
Discrete Mathematics and Theoretical Computer Science DMTCS vol. 14:1, 2012, 29–42

A Branch-and-Reduce Algorithm for Finding a

Minimum Independent Dominating Set †

Serge Gaspers1‡ and Mathieu Liedloff2§

1Institute of Information Systems, Vienna University of Technology, Vienna, Austria.
2Laboratoire d’Informatique Fondamentale d’Orléans, Université d’Orléans, Orléans, France.
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An independent dominating set D of a graph G = (V,E) is a subset of vertices such that every vertex in V \ D has at

least one neighbor in D and D is an independent set, i.e. no two vertices of D are adjacent in G. Finding a minimum

independent dominating set in a graph is an NP-hard problem. Whereas it is hard to cope with this problem using

parameterized and approximation algorithms, there is a simple exact O(1.4423n)-time algorithm solving the problem

by enumerating all maximal independent sets. In this paper we improve the latter result, providing the first non-trivial

algorithm computing a minimum independent dominating set of a graph in time O(1.3569n). Furthermore, we give a

lower bound of Ω(1.3247n) on the worst-case running time of this algorithm, showing that the running time analysis is

almost tight.
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1 Introduction

During the last years the interest in the design of exact exponential time algorithms has grown significantly.

Several nice surveys have been written on this subject. In Woeginger’s first survey [39], he presents the

major techniques used to design exact exponential time algorithms. We also refer the reader to the survey

of Fomin et al. [16] discussing some more recent techniques for the design and the analysis of exponential

time algorithms. In particular, they discuss Measure & Conquer and lower bounds.

In a graph G = (V,E), a subset of vertices S ⊆ V is independent if no two vertices of S share an

edge, and S is dominating if every vertex from V \ S has at least one neighbor in S. In the MAXIMUM

INDEPENDENT SET problem (MIS), the input is a graph and the task is to find a largest independent set

in this graph. In the MINIMUM DOMINATING SET problem (MDS), the input is a graph and the task is to

find a smallest dominating set in this graph. A natural and well studied [1, 2, 8, 13, 26, 25] combination

of these two problems asks for a subset of vertices of minimum cardinality that is both independent and

dominating. This problem is called MINIMUM INDEPENDENT DOMINATING SET (MIDS). It is also known

as MINIMUM MAXIMAL INDEPENDENT SET, since a vertex set is an independent dominating set if and

only if it is a maximal independent set. Whereas there has been a lot of work on MIS and MDS in the field

of exact algorithms, the best known exact algorithm for MIDS – prior to our work – trivially enumerates

all maximal independent sets.

Known results. The MIS problem was among the first problems shown to be NP-hard [19]. It is known that

a maximum independent set of a graph on n vertices can be computed in O(1.4423n) time by combining a

result due to Moon and Moser, who showed in 1965 that the number of maximal independent sets of a graph

is upper bounded by 3n/3 [32] (see also [30]), and a result due to Johnson, Yannakakis and Papadimitriou,

providing in [27] a polynomial delay algorithm to generate all maximal independent sets. Moreover many
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exact algorithms for this problem have been published, starting in 1977 by an O(1.2600n) algorithm by

Tarjan and Trojanowski [36]. To date, the fastest known exponential space algorithms for MIS have been

designed by Robson. His algorithm from 1986 [34] has running time O(1.2108n) and his unpublished

computer-generated algorithm from 2001 [35] has running time O(1.1889n). Among the currently leading

polynomial space algorithms, there is a very simple algorithm with running time O(1.2210n) by Fomin

et al. [14, 17] from 2006, an O(1.2132n) time algorithm by Kneis et al. [28] from 2009, a very recent

O(1.2114n) time algorithm by Bourgeois et al. [5], and Robson’s unpublished O(1.2025n) time algorithm

[35].

The MDS problem is also well known to be NP-hard [19]. Until 2004, the only known exact exponential

time algorithm to solve MDS asked for trivially enumerating the 2n subsets of vertices. The year 2004 saw

a particular interest in providing some faster algorithms for solving this problem. Indeed, three papers with

exact algorithms for MDS were published. In [18] Fomin et al. present an O(1.9379n) time algorithm,

in [33] Randerath and Schiermeyer establish an O(1.8899n) time algorithm and Grandoni [24] obtains an

O(1.8026n) time algorithm.

In 2005, Fomin et al. [15, 17] use the Measure & Conquer approach to obtain an algorithm with running

time O(1.5263n) and using polynomial space. By applying a memorization technique they show that this

running time can be reduced to O(1.5137n) when allowing exponential space usage. Van Rooij and Bod-

laender [37] further improved the polynomial-space algorithm to O(1.5134n) and the exponential-space

algorithm to O(1.5063n). By now, the fastest published algorithm is due to van Rooij et al. In [38], they

provide a O(1.4969n) time polynomial space algorithm.

It is known that a minimum independent dominating set (a mids, for short) can be found in polynomial

time for several graph classes like interval graphs [7], chordal graphs [13], cocomparability graphs [29] and

AT-free graphs [6], whereas the problem remains NP-complete for bipartite graphs [9] and comparability

graphs [9]. Concerning approximation results, Halldórsson proved in [26] that there is no constant ǫ > 0
such that MIDS can be approximated within a factor of n1−ǫ in polynomial time, assuming P 6= NP . The

same inapproximation result even holds for circle graphs and bipartite graphs [11].

The problem has also been considered in parameterized approximability. Downey et al. [12] have shown

that it is W [2]-hard to approximate k-INDEPENDENT DOMINATING SET with a factor g(k), for any com-

putable function g(k) ≥ k. In other words, unless W [2] = FPT , there is no algorithm with running time

f(k) · nO(1) (where f(k) is any computable function independent of n) which either asserts that there is no

independent dominating set of size at most k for a given graph G, or otherwise asserts that there is one of

size at most g(k), for any computable function g(k) ≥ k.

The first exponential time algorithm for MIDS has been observed by Randerath and Schiermeyer [33].

They use the result due to Moon and Moser [32] as explained previously and an algorithm enumerating

all the maximal independent sets to obtain an O(1.4423n) time algorithm for MIDS. In 2006, an earlier

conference version of this paper claimed an O(1.3575n) time algorithm [22]. However, a flaw concerning

the main reduction rule was discovered by the authors and is repaired in the present paper. Several of the

ideas introduced in [22] have been reused in recent work. Bourgeois et al. [4] designed a branch-and-

reduce O(1.3417n) time algorithm for MIDS based on marked graphs and other concepts introduced in

[22]. In [21], an algorithm is designed to count the number of disinct maximal independent sets in a graph,

or equivalently the number of independent dominating sets, in time O(1.3642n). The general outline of that

algorithm is similar to the one presented here, but several reduction and branching rules could not be used

for the more general counting problem. The graph family used for the lower bound presented in Section 5

also makes an appearance in [21].

Our results. In this paper we present an O(1.3569n) time algorithm for solving MIDS using the Measure

& Conquer approach to analyze its running time. As the bottleneck of the algorithm in [33] are the vertices

of degree two, we develop several methods to handle them more efficiently such as marking some vertices

and a reduction described in Subsection 3.1 to a constraint satisfaction problem. Combined with some

elaborated branching rules, this enables us to lower bound shrewdly the progress made by the algorithm

at each branching step, and thus to obtain a polynomial-space algorithm with running time O(1.3569n).
Furthermore, we obtain a very close lower bound of Ω(1.3247n) on the running time of our algorithm,

which is very rare for non-trivial exponential time branching algorithms.

This paper is organized as follows. In Section 2, we introduce the necessary concepts and definitions.
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Section 3 presents the algorithm for MIDS. We prove its correctness and an upper bound on its worst-case

running time in Section 4. In Section 5, we establish a lower bound on its worst-case running time, which

is very close to the upper bound and we give a conclusion and open question in Section 6.

2 Preliminaries

Let G = (V,E) be an undirected and simple graph. For a vertex v ∈ V we denote by N(v) the (open)

neighborhood of v and by N [v] = N(v) ∪ {v} the closed neighborhood of v. The degree d(v) of v is the

cardinality of N(v). For a given subset of vertices S ⊆ V , G[S] denotes the subgraph of G induced by S,

N(S) denotes the set of neighbors in V \ S of vertices in S and N [S] = N(S) ∪ S. We also define NS(v)
as N(v) ∩ S, NS [v] as N [v] ∩ S, and dS(v) (called the S-degree of v) as the cardinality of NS(v). In the

same way, given two subsets of vertices S ⊆ V and X ⊆ V , we define NS(X) = N(X) ∩ S.

A clique is a set S ⊆ V of pairwise adjacent vertices. A graph G = (V,E) is bipartite if V admits a

partition into two independent sets. A bipartite graph G = (V,E) is complete bipartite if every vertex of

one independent set is adjacent to every vertex of the other independent set. A connected component of a

graph is a maximal subset of vertices inducing a connected subgraph.

In a branch-and-reduce algorithm, a solution for the current problem instance is computed by recursing

on smaller subinstances such that an optimal solution, if one exists, is computed for at least one subinstance.

If the algorithm considers only one subinstance in a given case, we speak of a reduction rule, otherwise of

a branching rule.

Consider a vertex u ∈ V of degree two with two non-adjacent neighbors v1 and v2. In such a case, a

branch-and-reduce algorithm will typically branch into three subcases when considering u: either u, or v1,

or v2 are in the solution set. In the third branch, one can consider that v1 is not in the solution set as the

second branch considers all solution sets containing v1. In order to memorize that v1 is not in the solution

set but still needs to be dominated, we mark v1.

Definition 1 A marked graph G = (F,M,E) is a triple where F ∪ M denotes the set of vertices of G
and E denotes the set of edges of G. The vertices in F are called free vertices and the ones in M marked

vertices.

Definition 2 Given a marked graph G = (F,M,E), an independent dominating set D of G is a subset of

free vertices such that D is an independent dominating set of the graph (F ∪M,E).

Remark 1 It is possible that such an independent dominating set does not exist in a marked graph, for

example if some marked vertex has no free neighbor.

Finally, we introduce the notion of an induced marked subgraph.

Definition 3 Let G = (F,M,E) be a marked graph and S, T ⊆ (F ∪ M) two vertex subsets of G. The

induced marked subgraph G[S, T ] is the marked graph G′ = (S, T,E′) where E′ ⊆ E is the set of edges

of G with both end points in S ∪ T . The induced subgraph G[S] is the graph G′′ = (S,E′′) where E′′ ⊆ E
is the set of edges of G with both end points in S.

Notions like neighborhood and degree in a marked graph (F,M,E) are the same as in the corresponding

graph (F ∪M,E).

3 Computing a mids on Marked Graphs

In this section we present an algorithm solving MIDS on a marked graph (F,M,E), assuming that no

marked vertex has F -degree larger than 4. The algorithm is in fact not able to handle marked vertices

with F -degree larger than 4 within our claimed running time bound. As the algorithm does not create new

marked vertices with F -degree larger than 4, we may restrict the input instance of each recursion step to

marked graphs where no marked vertex has F -degree larger than 4.

From the previous definitions it follows that a subset D ⊆ V is a mids of a graph G′ = (V,E) if and only

if D is a mids of the marked graph G = (V, ∅, E). Hence the algorithm of this section is able to solve the

problem on (non-marked) graphs as well. Also due to the definitions, edges incident to two marked vertices

are irrelevant; throughout this paper we assume that there are no such edges.
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Given a marked graph G = (F,M,E), consider the graph G[F ] induced by its free vertices. In the

following subsection we consider the special case when G[F ] is a disjoint union of cliques with some

additional properties.

3.1 G[F ] is a disjoint union of cliques

Assume in this subsection that the graph G[F ] is a disjoint union of cliques with the following additional

properties:

• each clique has size at most 4, and

• each marked vertex has at most 4 free neighbors.

We will arrive at such instances by branching on local structures that lead to favorable branching vectors.

It is often the case in branching algorithms that vertices of high degree lead to good branching vectors,

especially when the problem requires some kind of independence property of the solution. Moreover,

instances with regular components often give the worst branching vectors and need to be handled with

special care. For MIDS, this leads us to the core case where G[F ] is a disjoint union of cliques with the

additional properties above, and for which branching seems a rather poor strategy.

We will transform this instance G = (F,M,E) of MIDS into an instance (X,D,C) of the Constraint

Satisfaction Problem (CSP). Let us briefly recall some definitions about CSP. Given a finite set X =
{x1, x2, . . . , xn} of n variables over domains D(xi), 1 ≤ i ≤ n, and a set C of q constraints, CSP asks

for an assignment of values to the variables, such that each variable is assigned a value from its domain,

satisfying all the constraints. Formally, (d, p)-CSP is defined as follows:

Input: (X,D,C) where X = {x1, x2, . . . , xn} is a set of variables over domains D(xi) of cardinality

at most d, 1 ≤ i ≤ n, and C = {c1, c2, ..., cq} is a set of constraints. Each constraint ci ∈ C
is a pair 〈ti, Ri〉 where ti = 〈xi1 , xi2 , . . . , xij 〉 is a j-tuple of variables, with j ≤ p, and Ri ⊆
D(xi1)×D(xi2)× · · · ×D(xij ).

Question: Is there a function f assigning to each variable xi ∈ X , 1 ≤ i ≤ n, a value of D(xi) such that

for each constraint ci, 1 ≤ i ≤ q, 〈f(xi1), ..., f(xij )〉 ∈ Ri ?

Given a marked graph G = (F,M,E) fulfilling the properties mentioned in the beginning of this subsec-

tion, we describe the construction of a (4, 4)-CSP instance. We label the cliques K1,K2, . . . ,Kl of G[F ]

respectively by x1, x2, . . . , xl. For each clique Ki, 1 ≤ i ≤ l, label its vertices from v1i to v
|Ki|
i . For each

variable xi, 1 ≤ i ≤ l, we define its domain as D(xi) = {1, 2, . . . , |Ki|}.

Let ui ∈ M be a marked vertex and let vk1

i1
, vk2

i2
, . . . , v

kj

ij
be the free neighbors of ui. Thus, j ≤ 4.

Let ti = 〈xi1 , xi2 , . . . , xij 〉 be the j-tuple of variables corresponding respectively to the cliques containing

vk1

i1
, vk2

i2
, . . . , v

kj

ij
. Let Ri be the set of all j-tuples 〈wi1 , wi2 , . . . , wij 〉 over D(xi1)×D(xi2)×· · ·×D(xij )

such that for at least one r, 1 ≤ r ≤ j, the value of wir is kr and {u, vkr

ir
} is an edge of the graph.

Finally, each marked vertex ui leads to a constraint 〈ti, Ri〉 of the set C. Due to the conditions on the

given marked graph, the size of the domain of each variable is at most 4 and the number of variables involved

in each constraint is at most 4.

Any independent dominating set of G contains exactly one vertex from each clique in G[F ]. Selecting a

vertex vji in the MIDS instance corresponds to setting variable xi to j in the CSP instance. The constraints

make sure that for each marked vertex a free neighbor is selected. Thus, G has an independent dominating

set if and only if the corresponding CSP instance has a solution.

We now use the following theorem of Angelsmark [3] showing that it is possible to restrict our attention

to (2, 4)-CSP.

Theorem 4 (Theorem 11 of [3]) If there exists a deterministic O(αn) time algorithm for solving (e, p)-
CSP, then for all d > e, there exists a deterministic O((d/e+ǫ)nαn) time algorithm for solving (d, p)-CSP,

for any ǫ > 0.
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The constructive proof of this theorem shows how to transform a (d, p)-CSP instance on n variables into

a set of (e, p)-CSP instances on at most n variables each, such that the (d, p)-CSP instance has a solution

if and only if at least one of the (e, p)-CSP instances has a solution. The number of (e, p)-CSP instances

of this construction is bounded by Πi>e(i/e+ ǫ)ni ≤ (d/e+ ǫ)n, where ni is the number of variables with

domain size i in the (d, p)-CSP instance and ǫ > 0 can be taken arbitrarily small.

We use this construction to transform our (4, 4)-CSP instance into a set of Πi>2(i/2 + ǫ)Ni (2, 4)-CSP

instances, where Ni is the number of cliques of size i in G[F ]. Then, it is not hard to see that there exists a

mids for G if and only if at least one of the (2, 4)-CSP instances has an assignment of the variables which

satisfies all the constraints of this CSP instance. Given a satisfying assignment f to such a CSP instance,

the set
⋃l

i=1{v
f(xi)
i } is a solution to MIDS for G. We obtain the following theorem.

Theorem 5 Let N2, N3 and N4 be the number of variables (i.e. the number of cliques of G[F ]) with

domain size (resp. of size) 2, 3 and 4, respectively. The corresponding CSP instance can be solved in time

O((4/2+ ǫ)N4 · (3/2+ ǫ)N3 ·αN4+N3+N2) where O(αn) is the running time needed to solve a (2, 4)-CSP

instance on n variables, for any ǫ > 0.

The theorem can be combined with the following result of Moser and Scheder [31] providing an algorithm

for solving (2, 4)-CSP.

Theorem 6 ([31]) Any (2, 4)-CSP instance can be solved deterministically in time O((1.5 + ǫ)n), for any

ǫ > 0.

Corollary 7 Let G = (F,M,E) be a marked graph such that G[F ] is a disjoint union of cliques of size at

most 4, and each marked vertex has F -degree at most 4. Let Ni, 1 ≤ i ≤ 3, be the number of free vertices

with i free neighbors in G (thus G[F ] has Ni cliques of size i + 1). A mids, if one exists, can be computed

in time O((1.5 + ǫ)N1/2 · (2.25 + ǫ)N2/3 · (3 + ǫ)N3/4) or it can be decided within the same running time

that the marked graph has no mids, for any ǫ > 0.

We remark that the procedure of Corollary 7 will not be a bottleneck in the final running time analysis of

our algorithm, even if we use the 1.6n · nO(1) by Dantsin et al. [10] to solve (2, 4)-CSP instances instead

of Theorem 6.

3.2 The Algorithm

In this subsection, we give Algorithm ids computing the size of a mids of a marked graph. Although the

number of branching rules is quite large it is fairly simple to check that the algorithm computes the size of a

mids (if one exists). It is also not difficult to transform ids into an algorithm that actually outputs a mids. In

the next section we prove the correctness and give a detailed analysis of the running time of Algorithm ids.

Once the algorithm has selected a vertex u, it makes recursive calls (that is, it branches) on subinstances

of the current MIDS instance. There are different ways the algorithm branches and we give the most

common ones now. The branching procedure branch one(G, u) considers the two possibilities where u
is in the solution set or where u is not in the solution set. In the recursive call corresponding to the second

possibility, u is marked. The procedure returns

min

{

1 + ids(G[F \N [u],M \N(u)]);

ids(G[F \ {u},M ∪ {u}]).

The branching procedure branch all(G, u) explores all possibilities in which u or a free neighbor of u is

in the solution set. It returns

1 + min
v∈NF [u]

{ids(G[F \N [v],M \N(v)])}.

The branching procedure branch mark(G, u) additionally makes sure that the free neighbors of u are

considered by increasing F -degree. Let v1, . . . , vdF (u) denote the free neighbors of u, ordered by increasing

F -degree. When considering the possibility that vi is in the solution set, the procedure marks all vertices
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vj , j < i. It returns

1 + min











ids(G[F \N [u],M \N(u)]);

mini=1..dF (u)

{

ids(G[F \ (N [vi] ∪ {v1, . . . , vi−1}),

(M ∪ {v1, . . . , vi−1}) \N(vi)]).

The branching procedure branch all is favored over branch mark if branch mark would create

marked vertices of degree at least 5. Thus, starting with a graph where all the marked vertices have F -degree

at most 4, Algorithm ids will keep this invariant. This property allows us to use the procedure described in

the previous subsection whenever the graph induced by its free vertices is a collection of cliques of size at

most 4. The correctness and running time analysis of ids are described in the next section.

4 Correctness and Analysis of the Algorithm

In our analysis, we assign so-called weights to free vertices. Free vertices having only marked neighbors

can be handled without branching, as they are included in every independent dominating set (our algorithm

simply postpones their treatment to the subroutine from Corollary 7). Hence, it is an advantage when the

F -degree of a vertex decreases. The weights of the free vertices will therefore depend on their F -degree.

Let ni denote the number of free vertices having F -degree i. For the running time analysis we consider

the following measure of the size of the marked graph G:

k = k(G) =
∑

i≥0

wini ≤ n

with the weights wi ∈ [0, 1]. In order to simplify the running time analysis, we make the following assump-

tions:

• w0 = 0,

• wi = 1 for i ≥ 3,

• w1 ≤ w2, and

• ∆w1 ≥ ∆w2 ≥ ∆w3 where ∆wi = wi − wi−1, i ∈ {1, 2, 3}.

Theorem 8 Algorithm ids solves MIDS in time O(1.3569n).

Proof: Let P [k] denote an upper bound on the running time of Algorithm ids on any instance of measure

k, ignoring all polynomial factors in k. As each recursive call made by the algorithm is on an instance with

at least one edge fewer and no reduction or branching rule increases k, P [k] can be bounded by analyzing

recurrences based on the measure of the created subinstances in those cases where the algorithm makes at

least 2 recursive calls. We will analyze these cases one by one.

Case (1) A marked vertex that has no free neighbor cannot be dominated. Thus, such an instance has no

independent dominating set.

Case (2) In this case, G[F ] is a disjoint union of cliques and u is a vertex from a clique of size ℓ ≥ 6
in G[F ]. The branching branch all(G, u) creates ℓ subinstances whose measure is bounded by k − ℓw3.

The corresponding recurrence relation is P [k] ≤ ℓP [k − ℓw3]. For ℓ ≥ 6, the tightest of these recurrences

is when ℓ = 6:

P [k] ≤ 6P [k − 6w3]. (rec. 1)

Case (3) In this case, G[F ] is a disjoint union of cliques and u is a vertex from a clique of size 5 in

G[F ]. The branching branch one(G, u) creates 2 subinstances whose measure is bounded by k − 5w3

and k − w3, respectively. Note that the marked vertex which is created in the second branch has F -degree

4. The corresponding recurrence is

P [k] ≤ P [k − 5w3] + P [k − w3]. (rec. 2)
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Algorithm ids(G)

Input: A marked graph G = (F,M,E) with dF (v) ≤ 4 for each v ∈ M .

Output: The size of a mids of G.

if ∃u ∈ M s.t. dF (u) = 0 then

return ∞; (1)

else if G[F ] is a disjoint union of cliques then

if ∃u ∈ F s.t. dF (u) ≥ 5 then

return branch all(G, u); (2)

else if ∃u ∈ F s.t. dF (u) = 4 then

return branch one(G, u); (3)

else

return the solution determined by the algorithm of Corollary 7; (4)

else if ∃u ∈ M s.t. dF (u) = 1 then
let v be the free neighbor of u

return 1 + ids(G[F \N [v],M \N(v)]); (5)

else if ∃ a connected component B of G[F ] s.t. |B| > 2 ∧G[B] is complete bipartite then
let B be partitioned into two independent sets X and Y

return min

{

|X|+ ids(G[F \N [X],M \N(X)]);

|Y |+ ids(G[F \N [Y ],M \N(Y )])
; (6)

else if ∃C ⊆ F s.t. |C| = 3 ∧ C is a clique ∧ ∃!v ∈ C s.t. dF (v) ≥ 3 then

return min{1 + ids(G[F \N [v],M \N(v)]); ids(G[F \ {v},M ])}; (7)

else
choose u ∈ F such that

(a) u is not contained in a connected component in G[F ] that is a clique,

(b) according to (a), u has minimum F -degree, and

(c) according to (a) and (b), u has a neighbor in F of maximum F -degree.

if dF (u) = 1 then

return branch all(G, u); (8)

else if dF (u) = 2 then

if u has a neighbor of F -degree at most 4 then

return branch mark(G, u); (9)

else

return branch all(G, u); (10)

else if dF (u) = 3 then

if all free neighbors of u have F -degree 3 then
Let v ∈ NF [u] such that G[NF (v)] has at most 1 edge

return branch one(G, v); (11)

else if u has a neighbor v of F -degree 4 then

return branch one(G, v); (12)

else if u has a neighbor v of F -degree 5 then

return min











1 + ids(G[F \N [u],M \N(u)]);

1 + ids(G[F \N [v],M \N(v)]);

ids(G[F \ {u, v},M ∪ {u, v}])

; (13)

else if u has two free neighbors of F -degree 3 then

if NF (u) is a clique then
Let v3 ∈ NF (u) with maximum F -degree

return min{1 + ids(G[F \N [v3],M \N(v3)]); ids(G[F \ {v3},M ])}; (14)

else

return branch mark(G, u); (15)

else

return branch all(G, u); (16)

else if dF (u) = 4 then

return branch one(G, u); (17)

else // dF (u) ≥ 5
return branch all(G, u); (18)
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Case (4) The graph induced by the free vertices is a disjoint union of cliques of size no more than 4.

Corollary 7 is applied on the remaining marked graph and we note that the number ni of vertices of F -

degree i, 1 ≤ i ≤ 3, in this graph is no more than n1 ≤ k/w1 ≤ n/w1, n2 ≤ k/w2 ≤ n/w2 and

n3 ≤ k/w3 ≤ n/w3 with n1 + n2 + n3 ≤ n.

Case (5) A marked vertex u with exactly one free neighbor v must be dominated by v. Thus, v is added

to the mids and all its neighbors are deleted.

Case (6) If there is a subset B of free vertices such that G[B] induces a complete bipartite graph and no

vertex of B is adjacent to a free vertex outside B, then the algorithm branches into two subcases. Let X
and Y be the two maximal independent sets of G[B]. Then a mids contains either X or Y . In both cases

we delete B and the marked neighbors of either X or Y . The smallest possible subset B satisfying the

conditions of this case is a P3, that is a path on three vertices, as |B| > 2. Indeed, all smaller complete

bipartite graphs are cliques and are handled by Case (4). Since we only count the number of free vertices,

we obtain the following recurrence:

P [k] ≤ 2P [k − 2w1 − w2]. (rec. 3)

It is clear that any complete bipartite component with more than three vertices leads to instances with

smaller measures, which is less constraining for the running time.

Case (7) If there is a subset C of three free vertices which forms a clique and exactly one vertex v ∈ C
has free neighbors outside C, the algorithm either includes v in the solution set or it excludes v. In the first

branch, all the neighbors of v are deleted (including C). In the second branch, note that v is not marked.

Indeed, v’s F -degree might be too high to be marked, and v’s neighborhood contains a clique component

in G[F ] of which one vertex is in every independent dominating set of the resulting marked graph, making

the marking of v superfluous. We distinguish two cases based on the number of free neighbors of some free

vertex u ∈ N(v) \ C.

1. Vertex u has one free neighbor (being v). In the first branch, N [v] is deleted, and in the second branch,

v is removed, u’s F -degree decreases to 0, and the F -degree of both vertices in C \ {v} decreases to

1. This gives the recurrence:

P [k] ≤ P [k − w1 − 2w2 − w3] + P [k + w1 − 2w2 − w3]. (rec. 4)

2. Vertex u has F -degree at least 2. Then we obtain the recurrence:

P [k] ≤ P [k − 3w2 − w3] + P [k + 2w1 − 2w2 − w3]. (rec. 5)

Case (8) If there is a free vertex u with F -degree 1, a mids either includes u or its free neighbor v1.

Vertex v1 cannot have F -degree one because this would contradict the first choice criterion (a) of u. For the

analysis, we consider two cases:

1. dF (v1) = 2. Let x1 denote the other free neighbor of v1. Note that dF (x1) 6= 1 as this would have

been handled by Case (6). We consider again two subcases:

(a) dF (x1) = 2. When u is chosen in the independent dominating set, u and v1 are deleted and the

F -degree of x1 decreases to one. When v1 is chosen in the independent dominating set, u, v1
and x1 are deleted from the marked graph. So, we obtain the following recurrence for this case:

P [k] ≤ P [k − 2w2] + P [k − w1 − 2w2]. (rec. 6)

(b) dF (x1) ≥ 3. Vertices u and v1 are deleted in the first branch, and u, v1 and x1 are deleted in

the second branch. The recurrence for this subcase is:

P [k] ≤ P [k − w1 − w2] + P [k − w1 − w2 − w3]. (rec. 7)

2. dF (v1) ≥ 3. At least one free neighbor of v1 has F -degree at least 2, otherwise Case (6) applies since

NF [v] is complete bipartite. Therefore the recurrence for this subcase is:

P [k] ≤ P [k − w1 − w3] + P [k − 2w1 − w2 − w3]. (rec. 8)
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Case (9) If there is a free vertex u such that dF (u) = 2 and u has a neighbor of F -degree at most 4 (as

the neighbors v1, v2 of u are ordered by increasing F -degree, v1 has F -degree at most 4), the algorithm

uses branch mark(G, u) to branch into three subcases. Either u belongs to the mids, or v1 is taken in the

mids, or v1 is marked and v2 is taken in the mids. We distinguish three cases:

1. dF (v1) = dF (v2) = 2. In this case, due to the choice of the vertex u by the algorithm, all free

vertices of this connected component T in G[F ] have F -degree 2. T cannot be a C4 (a cycle on

4 vertices) as this is a complete bipartite graph and would have been handled by Case (6). In the

branches where u or v1 belong to the mids, the three free vertices in N [u] or N [v1] are deleted and

two of their neighbors (T is a cycle on at least 5 vertices) have their F -degree reduced from 2 to 1.

In the branch where v1 is marked and v2 is added to the mids, N [v2] is deleted and by Case (5), the

other neighbor x1 of v1 is added to the mids, resulting in the deletion of N [x1] as well. In total, at

least 5 free vertices of F -degree 2 are deleted in the third branch. Thus, we have the recurrence

P [k] ≤ 2P [k + 2w1 − 5w2] + P [k − 5w2] (rec. 9)

for this case.

2. dF (v1) = 2, dF (v2) ≥ 3. The vertices v1 and v2 are not adjacent, otherwise Case (7) would apply.

In the last branch, v1 is marked and v2 is added to the solution. If v1 and v2 have a common neighbor

besides u, then the last branch is atomic because Case (1) applies as no vertex can dominate v1.

Otherwise, the reduction rule of Case (5) applies in the last branch and the other neighbor x1 6= u is

added to the solution as well. Thus, we have the recurrence

P [k] ≤ P [k − 2w2 − w3] + P [k − 3w2] + P [k − 5w2 − w3]. (rec. 10)

3. 3 ≤ dF (v1) ≤ 4. We distinguish between two cases depending on whether there is an edge between

v1 and v2.

(a) v1 and v2 are not adjacent. Branching on u, v1 and v2 leads to the following recurrence:

P [k] ≤ P [k − w2 − 2w3] + P [k − 3w2 − w3] + P [k − 3w2 − 2w3]. (rec. 11)

(b) v1 and v2 are adjacent. We distinguish two subcases depending on whether there is a vertex

with F -degree 2 in N2
F (u), where N2

F (u) denotes the vertices at distance 2 from u in G[F ].

i. There is a vertex with F -degree 2 in N2
F (u). Then,

P [k] ≤ P [k + w1 − 2w2 − 2w3] + 2P [k − 2w2 − 2w3]. (rec. 12)

ii. No vertex in N2
F (u) has F -degree 2. Then,

P [k] ≤ P [k − w2 − 2w3] + 2P [k − w2 − 3w3]. (rec. 13)

Case (10) If there is a free vertex u such that dF (u) = 2 and none of the above cases apply, then v1
and v2 have degree at least 5 and the algorithm branches into the three subinstances of branch all(G, u):
either u, v1, or v2 belongs to the mids, leading to the recurrence

P [k] ≤ P [k − w2 − 2w3] + 2P [k − 5w2 − w3]. (rec. 14)

Case (11) If all neighbors of u have degree 3, then the connected component in G[F ] containing u is

3-regular due to the selection criteria of u. As (by criterion (a)) this component is not a clique, N2
F (u) is

not empty. Thus, there exists some v ∈ NF [u] such that G[NF (v)] has at most one edge. This means that

there are at least 4 edges with one endpoint in NF (v) and the other endpoint in N2
F (v). If |N2

F (v)| = 2, the

recurrence corresponding to the branching branch one(G, v) is

P [k] ≤ P [k + 2w1 − 6w3] + P [k + 3w2 − 4w3], (rec. 15)

if |N2
F (v)| = 4 it is

P [k] ≤ P [k + 4w2 − 8w3] + P [k + 3w2 − 4w3], (rec. 16)
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and if |N2
F (v)| = 3 it is a mixture of the above two recurrences and is majorized by one or the other.

Case (12) If u has a neighbor v of F -degree 4, then the algorithm uses the branching procedure

branch one(G, v). If v is taken in the mids, 5 vertices of degree at least 3 are removed from the in-

stance. If v is marked, the F -degree of u decreases from 3 to 2. The corresponding recurrence is

P [k] ≤ P [k − 5w3] + P [k + w2 − 2w3]. (rec. 17)

Case (13) If u has a neighbor v of F -degree 5, then the algorithm either takes u in the mids, or v, or it

marks both u and v (note that v will have F -degree 4). The recurrence corresponding to this case is

P [k] ≤ P [k − 4w3] + P [k − 6w3] + P [k − 2w3]. (rec. 18)

Case (14) In this case, NF [u] is a clique and v3 is the only vertex from this clique that has free neighbors

outside NF [u]. The algorithm either takes v3 in the mids or deletes it. Note that NF (v3) includes a clique

and that any mids of G[F \ {v3},M ] contains one vertex from this clique, which makes the marking of v3
superfluous.

P [k] ≤ P [k − 7w3] + P [k + 3w2 − 4w3]. (rec. 19)

Case (15) We distinguish two cases based on the neighborhood of v3.

1. v3 is adjacent to v1 and v2. Then, v1 is not adjacent to v2, otherwise Case (14) would apply. In

the second branch, v2’s F -degree drops to 1 and in the third branch, v1’s neighbor in N2
F (u) is also

selected by Case (5). This gives the recurrence

P [k] ≤ P [k − 4w3] + P [k + w1 − 5w3] + P [k − 5w3] + P [k − 7w3]. (rec. 20)

2. v3 is not adjacent to v1 or to v2. In the last branch, 7 vertices are deleted and one vertex is marked,

giving

P [k] ≤ 3P [k − 4w3] + P [k − 8w3]. (rec. 21)

Case (16) In this case, u has at least two neighbors of degree at least 6. The recurrence corresponding to

the branching branch all(G, u) is

P [k] ≤ 2P [k − 4w3] + 2P [k − 7w3]. (rec. 22)

Case (17) If u has degree 4, the algorithm branches along branch one(G, u), giving the recurrence

P [k] ≤ P [k − 5w3] + P [k − w3]. (rec. 23)

Case (18) If u has degree ℓ ≥ 5, the algorithm branches along branch all(G, u). The corresponding

recurrence is P [k] ≤ (ℓ+ 1)P [k − (ℓ+ 1)w3], the tightest of which is obtained for ℓ = 5:

P [k] ≤ 6P [k − 6w3]. (rec. 24)

Finally the values of weights are computed with a convex optimization program [23] (see also [20]) to

minimize the bound on the running time. Using the values w1 = 0.8482 and w2 = 0.9685 for the weights,

one can easily verify that P [k] = O(1.35684k). In particular by this choice of the weights, the running-time

required by Corollary 7 to solve the CSP instance whenever Case (4) is applied is no more than O(1.3220k)
(it would be bounded by O(1.3517k) if we used the algorithm of Dantsin et al. [10] for solving (2,4)-CSP).

Thus, Algorithm ids solves MIDS in time O(1.3569n). ✷

The tight recurrences of the latter proof (i.e. the worst case recurrences) are (rec. 13) and (rec. 16).

For the counting problem of determining the number of distinct independent dominating sets of a graph,

Algorithm ids cannot be used due to the subroutine of Corollary 7, for which we are not aware of any

counting version whose running time would not increase the overall running time of Algorithm ids. The

counting problem can however be solved in time O(1.3642n) by an algorithm from [21] that is considerably

simpler than Algorithm ids. Compared to the algorithm from [21], the present O(1.3569n) time algorithm

is slightly faster due to improved branchings in a large number of cases and the deferral of an important
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Fig. 1: graph Gl

case to the algorithm from Corollary 7. We believe that the main improvement from the O(1.3417n) time

algorithm by Bourgeois et al. [4] is due to their analysis which also assigns weights to marked vertices.

With all three branching algorithms having worst-case running time upper bounds differing by only a small

margin, it seems that this kind of algorithms is hitting some kind of a barrier, and that completely new ideas

will be necessary to obtain significant improvements. Indeed, in the next section we present a lower bound

of Ω(1.3247n) on the running time of Algorithm ids. The same lower bound holds for the algorithm from

[21] (see [21] for the proof) and the algorithm from [4] (we do not give a proof here, but it is sufficient to

go through the algorithm from [4] and adapt the proof from Section 5).

5 A Lower Bound on the Running Time of the Algorithm

In order to analyze the progress of the algorithm during the computation of a mids, we used a non-standard

measure. In this way we have been able to determine an upper bound on the size of the subinstances

recursively processed by the algorithm, and consequently we obtained an upper bound on the worst case

running time of Algorithm ids. However the use of another measure or a different method of analysis could

perhaps provide a “better upper bound” without changing the algorithm but only improving the analysis.

How far is the given upper bound of Theorem 8 from the best upper bound we can hope to obtain?

In this section, we establish a lower bound on the worst case running time of our algorithm. This lower

bound gives a really good estimation on the precision of the analysis. For example, in [15] (see also [17])

Fomin et al. obtain a O(1.5263n) time algorithm for solving the dominating set problem and they exhibit a

construction of a family of graphs giving a lower bound of Ω(1.2599n) for its running time. They say that

the upper bound of many exponential time algorithms is likely to be overestimated only due to the choice

of the measure for the analysis of the running time, and they note the gap between their upper and lower

bound for their algorithm. However, for our algorithm we have the following result:

Theorem 9 Algorithm ids solves MIDS in time Ω(1.3247n).

To prove Theorem 9 on the lower bound of the worst-case running time of algorithm ids, consider the

graph Gl = (Vl, El) (see Fig. 1) for some l > 3 defined by:

• Vl = {ui, vi : 1 ≤ i ≤ l},

• El = {u1, v1} ∪
{

{ui, vi}, {ui, ui−1}, {vi, vi−1}, {ui, vi−1} : 2 ≤ i ≤ l
}

.

We denote by G′
l = (V, ∅, E) the marked graph corresponding to the graph Gl = (V,E).

For a marked graph G = (F,M,E) we define δF = minu∈F {dF (u)} and MinDeg = {u ∈ F :
dF (u) = δF } as the set of free vertices with smallest F -degree.

Denote the highest F -degree of the free neighbors of the vertices in MinDeg by ∆δF = max
{

dF (v) :

v ∈ NF (MinDeg)
}

.

Let CandidateCase9 = {u ∈ MinDeg : ∃v ∈ NF (u) s.t. dF (v) = ∆δF } be the set of candidate

vertices that ids can choose in Case (9). W.l.o.g. suppose that when |CandidateCase9| ≥ 2 and ids

would apply Case (9), it chooses the vertex with smallest index (e.g. if CandidateCase9 = {u1, vl}, the

algorithm would choose u1).

Lemma 10 Let G′
l be the input of Algorithm ids. Suppose that ids only applies Case (9) in each recursive

call (with respect to the previous rule for choosing a vertex). Then, in each call of ids where the remaining

input graph has more than four vertices, one of the following two properties is fulfilled:

(1) CandidateCase9 = {uk, vl} for a certain k, 1 ≤ k ≤ l − 2, and
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(i) the set of vertices
⋃

1≤i<k{ui, vi} has been deleted from the input graph, and

(ii) all vertices in
⋃

k≤i≤l{ui, vi} remain free in the input graph.

(2) CandidateCase9 = {vk, vl} for a certain k, 1 ≤ k ≤ l − 2, and

(i) the set of vertices {uk} ∪
⋃

1≤i<k{ui, vi} has been deleted from the input graph, and

(ii) all vertices in {vk} ∪
⋃

k<i≤l{ui, vi} remain free in the input graph.

Proof: We prove this result by induction. It is not hard to see that CandidateCase9 = {u1, vl} for G′
l and

that Property (1) is satisfied.

Suppose now that Property (1) is fulfilled. Then there exists an integer k, 1 ≤ k ≤ l − 2, such that

CandidateCase9 = {uk, vl}. Since ids applies Case (9) respecting the rule for choosing the vertex in

CandidateCase9, the algorithm chooses vertex uk and branches on three subinstances:

(b1) Take uk in the mids and remove N [uk]. The remaining free vertices are {vk+1} ∪
⋃

k+1<i≤l{ui, vi}
whereas all other vertices are removed. Moreover for this remaining subinstance, we obtain Candi-
dateCase9 = {vk+1, vl}. So, Property (2) is verified. (Note also that |N [uk]∩

⋃

k≤i≤l{ui, vi}| = 3.)

(b2) Take vk in the mids and remove N [vk]:
⋃

k+2≤i≤l{ui, vi} is the set of the remaining free vertices

and all other vertices are removed. For the remaining subinstance we obtain CandidateCase9 =
{uk+2, vl} and Property (1) is verified. (Note also that |N [vk] ∩

⋃

k≤i≤l{ui, vi}| = 4.)

(b3) Take uk+1 in the mids and remove N [uk+1]. The remaining vertices are {vk+2} ∪
⋃

k+2<i≤l{ui, vi}
and they are all free. For this remaining subinstance we obtain CandidateCase9 = {vk+2, vl} and

Property (2) is verified. (Note also that |N [uk+1] ∩
⋃

k≤i≤l{ui, vi}| = 5.)

Suppose now that Property (2) is fulfilled. Then there exists an integer k, 1 ≤ k ≤ l − 2, such that

CandidateCase9 = {vk, vl}. Since ids applies Case (9) respecting the rule for choosing the vertex in

CandidateCase9, the algorithm chooses vertex vk and branches on three subinstances where it selects vk,

uk+1, and vk+1 in the independent dominating set, creating subinstances satisfying Properties (1), (2), and

(1), respectively, and containing 3, 4, and 5 vertices less than the parent instance, respectively. ✷

Now, we prove that, on input Gl, Algorithm ids applies Case (9) as long as the remaining graph has

“enough” vertices.

Lemma 11 Given the graph G′
l as input, as long as the remaining graph has more than four vertices,

Algorithm ids applies Case (9) in each recursive call.

Proof: We prove this result also by induction. First, when the input of the algorithm is the graph G′
l, it

is clear that none of Cases (1) to (8) can be applied. So, Case (9) is applied since CandidateCase9 6= ∅
according to Lemma 10.

Consider now a graph obtained from G′
l by repeatedly branching using Case (9). By Lemma 10, the

remaining graph has no marked vertices (this excludes that Cases (1) and (5) are applied). It has no clique

component induced by the set of free vertices since the graph is connected and there is no edge between ul−1

and vl (this excludes Cases (2)–(4)). The free vertices do not induce a bipartite graph since {vl−1, ul, vl}
induces a C3 (this excludes Case (6)). There is no clique C such that only one vertex of C has neighbors

outside C: the largest induced clique in the remaining graph has size 3 and each of these cliques has

at least two vertices having some neighbors outside the clique (this excludes Case (7)). Also, according to

Lemma 10, the remaining graph has no vertex of degree 1 (this excludes Case (8)) and CandidateCase9 6=
∅. Consequently, the algorithm applies Case (9). ✷

Figure 2 gives a part of the search tree illustrating the fact that our algorithm recursively branches on

three subinstances with respect to Case (9).

Proof Proof of Theorem 9: Consider the graph G′
l and the search tree which results from branching using

Case (9) until k vertices, 1 ≤ k ≤ 2l, have been removed from the given input graph G′
l (G′

l has 2l vertices).
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Fig. 2: a part of the search tree

Denote by L[k] the number of leaves in this search tree. It is not hard to see that this leads to the following

recurrence (see the notes in the proof of Lemma 10):

L[k] = L[k − 3] + L[k − 4] + L[k − 5]

and therefore L[k] ≥ 1.3247k. Consequently, the maximum number of leaves that a search tree for ids can

contain, given an input graph on n vertices, is Ω(1.3247n). ✷

6 Conclusions and Open Questions

In this paper we presented a non trivial algorithm solving the MINIMUM INDEPENDENT DOMINATING SET

problem. Using a non standard measure on the size of the considered graph, we proved that our algorithm

achieves a running time of O(1.3569n). Moreover we showed that Ω(1.3247n) is a lower bound on the

running time of this algorithm by exhibiting a family of graphs for which our algorithm has a high running

time.

A natural question here is: is it is possible to obtain a better upper bound on the running time of the

presented algorithm by considering another measure or using other techniques, or is it possible that this

upper bound is tight?
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