1, w1 has a neighbor y. If y is in

C, then C together with w1ww2 is a length k path. If y is outside of C, then C together with ww1y is a

Pk.

As a corollary we have,

Claim 10. If w is a vertex not in the cycle and w ∈ N(x) where x is a vertex of the cycle, then d(w) < k.
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The edge uv is connected to C by some path. If there is an intermediate vertex from C to uv, then

clearly this path will have length at least k and so this is not possible. Hence C is connected to either

u or v. If C is connected to v, then every neighbor of u must be in C for otherwise we have a k path.

If C is connected to u, then by Claim 9, all neighbors of u, except for v, are in C. So for every path

vuu1u2u3 we have that u1 ∈ C, if u2 ∈ C, then we have less than k choices for both u1 and u2 and at

most n choices for u3. If u2 is not in C, then by Claim 10, since u2 is a neighbor of u1 ∈ V (C), we

have d(u2) < k and so there are at most k choices for u3 and less than n choices for u2. Hence we have

less than 2k2n such paths in total and we can take n0 such that if n ≥ n0, then this number is less than

2N (Gn−1,k−2,t−1, P2).

It follows that the number of paths starting with v is at most 2d(v)N (P2, Gn−1,k−2,t−1).

Now if d(v) ≤ t − 1, then the trivial bound on the number of copies of P4 with middle vertex v is

d(v)(d(v)−1)
(

n−2
2

)

and the bound on the number of P4 cpoies with v as a second vertex is 2d(v)(d(v)−
1)e(G). Thus, we would have that the number of copies of P4 using v is less than an. So we will now

suppose d(v) = t. To simplify the notation in the following calculations let S :=
∑

u∈N(v) d(u).

To count paths with v in the middle, we will count in order paths of the form xuvwy, where u,w can

be any neighbors of v and then we have to choose a neighbor x of u and a neighbor y of w with y 6= x.

Hence the number of ordered paths with v as the middle vertex is

∑

u∈N(v)

(

∑

w∈N(v)
w 6=u

(d(u)− 1− 1u∈N(w))(d(w) − 1− 1u∈N(w))− |N(u) ∩N(w)|+1

)

≤
∑

u∈N(v)

(

∑

w∈N(v)
w 6=u

d(u)d(w) − 2d(w) − 2d(u)− 1u∈N(w)(d(w) + d(u)) + 5 · 1u∈N(w) + n+ 1

)

= S2−
(

∑

u∈N(v)

d(u)2

)

−4(t−1)S−2

(

∑

u∈N(v)

d(u) |N(u) ∩N(v)|
)

+10e(N(v))+t(t−1)(n+1)

≤ S2 −
(

∑

u∈N(v)

d(u)2

)

− 4(t− 1)S − 2

(

∑

u∈N(v)

d(u)(d(u) + t− n− 1)

)

+ t(t− 1)(n+ 6)

= S2 − 3

(

∑

u∈N(v)

d(u)2

)

+ (2n− 6(t− 1))S + t(t− 1)(n+ 6)

≤ S2 − 3S2

t
+ (2n− 6(t− 1))S + t(t− 1)(n+ 6)

=
t− 3

t
S2 + (2n− 6(t− 1))S + t(t− 1)(n+ 6),

where in the first and second inequality we use the fact that for every pair of vertices x, y of the graph

|N(x) ∩N(y)|≥ d(x) + d(y) − n + 1 − 2 · 1x∈N(y) together with e(N(v)) ≤
(

t
2

)

. The last inequality

was obtain by applying the Cauchy-Schwarz inequality to
∑

u∈N(v) d(u)
2. Since any path can have two

distinct orders we divide this expression by 2.

To count the number of paths with v as the second vertex, we will decompose the path uvwxy into

uvw together with e = xy. First we choose in order two neighbors of v, then an edge not using u, v or w.
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There are at most 2 ways to connected the edge to w, so the number of these paths is at most

2
∑

u∈N(v)

(

∑

w∈N(u)
w 6=u

e(G)− d(w) − d(u)− t+ 2 + 1u∈N(w)

)

= 2t(t− 1)(e(G)− t+ 2) + 4e(N(v))− 4(t− 1)S

≤ 2t(t− 1)(e(Gn,k,t) + 2) + 4

(

t

2

)

− 4(t− 1)S.

By summing the previous bounds, we have that the number of paths using v is at most

2tN (P2, Gn,k−2,t−1)+
t− 3

2t
S2+(n−7(t−1))S+ t(t−1)(n+6)+2t(t−1)(e(Gn,k,t)+2)+4

(

t

2

)

.

The value of this expression when S = tn is precisely an. By considering this expression as a quadratic

in S, we can check that if t ≥ 3 the maximum is attained only when S = nt. This means that every

neighbor of v must have degree n, so this is only possible if G = Gn+1,k,t. If t = 2, the expression

attains its maximum when S = 2n − 14, hence if S < 2n − 28. This value would be less than an, but

now with the condition S ≥ 2n − 28. It is simple to check that for k = 5, G must be either K2,n−2 or

Gn,5,2, and if k = 6, then G must be Gn,6,2.

5 The number of copies of Pk−1 in Pk-free graphs

If k is odd, it seems likely that the graph Gn,k,t attains the value ex(n, Pk−1, Pk). However, for k even

the situation changes. We have that N (Pk−1, Gn,k,t) = Θ(nt), but there is another graph Hn,k such that

N (Pk−1, Hn,k) = Θ(nt+1). In order to define this graph, first for r ≥ 2 and a, b positive integers, let

S
(r)
a,b be the (a + b+ r)-vertex graph consisting of a clique on r vertices and two independent sets A and

B on a and b vertices, respectively. Let v be a vertex of the clique and join v to every vertex in B, then

join every vertex of the clique except v to every vertex in A. Let S(r)
n be the family of all such graphs on

n vertices. For even k, let Hn,k be the graph in S(t+1)
n which maximizes the number of Pk−1 copies. In

this case we conjecture that the graph Hn,k is extremal.

Conjecture 1. If k is even and k ≥ 4, the extremal number ex(n, Pk−1, Pk) is attained by the the graph

Hn,k.

Remark 4. For r ≥ 2 the graphs S
(r)
a,b are P2r-free and have (r − 1)! ba(a − 1) · · · (a − r + 2) copies

of P2r−1. In S(r)
n this number is maximized when a is roughly r−1

r n, and this maximum approaches

(r − 1)! ( (r−1)r−1

rr )nr as n tends to infinity. In particular by taking r = 3 we have a P6-free graph with

8n3/27 +O(n2) copies of P5.

Remark 5. Note that the only edges of the clique in S
(r)
a,b that a P2r−1 uses are the ones that are incident

with the vertex v. So we have several graphs for which we conjecture the number of copies of P2r−1 is

maximal, namely those subgraphs of S
(r)
a,b formed by removing edges from the clique not incident to v.
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Conjecture 1 can be easily checked for k = 4, and the following theorem says that this conjecture is

also true for k = 6.

Theorem 20. There exists n1 ∈ N such that if n ≥ n1, then

ex(n, P5, P6) = N (P5, Hn,6) =
8n3

27
+O(n2).

Proof:

Let G be a P6 free graph, and suppose n ≥ 7. It is enough to bound the copies of P5 in each connected

component, so assume G is connected.

Let C be the largest cycle in G and let G′ be the graph obtained by removing C from G; clearly C
cannot be a 6-cycle, otherwise G would contain a P6. We will consider cases based on the length of C.

a) Suppose C is a 5-cycle with vertices v1, v2, v3, v4, v5 appearing consecutively. Then every vertex in

G′ is connected to a vertex of C. Suppose that v1 has a neighbor in G′, if v1 is the only vertex of C with

an edge to G′, then N (P5, G) < 24n. So suppose this is not the case, v2 and v5 cannot have neighbors

in G′. Thus, without loss of generality, we may suppose v3 has a neighbor in G′, then v4 cannot have

neighbors in G′, also note that v2 cannot be connected with v4 or with v5 and so G ⊆ Gn,6,2 (where the

v1 and v3 take the role of the high degree vertices, and the edge v4v5 is the only edge that is not incident

with one of v1 or v3), hence N (P5, G) = O(n2).

b) Now suppose C is a 4-cycle defined by v1, v2, v3, v4, consecutively. Then G′ cannot contain a P3,

otherwise by connectivity we would have a path of length at least 6. Consider the set X of vertices of G′

that have at least one neighbor in both C and G′. Note that if y ∈ G′ is a neighbor of x ∈ X , then y
cannot have any other neighbor in G′. Also note that the only possible neighbor of y in C is the neighbor

of x in C (y cannot have a neighbor in C if x has more than one neighbor in C).

If |X | > 1, then every vertex in X must be adjacent to the same vertex in C, say v1. Then v2 and

v4 cannot have a neighbor outside of C. If v2 and v4 are adjacent, then it also holds that v3 cannot have

neighbors in G′. It is then easy to check that N (P5, G) < 6n. So suppose v2 and v4 are not connected

(see Figure 5), then every P5 in G is of the form xyv1vv3u, where x ∈ X , y is a neighbor of x, and both

of v, u are common neighbors of v1 and v3. If a = |N(v1) ∩N(u) ∩N(v)| and b is the number vertices

in G′ with a neighbor in X , then we have that N (P5, G) ≤ ba(a− 1) which is half N (P5, S
(3)
a,b) but S

(3)
a,b

can have at most one more vertex than G.

If X = {x}, then something similar holds, except that both v1 and v3 are allow to be connected to x

and there is the extra possibility of G being a subgraph of S
(3)
a,b .

Now suppose X = ∅. If no two vertices of C share a common vertex in G′, then N (P5, G) is quadratic.

So suppose two non-consecutive vertices, say v1, and v3, share a common neighbor, then it is not possible

for the other two vertices in C to have a neighbor in G′. Thus, our graph is again a subgraph of S
(3)
a,b .

c) Suppose C is a triangle, then every pair of vertices are the end vertices of at most one P5. If two

different paths of length 5 have the same end vertices, then either G would contain a cycle of length at

least four or a P6. Thus, N (P5, G) <
(

n
2

)

.
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Fig. 7: The family S
(r)
a,b from which the conjectured extremal graph Hn,k is obtained. And a graph that appears in

Case b) of the proof of the Theorem 20.
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