Expected size of a tree in the fixed point forest

Samuel Regan¹ and Erik Slivken^{2*}

¹ University of California Davis

² Dartmouth College

received 30th Mar. 2019, revised 16th July 2019, accepted 10th Sep. 2019.

We study the local limit of the fixed-point forest, a tree structure associated to a simple sorting algorithm on permutations. This local limit can be viewed as an infinite random tree that can be constructed from a Poisson point process configuration on $[0, 1]^{\mathbb{N}}$. We generalize this random tree, and compute the expected size and expected number of leaves of a random rooted subtree in the generalized version. We also obtain bounds on the variance of the size.

Keywords: sorting algorithms, random trees, Poisson point processes, random permutations

1 Introduction

We start with a simple sorting algorithm on a deck of cards labeled 1 though n. If the value of the top card is i, place it in the *i*th position from the top in the deck. Repeat until the top card is a 1. Viewing the deck of cards as a permutation in one-line notation $\pi = \pi(1)\pi(2)\cdots\pi(n)$, we create a new permutation, $\tau(\pi)$, by removing the *value* $\pi(1)$ from beginning of the permutation and putting it into *position* $\pi(1)$. For example, if $\pi = 43512$ then $\tau(\pi) = 35142$. This induces a graph whose vertices are the permutations of $[n] = \{1, \dots, n\}$ and edges are pairs of permutations $(\pi, \tau(\pi))$. Note that $\tau(\pi)$ has a fixed point at the position $\pi(1)$.

This graph is a rooted forest, which we denote by F_n and call the *fixed point forest*. A rooted forest is a union of rooted trees, and a tree is a graph that does not contain any closed loops involving distinct vertices. A permutation that begins with 1 is called the base of the tree in which they are contained. A thorough introduction to the fixed point forest can be found in Johnson et al. (2017).

The fixed point forest was first studied in McKinley (2015). The largest tree in F_n has size bounded between (n-1)! and e(n-1)! and has as its base the identity permutation. The longest path from a leaf to a base is $2^{n-1} - 1$ and is unique, starting from the permutation $23 \cdots n1$ and ending at the identity.

Let \mathfrak{S}_n denote the set of permutations of length n. For $\pi \in \mathfrak{S}_n$, let $\mathcal{F}(\pi)$ denote the collection of fixed points of π other than 1. For each $m \in \mathcal{F}(\pi)$ we create a new permutation $\pi^{(m)}$ such that

$$\pi^{(m)}(i) = \begin{cases} m, & i = 1\\ \pi(i-1), & 2 \le i \le m\\ \pi(i), & m < i \le n \end{cases}$$

*Partially supported by ERC Starting Grant 680275 MALIG

ISSN 1365-8050

© 2019 by the author(s)

Distributed under a Creative Commons Attribution 4.0 International License

Fig. 1: The descendant tree $desc(\pi)$ for $\pi = 31245$

We say we *bump* the value m in π to create $\pi^{(m)}$ and call $\pi^{(m)}$ a *child* of π . We let $C(\pi) = {\pi^{(m)} : m \in \mathcal{F}(\pi)}$ denote the set of children of π . Every child $\sigma \in C(\pi)$ satisfies $\tau(\sigma) = \pi$ hence is connected to π in F_n .

Let $N(\pi)$ be the rooted tree in F_n that contains π , with π designated as the root instead of the unique permutation that starts with 1 in $N(\pi)$. Let $desc(\pi)$ be the subtree of $N(\pi)$ rooted at π and consisting of π and its descendants, so that $desc(\pi) \subseteq N(\pi)$. We call this the *descendant tree* of π (See Figure 1). Note that for any permutation $\sigma \in desc(\pi)$, there is some r such that $\tau^r(\sigma) = \pi$.

By Theorem 3.5 in Johnson et al. (2017), there exists a tree, **T**, such that as $n \to \infty$, for π_n chosen uniformly at random from permutations of size n, the randomly rooted tree $\mathbf{N}_n = N(\pi_n)$, converges in the local weak sense to **T**. This limiting tree is described in Section 2 of Johnson et al. (2017), and the subtree of **T** which corresponds to the local weak limit of $desc(\pi_n)$ has a similar description, denoted by **D**. In Johnson et al. (2017), they find the distribution for the shortest and longest paths from the root to a leaf in **D**. The main purpose of the paper is to study the size of **D**. For $\alpha \in [0, 1]$, we define a generalization of **D**, denoted \mathbf{D}_{α} such that $\mathbf{D} = \mathbf{D}_1$. We compute the expected size and expected number of leaves of \mathbf{D}_{α} and show that they are both unbounded for $\alpha = 1$. Finally we find bounds on the second moment of the size of \mathbf{D}_{α} . We show that the second moment has a phase transition from finite to infinite somewhere between $(3 - \sqrt{5})/2$ and $(\sqrt{5} - 1)/2$.

2 Local limits, point process configurations, and trees

Poisson Point Processes

The following briefly introduces an important probabilistic object: Poisson point processes. A thorough treatment can be found in Kingman (1993).

We say a random variable X is $Poi(\alpha)$ if it satisfies $P(X = k) = \frac{1}{k!}e^{-\alpha}\alpha^k$. If X_0 and X_1 are two independent $Poi(\alpha_0)$ and $Poi(\alpha_1)$, respectively, then their sum is $Poi(\alpha_0 + \alpha_1)$.

A point process on [0, 1] is an integer-valued measure on Borel sets of [0, 1]. It may be viewed as a collection of points, which represent the atoms of the measure. A point process configuration on [0, 1] is a collection of point processes, each on [0, 1], and can be viewed as a collection of labelled points on [0, 1].

A Poisson point process on [0, 1] with intensity α is a random integer-valued measure which satisfies two properties: For any Borel subset $E \subset [0, 1]$ with Borel measure λ , the number of atoms of the point process in E is given by $Poi(\alpha\lambda)$, and for any disjoint Borel subsets of [0, 1] the number of atoms in each are independent. Conditioned on the number of atoms in E the location of each of the atoms is

Fig. 2: The bump map $f(\xi, x)$ where ξ_4 is assumed to be empty.

independent and uniform in E.

Collections of Poisson point processes can be merged to create a single poisson point process. Suppose ξ_0 is a $\operatorname{Poi}(\alpha_0)$ point process on [0,1] and ξ_1 is $\operatorname{Poi}(\alpha_1)$ point process on [0,1] with ξ_0 and ξ_1 both independent. Then the union of ξ_0 and ξ_1 is distributed like a $\operatorname{Poi}(\alpha_0 + \alpha_1)$ point process. The reverse is also true. Let ξ' be a $\operatorname{Poi}(\alpha_0 + \alpha_1)$ point process on [0,1] and label each atom 0 with probability $\alpha_0/(\alpha_0 + \alpha_1)$ and 1 otherwise. Let ξ_0 denote the point process consisting of the atoms labeled 0 and ξ_1 the point process of the remaining atoms. Then ξ_0 and ξ_1 are, respectively, independent Poisson(α_0) and Poisson(α_1) point process each atom in ξ' is independently labeled such that the label is *i* with probability α_i/α for $0 \le i < k$, then the collection of atoms labeled *i* is a Poisson(α_i) point process and each ξ_i is independent of the rest.

Let ξ_1 and ξ_2 be two independent Poisson(α) point processes. For $x \in (0, 1)$, define $\xi'_1 = \xi_2 |_{[0,x)} + \xi_1 |_{(x,1]}$ to be the point process consisting of the atoms from ξ_2 restricted to the interval [0, x) and the atoms from ξ_1 restricted to the interval (x, 1]. If x is independent of ξ_1 and ξ_2 then the resulting process ξ'_1 is also a Poisson(α) point process.

Weak Convergence

We give a brief definition of the version of local weak convergence that is used to define T and D. See Aldous and Steele (2004) or Benjamini and Schramm (2001) for a proper discussion of local weak convergence, which is sometimes referred to as Benjamini-Schramm convergence.

Let $G_1, G_2 \cdots$ be a sequence of rooted graphs. For any rooted graph H, the *r*-neighborhood of the root, denoted H(r), is the subgraph of H induced from all vertices that are distance at most r from the root. The rooted graph G is the *local weak limit* of G_n if for every $r \ge 0$ and every finite graph H,

$$\mathbf{P}[G_n(r) = H] \to \mathbf{P}[G(r) = H].$$

From point process configurations to trees

Let $\xi = (\xi_k)_{k \ge 0}$ be a point process configuration on $[0, 1]^{\mathbb{N}}$ where each ξ_k is a point process on [0, 1]. For each atom $x \in \xi_0$ define the bump map $f(\xi, x) = (\xi'_k)_{k \ge 0}$ where

$$\xi'_k = \xi_{k+1} \Big|_{[0,x)} + \xi_k \Big|_{(x,1]}.$$

See Figure 2 for an illustration of this map. Given a point process configuration, ξ , the bump map allows us to recursively define a tree with root v_0 whose vertices are point process configurations. Define v_0 to be

Fig. 3: A point process collection and corresponding 4-neighborhood of the bump tree. Note that any configuration of point processes for ξ_5 and higher will not affect the structure of the bump tree and thus $\gamma_4(\xi) = \gamma(\xi)$.

the root of the tree with corresponding point process configuration $\xi^{v_0} = \xi$. Suppose v is a vertex in the tree with corresponding point process configuration given by ξ^v . For each $x \in \xi_0^v$, create a new vertex v(x) in the tree with point process configuration given by the bump map $\xi^{v(x)} = f(\xi^v, x)$. The newly created vertex v(x) is a considered a child of v. We call this tree the *bump tree* of ξ and denote it by $\gamma(\xi)$. For fixed $r \ge 0$ let $\gamma_r(\xi)$ denote the r-neighborhood of the root in $\gamma(\xi)$. Only the atoms in $(\xi_0, \dots, \xi_{r-1})$ are necessary to determine the structure of the $\gamma_r(\xi)$, so we may write $\gamma_r(\xi) = \gamma_r(\xi_0, \dots, \xi_{r-1})$ and assume $\xi_k = \emptyset$ for $k \ge r$. The map γ_r is continuous because a slight perturbation of the atoms will not change the relative order of the points in (ξ_0, \dots, ξ_r) . See Figure 3 for an example of a finite neighborhood of the root of the bump tree for a point process configuration.

For a permutation π of length n, we say the index i or the value $\pi(i)$ is k-separated if $\pi(i) = i + k$. We define the separation word of π point-wise by $\mathbf{W}^{\pi}(i) := \pi(i) - i$. No two permutations have the same separation word. From this word we can construct a point process configuration $(\xi_k^{\pi})_{k\geq 0}$ by placing an atom in ξ_k^{π} at position i/n if i is a k-separated point in π .

By Proposition 3.4 in Johnson et al. (2017), for fixed $r \ge 0$, as n tends to infinity,

$$(\xi_0^{\pi_n},\cdots,\xi_{r-1}^{\pi_n})\longrightarrow_d (\xi_0,\cdots,\xi_{r-1})$$

where ξ_k is a Poi(1) point process on [0, 1]. From the arguments of Theorem 3.5 in Johnson et al. (2017), letting $\xi = (\xi_k)_{k\geq 0}$, we have $\gamma_r(\xi^{\pi_n}) \to \gamma_r(\xi)$ by continuity of γ_r and the Continuous Mapping Theorem [Billingsley (1999)]. Furthermore, it is seen that $\gamma_r(\xi^{\pi_n})$ is the same as the *r*-neighborhood of the descendant tree $desc(\pi_n)$ with high probability. Therefore $\mathbf{D} := \gamma(\xi)$ is the local weak limit of $desc(\pi_n)$.

We now can state our main results. For $\alpha \in (0, 1]$, let $\xi = (\xi_k)_{k \ge 0}$ be a collection of independent $\operatorname{Poi}(\alpha)$ point processes on [0, 1] and let $\mathbf{D}_{\alpha} := \gamma(\xi)$ be the corresponding bump tree of ξ . Let D denote the number of vertices and U the number of leaves in \mathbf{D}_{α} . Finally let \mathbf{E}_{α} and \mathbf{P}_{α} denote the expectation and probability associated with $\operatorname{Poi}(\alpha)$ point processes. We now may state our main results.

Theorem 1. For $0 < \alpha < 1$, $\mathbf{E}_{\alpha}[D] = (1 - \alpha)^{-1}$, and $\mathbf{E}_1[D]$ diverges.

Theorem 2. For $0 < \alpha < 1$, $\mathbf{E}_{\alpha}[U] = e^{-\alpha}(1-\alpha)^{-1}$, and $\mathbf{E}_1[U]$ diverges.

Theorem 3. For $\alpha \ge (\sqrt{5}-1)/2$, $\mathbf{E}_{\alpha}(D^2)$ diverges. For $\alpha < (3-\sqrt{5})/2$, $\mathbf{E}_{\alpha}(D^2)$ is finite.

Fig. 4: A collection of point processes corresponding to the word 21010.

3 Comparison with Galton-Watson trees

In this section we compare our results to the well-studied Galton-Watson tree Watson and Galton (1875); Neveu (1986).

A Galton-Watson tree, **GW**, can be constructed through a simple random process. Start with a root v_0 and a nonnegative integer-valued random variable X. Create X_{v_0} children of v_0 where X_{v_0} is distributed as and independent copy of X. For each child, v, of v_0 repeat this process, where X_v is an independent copy of X. Depending on the distribution of X, the resulting tree will have drastically different behavior.

Fix a nonnegative integer-valued random variable X with finite expectation $0 < \mathbf{E}[X] < 1$ and finite second moment $\mathbf{E}[X^2] < \infty$. Let $Y = |\mathbf{GW}|$. Let X denote the number of children of the root of \mathbf{GW} and for $1 \le i \le X$, let Y^i denote the number of vertices in the subtree consisting of the *i*th child and all of its descendants. Each Y^i is distributed identically as an independent copy of \mathbf{GW} . We denote the size of \mathbf{GW} conditioned on X by $(Y|X) = 1 + \sum_{i=1}^{X} Y^i$. Taking expectation we have $\mathbf{E}[(Y|X)] = 1 + X\mathbf{E}[Y]$ and thus

$$\mathbf{E}[Y] = \mathbf{E}[\mathbf{E}[(Y|X)]] = 1 + \mathbf{E}[X]\mathbf{E}[Y]$$

and so

$$\mathbf{E}[Y] = \frac{1}{1 - \mathbf{E}[X]}.$$

A similar approach for the second moment gives the equation

$$\mathbf{E}[Y^2] = 1 + \mathbf{E}[X]\mathbf{E}[Y] + \mathbf{E}[X]\mathbf{E}[Y^2] + \mathbf{E}[X^2 - X]\mathbf{E}[Y]^2,$$

which can be simplified to

$$\mathbf{E}[Y^2] = \frac{1}{(1 - \mathbf{E}[X])^2} + \frac{\mathbf{E}[X^2] - \mathbf{E}[X]}{(1 - \mathbf{E}[X])^3}.$$
(1)

Given that $\mathbf{E}[X] < 1$ and $\mathbf{E}[X^2]$ is finite, (1) shows that $\mathbf{E}[Y^2]$ finite. In particular if X is $\operatorname{Poi}(\alpha)$ then $\mathbf{E}[Y]$ agrees with $\mathbf{E}_{\alpha}[D]$ from Theorem 1, while Theorem 3 shows the second moment $\mathbf{E}[Y^2]$ cannot agree with the second moment $\mathbf{E}_{\alpha}[D^2]$ if $\alpha \ge (\sqrt{5} - 1)/2$ since the former is finite while the latter diverges.

The approach used to compute $\mathbf{E}[Y]$ and $\mathbf{E}[Y^2]$ cannot be used to compute $\mathbf{E}_{\alpha}[D]$ and $\mathbf{E}_{\alpha}[D^2]$ because the subtrees from the root in \mathbf{D}_{α} are not independent of each other.

4 Words from point process configurations

For a collection of point processes on [0,1], $\xi = \{\xi_k\}_{k\geq 0}$, let $w_r(\xi)$ be the word constructed from the relative order of the atoms in $(\xi_0, \dots, \xi_{r-1})$. For example see Figure 4. Assuming that no two atoms of ξ

are in the same location, the structure of the *r*-neighborhood of the root in the tree $\gamma_r(\xi)$ can be constructed directly from this word. Let Ω_r denote the space of finite words with letters from $\{0, \dots, r-1\}$.

If ξ is a Poi(α) point process configuration, this induces a probability measure $\mathbf{P}_{\alpha,r}$ on Ω_r for every $r \ge 0$. The following lemma describes this distribution.

Lemma 4. Let ξ be a Poi (α) point process configuration and $W = w_r(\xi)$ the word given by the relative order of the first r point processes of ξ . Let w denote a fixed word of length n in Ω_r . Then

$$\mathbf{P}_{\alpha,r}(|W|=n) = \frac{1}{n!}e^{-\alpha r}\alpha^n r^n \tag{2}$$

and

$$\mathbf{P}_{\alpha,r}(W=w) = \frac{1}{n!}e^{-\alpha r}\alpha^n.$$
(3)

Proof:

Construct the r independent $Poi(\alpha)$ point processes from a single $Poi(r\alpha)$ point process by labeling each atom independently from $\{0, \dots, r-1\}$, choosing the label uniformly at random. The probability that |W| = n is precisely the probability that a $Poi(r\alpha)$ point process has n atoms in [0, 1], the right hand side of (2). As the labeling is independent for each atom, each of the r^n possible labelings is equally likely, so the probability that W = w for a fixed w of length n is computed by dividing the right hand side of (2) by r^n , giving (3).

For $W \in \Omega_r$ of length n we write $W = W_1 \cdots W_n$ in one line notation. For a fixed subset of indices $A = (i_1, \cdots, i_j)$ let $W_A = W_{i_1} \cdots W_{i_j}$. We may refine Lemma 4 even further.

Lemma 5. Let $u = u_1 \cdots u_j$ be a word in Ω_r . Let $W \in \Omega_r$, and $A = (i_1, \cdots, i_j)$ be a set of indices such that $1 \leq i_1 < \cdots < i_j \leq n$. Then,

$$\mathbf{P}_{\alpha,r}(\{W_A = u\} \cap \{|W| = n\}) = \frac{1}{n!} e^{-\alpha r} \alpha^n r^{n-j}.$$

Proof:

Conditioned on |W| = n, the labels of the atoms indexed by A are chosen independently so

$$\mathbf{P}_{\alpha,r}(W_A = u||W| = n) = r^{-j}$$

and the statement follows.

The tree $\gamma_r(\xi)$ with word $w_r(\xi)$ will agree up to a relabeling of the vertices of the tree $\gamma_r(\xi')$ if $w_r(\xi) = w_r(\xi')$. A vertex in the tree corresponds to bumping a particular set of atoms in a particular order. Therefore the measure $\mathbf{P}_{\alpha,r}$ on words in Ω_r is exactly the measure we need to understand the $\gamma_r(\xi)$.

We can translate our language of bumping atoms in ξ to bumping letters in words. Let $W \in \Omega_r$. For each $0 \in W$, we construct a new word by removing the chosen 0 and reducing every letter to the left of it by 1. We say the index of this letter 0 is *bumped* and indices less than the bumped index are *shifted*. The set of indices of the 0s in a word are called the *bumpable* indices. The set of words that can be constructed by bumping a single 0 in W are called the children of W and denoted C(W). For example the word 2 1 0 1 0 has has two children, 1 0 \Box 1 0 and 1 0 \Box 0 \Box , where \Box is used to indicate bumped indices

Fig. 5: The tree, $\gamma(w)$, for the root word $w = 2 \ 1 \ 0 \ 1 \ 0$

or indices shifted below zero. Once the letter at an index becomes \Box in a word it can never become 0 in one of its descendants. We construct a rooted tree, denoted $\gamma(W)$, following a process that mirrors our construction of $\gamma(\xi)$ for point process configurations. We let $\gamma_j(W)$ denote the *j*-neighborhood of the root in $\gamma(W)$.

We may omit the \Box symbol in the labeling of the tree. The \Box symbol is used to emphasize that the set of indices is the same for each word in the same tree. See Figure 5 for the rooted tree in Ω_3 associated with the word 2 1 0 1 0. The sequence of indices that are bumped to reach the vertex v in $\gamma(W)$ is called the bumping sequence of v.

For $j \ge 1$ and every vertex $v \in \gamma_j(W) \setminus \gamma_{j-1}(W)$ there is a corresponding set of j atoms that must be bumped in a particular order to reach v. This sequence of atoms induces an ordered set of indices $A = \{a_1 < \cdots < a_j\}$ and permutation, σ , of length j such that v is obtained by bumping the atoms at the indices in order $\{a_{\sigma_1}, \cdots, a_{\sigma_j}\}$ where each of the indices must be 0 when they are bumped. We say the set of indices A reaches v by the order σ . Since $\gamma(W)$ is a tree, any such v is reachable by a unique pair (A, σ) .

For a set of indices $A = \{a_1 < \cdots < a_j\}$, we say A is *complete* in W if there exists an order $\sigma \in \mathfrak{S}_j$ and a sequence of words $W = W^0, \cdots, W^j$ such that for $1 \le i \le j, W^i \in \mathcal{C}(W^{i-1})$ is obtained by bumping the index a_{σ_i} in W^i . Whether or not A is complete in W is independent of the letters not in A. The following lemma gives conditions on when A is complete in W.

Lemma 6. If A is complete in $W \in \Omega_r$ with |A| = j, there is a unique $\sigma \in \mathfrak{S}_j$ such that a vertex in $\gamma(W)$ is reachable by (A, σ) . If $r \ge j$, then for each $\sigma \in \mathfrak{S}_j$ there is a unique sequence of values $u = u_1 \cdots u_j$ such if $W_A = u$ then there exists a vertex in $\gamma(W)$ that is reachable by (A, σ) .

Finally, A is complete with respect to W if and only if $W_{a_i} \leq \min(j-i, r-1)$ for $1 \leq i \leq j$.

Proof:

Since A is complete in W there is at least one $\sigma \in S_j$ and v in $\gamma(W)$ such that v is reachable by (A, σ) . First a_{σ_1} is bumpable if and only if $W_{a_{\sigma_1}} = 0$. In order for $a_{\sigma_{i+1}}$ to be bumpable after bumping a_{σ_1} up to a_{σ_i} , the label of $a_{\sigma_{i+1}}$ must be 0, and therefore index must be shifted exactly $W_{a_{\sigma_{i+1}}}$ times by bumping indices larger then $a_{\sigma_{i+1}}$. For this to occur there must be exactly $W_{a_{\sigma_{i+1}}}$ integers m such that m < i + 1 and $\sigma_m > \sigma_{i+1}$. In terms of σ^{-1} we have for $1 \le i \le j$,

$$W_{a_i} = \#\{i < m \le j | \sigma_i^{-1} > \sigma_m^{-1}\}$$

The sequence of values $W_{a_1} \cdots W_{a_j}$ is the unique inversion table (Knuth (1998)) for the permutation σ^{-1} . No two permutations have the same inversion table and thus σ must be unique. Given a $\sigma \in \mathfrak{S}_j$, if W_A is the inversion table for σ^{-1} then A will be complete with respect to W.

Finally we have that $W_{a_1} \cdots W_{a_j}$ is an inversion table if and only if $W_{a_i} \leq j - i$ for $1 \leq i \leq j$. We also have that $W_{a_i} \leq r - 1$ by definition.

Define the following truncated factorial function:

$$f_y(x) = \begin{cases} x!, & x \le y, \\ y!y^{x-y}, & y < x. \end{cases}$$

Note that $\lim_{y\to\infty} f_y(x) = x!$.

Let $\beta_r(j)$ denote the set of subwords of length j such such that A is complete in W if and only if $W_A \in \beta_r(j)$. For any $r \ge 0$ and $j \ge 0$, by Lemma 6,

$$|\beta_r(j)| = f_r(j)$$

and for $r \geq j$, this simplifies to

$$\beta_r(j)| = j!.$$

5 Expectation of D and U

Let $D^{(r)}$ denote the number of vertices in $\gamma_r(\xi)$. Let $U^{(r)}$ denote the number of leaves in $\gamma_r(\xi)$ that are distance less than r from the root. Note that a leaf in $\gamma_r(\xi)$ that is distance r from the root may not be a leaf in $\gamma_{r+1}(\xi)$. By Theorem 5.1 in Johnson et al. (2017), the longest path to a leaf in $\gamma(\xi)$ is almost surely finite and therefore $\gamma_r(\xi)$ is identical to $\gamma(\xi)$ for large enough r. To compute the expectation of D and U it suffices to compute the expectation of $D^{(r)}$ and $U^{(r)}$ and let r tend to infinity.

Let W be chosen from Ω_r . For $j \leq r$ let $D_j^{(r)} = |\gamma_j(W) \setminus \gamma_{j-1}(W)|$. Similarly let \mathcal{L}_j denote the set of leaves in $\gamma_j(W)$, so that for $j \leq r-1$, $U_j^{(r)} = |\mathcal{L}_j(W) \setminus \mathcal{L}_{j-1}(W)|$, the number of leaves in $\gamma_j(W)$ exactly distance j from the root. By linearity of expectation

$$\mathbf{E}_{\alpha,r}[D^{(r)}] = \sum_{j=0}^{r} \mathbf{E}_{\alpha,r}[D_j^{(r)}]$$

and

$$\mathbf{E}_{\alpha,r}[U^{(r)}] = \sum_{j=0}^{r-1} \mathbf{E}_{\alpha,r}[U_j^{(r)}].$$

For a fixed $j \leq n$, let \mathcal{A} be the set of all subsets of j indices $A \subseteq [n]$. Consider a fixed $A \in \mathcal{A}$ and a word u of length j with letters less than r. If a word $W \in \Omega_r$ has length n, there are r^{n-j} possible fillings of the indices in $[n] \setminus A$ and there are $f_r(j)$ ways to fill the indices of A so that A is complete in W.

By Lemma 5 we have

$$\mathbf{P}_{\alpha,r}\left(\{A \text{ is complete in } W\} \cap \{|W|=n\}\right) = e^{-\alpha r} \alpha^n r^{n-j} f_r(j)/n!.$$
(4)

By the one-to-one correspondence with complete indices A in W of size j with vertices in $\gamma(W)$ exactly distance j from the root, the expectation of $D_j^{(r)}$ is

$$\mathbf{E}_{\alpha,r}[D_j^{(r)}\mathbf{1}_{|W|=n}] = \sum_{A\in\mathcal{A}} e^{-\alpha r} \alpha^n r^{n-j} f_r(j)/n! = e^{-\alpha r} \alpha^n r^{n-j} f_r(j)/(j!(n-j)!).$$
(5)

For $r \geq j$,

$$\mathbf{E}_{\alpha,r}[D_j^{(r)}\mathbf{1}_{|W|=n}] = e^{-\alpha r} \alpha^n r^{n-j} / (n-j)!, \tag{6}$$

and $\mathbf{E}_{\alpha,r}[D_{j}^{(r)}] = \sum_{n \ge j} \mathbf{E}[D_{j}^{(r)} \mathbf{1}_{|W|=n}]$, so

$$\mathbf{E}_{\alpha,r}[D_j^{(r)}] = \alpha^j e^{-\alpha r} \sum_{n \ge j} \frac{(\alpha r)^{n-j}}{(n-j)!} = \alpha^j.$$
(7)

Proof of Theorem 1: From (7), $\mathbf{E}_{\alpha,r}[D_j^{(r)}] = \alpha^j$ for $j \leq r$ and $\mathbf{E}_{\alpha,r}[D^{(r)}] = \sum_{j=0}^r \alpha^j$. Then $\lim_{r\to\infty} D^{(r)} = D$ and by Monotone Convergence Theorem

$$\mathbf{E}_{\alpha}[D] = \lim_{r \to \infty} \mathbf{E}_{\alpha,r}[D^{(r)}] = \lim_{r \to \infty} \frac{1 - \alpha^{r+1}}{1 - \alpha} = \frac{1}{1 - \alpha}.$$

Expected number of leaves

For a set of indices A of size j that are complete in W, let X denote the word obtained after bumping every index in A. The vertex labelled with X is a leaf if it contains no bump-able indices, that is X has no 0s. Let $a_0 = 0$ and $a_{j+1} = |W| + 1$. For $0 \le i \le j$, an index $b_i \in (a_i, a_{i+1})$ is bump-able in X if and only if $W_{b_i} = j - i$. If $r \le j$ and $i \le j - r$, $W_{b_i} < r \le j - i$ and hence b_i cannot be bump-able. Otherwise if i > j - r, there are r - 1 choices for W_{b_i} so that b_i is not bump-able.

Let $\ell(r, n, A)$ denote the number words, w of length n in Ω_r such that A corresponds to a leaf in $\gamma(w)$. There are $f_r(j)$ possible ways to fill in the indices of A. For $r \leq j$,

$$\ell(r,n,A) = f_r(j)r^{\sum_{i=0}^{j-r}(a_{i+1}-a_i-1)}(r-1)^{\sum_{i=j-r+1}^{j}(a_{i+1}-a_i-1)}.$$
(8)

For j < r this simplifies to

$$\ell(r, n, A) = j! (r - 1)^{n - j}.$$
(9)

Thus for j < r we have

$$\mathbf{P}_{\alpha,r}\left(\left\{|W|=n\right\}\bigcap\left\{X\text{ is a leaf}\right\}\right) = e^{-\alpha r}\alpha^n(r-1)^{n-j}j!/n!.$$
(10)

Samuel Regan and Erik Slivken

For j < r the expectation of $U_j^{(r)} \mathbf{1}_{\{|W|=n\}}$ is

$$\mathbf{E}_{\alpha,r}[U_j^{(r)}\mathbf{1}_{\{|W|=n}\}] = \sum_{A \in \mathcal{A}} e^{-\alpha r} \alpha^n (r-1)^{n-j} j! / n! = e^{-\alpha r} \alpha^n (r-1)^{n-j} / (n-j)!.$$
(11)

Summing over $n \ge j$ gives

$$\mathbf{E}_{\alpha,r}[U_j^{(r)}] = e^{-\alpha r} \alpha^j \sum_{n \ge j} (\alpha(r-1))^{n-j} / (n-j)! = e^{-\alpha} \alpha^j.$$
(12)

Proof of Theorem 2:

From (12), $\mathbf{E}_{\alpha,r}[U_j^{(r)}] = e^{-\alpha}\alpha^j$ for j < r and $\mathbf{E}_{\alpha,r}[U^{(r)}] = \sum_{j=0}^{r-1} e^{-\alpha}\alpha^j$. Then $\lim_{r\to\infty} U^{(r)} = U$ and by Monotone Convergence Theorem

$$\mathbf{E}_{\alpha}[U] = \lim_{r \to \infty} \mathbf{E}_{\alpha,r}[U^{(r)}] = \lim_{r \to \infty} e^{-\alpha} \frac{1 - \alpha^r}{1 - \alpha} = \frac{e^{-\alpha}}{1 - \alpha}.$$
(13)

6 Expectation of D^2

For $a, b, c, m \ge 0$ let n = a + b + c + m. Let $\mathcal{B}(a, b, c, m)$ be the set of all ordered pairs of subsets of [n], (A, B), such that $|A \setminus B| = a$, $|B \setminus A| = b$, and $|A \cap B| = c$ and let $\mathcal{B}(a, b, c) = \bigcup_m \mathcal{B}(a, b, c, m)$. We denote the set of distinct subwords u on the indices $A \cup B$ such that and both u_A and u_B are complete by $\chi_r(A, B)$. The size of $\chi_r(A, B)$ is denoted by $x_r(A, B)$ and only depends on the relative order of A and B. Suppose $(A, B) \in \mathcal{B}(a, b, c)$. For both subwords to be complete, each index $a_i \in A \setminus B$ must have letters strictly less than $\min(a + c - i, r)$, each index $b_j \in B \setminus A$ must have letters strictly less than $\min(a + c - i, b + c - j, r)$. Thus

$$x_r(A,B) = \frac{f_r(a+c)f_r(b+c)}{\prod_{a_i=b_j}\min(r,\max(a+c-i,b+c-j))}.$$
(14)

The following lemma provides uniform bounds of $x_r(A, B)$ for all $(A, B) \in \mathcal{B}(a, b, c)$. Lemma 7. Fix a, b, c and $r \ge 0$. For $(A, B) \in \mathcal{B}(a, b, c)$, if $a \le b$, then

$$f_r(a+c)f_r(b) \le x_r(A,B) \le (a+c)!(b+c)!/c!$$

Otherwise if a > b*, then*

$$f_r(b+c)f_r(a) \le x_r(A,B) \le (a+c)!(b+c)!/c!.$$

Proof:

For a fixed a, b, c and $r, x_r(A, B)$ will reach its minimum value over $\mathcal{B}(a, b, c)$ when the product in the denominator is maximized in the right hand side of (14). The denominator of $x_r(A, B)$ is maximized

when every index in $A \cap B$ is less than every index in $A \cup B \setminus A \cap B$ so $A \cap B = \{a_1 = b_1, \dots, a_c = b_c\}$. In this case for $a \leq b$ the denominator of the right hand side of (14) is given by

$$\prod_{i=1}^{c} \min(r, b+i) = f_r(b+c)/f_r(b)$$

and

$$x_r(A,B) = f_r(a+c)f_r(b).$$

Otherwise for a > b

$$x_r(A,B) = f_r(b+c)f_r(a).$$

For the other direction $x_r(A, B)$ is maximized when the denominator in the right-hand side of (14) is minimized. This occurs when every index in $A \cap B$ is greater than every index in $A \cup B \setminus A \cap B$. In this case,

$$x_r(A,B) = \frac{f_r(a+c)f_r(b+c)}{f_r(c)} \le \frac{(a+c)!(b+c)!}{c!}.$$
(15)

These bounds on $x_r(A, B)$ will give us bounds on $\mathbf{E}_{\alpha}[D^2]$. Let $V_r = 1 + \sum_{j=1}^{\infty} D_j^{(r)}$. For a fixed set of indices $A \in \mathbb{Z}_+$ let $\mathbf{1}_A(W)$ denote the indicator function that is 1 if W_A is complete and 0 if W_A is not complete or A is not a subset of indices of W. Then

$$V_r = \sum_{A \subset \mathbb{Z}_+} \mathbf{1}_A(W)$$

with $\lim_{r\to\infty} V_r = D$. We also have

$$\begin{split} V_r^2 &= \sum_{(A,B) \in \mathbb{Z}_+^2} \mathbf{1}_A(W) \mathbf{1}_B(W) \\ &= \sum_{a,b,c} \sum_{\mathcal{B}(a,b,c)} \mathbf{1}_A(W) \mathbf{1}_B(W) \\ &= \sum_{a,b,c,m} \sum_{\mathcal{B}(a,b,c,m)} \mathbf{1}_A(W) \mathbf{1}_B(W) \mathbf{1}_{|W|=a+b+c+m} \end{split}$$

For a fixed pair $(A, B) \in \mathcal{B}(a, b, c, m)$, using Lemma 5 we have

$$\mathbf{E}_{\alpha,r}[\mathbf{1}_{A}(W)\mathbf{1}_{B}(W)\mathbf{1}_{\{|W|=a+b+c+m\}}] = \sum_{u\in\chi_{r}(A,B)} \mathbf{P}_{\alpha,r}\left(\{W_{A\cup B}=u\}\cap\{|W|=a+b+c+m\}\right) = \frac{1}{(a+b+c+m)!}e^{-\alpha r}\alpha^{a+b+c+m}r^{m}x_{r}(A,B).$$
(16)

The value of $x_r(A, B)$ depends on (A, B) but the upper and lower bounds from Lemma 7 only depend on a, b, and c. Thus we have bounds of (16) that are uniform for all $(A, B) \in \mathcal{B}(a, b, c, m)$. For each mthe size of $\mathcal{B}(a, b, c, m)$ is $\binom{a+b+c+m}{a, b, c, m} = \frac{(a+b+c+m)!}{a!b!c!m!}$. Thus

$$\sum_{\mathcal{B}(a,b,c,m)} \mathbf{E}_{\alpha,r} \left[\mathbf{1}_A(W) \mathbf{1}_B(W) \mathbf{1}_{|W|=a+b+c+m} \right]$$

$$\geq \frac{\alpha^{a+b+c}}{a!b!c!} f_r(\max(a,b)+c) f_r(\min(a,b)) \frac{1}{m!} (\alpha r)^m e^{-\alpha r} \quad (17)$$

Summing over $m \ge 0$ in (17) gives the lower bound

$$\sum_{\mathcal{B}(a,b,c)} \mathbf{E}_{\alpha,r} \left[\mathbf{1}_A(W) \mathbf{1}_B(W) \right] \ge \frac{\alpha^{a+b+c}}{a!b!c!} f_r(\min(a,b)+c) f_r(\max(a,b)).$$
(18)

Similarly for the upper bound we have

$$\sum_{\mathcal{B}(a,b,c)} \mathbf{E}_{\alpha,r} \left[\mathbf{1}_A(W) \mathbf{1}_B(W) \right] \le \alpha^{a+b+c} \binom{a+c}{c} \binom{b+c}{c}.$$
(19)

Proof of Theorem 3:

In this section we make repeated use of the identity

$$\sum_{n \ge 0} \binom{n+k}{n} x^n = \frac{1}{(1-x)^{k+1}}.$$

See Wilf (2006) for a variety of similar identities.

By Fatou's Lemma $\lim_{r\to\infty} \mathbf{E}_{\alpha,r}[V_r^2] \leq \mathbf{E}_{\alpha}[\lim_{r\to\infty} V_r^2] = \mathbf{E}_{\alpha}[D^2]$ so

$$\lim_{r \to \infty} \sum_{a < b, c} \frac{\alpha^{a+b+c}}{a! b! c!} f_r(\min(a, b) + c) f_r(\max(a, b)) \le \sum_{0 \le a < b, 0 \le c} \binom{a+c}{a} \alpha^{a+b+c}$$
(20)
$$\le \mathbf{E}_{\alpha} [\lim_{r \to \infty} V_r^2]$$
$$= \mathbf{E}_{\alpha} [D^2].$$

The right hand side of (20) can be simplified further. Suppose $1/2 < \alpha < 1$. Then

$$\sum_{0 \le a < b, 0 \le c} {\binom{a+c}{c}} \alpha^{a+b+c} = \sum_{0 \le a < b} \frac{\alpha^b}{1-\alpha} \left(\frac{\alpha}{(1-\alpha)}\right)^a$$
(21)

$$= \frac{1}{2\alpha - 1} \sum_{b>0} \alpha^b \left(\left(\frac{\alpha}{1 - \alpha} \right)^b - 1 \right)$$
(22)

$$= \frac{1}{2\alpha - 1} \sum_{b>0} \left(\frac{\alpha^2}{1 - \alpha}\right)^b - \alpha^b.$$
(23)

There is an issue when $\alpha = 1/2$ in (22) and (23). But in this case $\frac{\alpha}{1-\alpha} = 1$ in (21), so (22) becomes $\sum_{b\geq 0} \frac{b\alpha^b}{1-\alpha}$, which is finite. Otherwise (23) diverges precisely when $\alpha^2/(1-\alpha) \geq 1$ which occurs if $(\sqrt{5}-1)/2 \leq \alpha < 1$. For the other direction we have

$$\mathbf{E}_{\alpha}[D^{2}] = \mathbf{E}_{\alpha}[\lim_{r \to \infty} V_{r}^{2}]$$

$$\leq \sum_{a,b,c \ge 0} {a+c \choose c} {b+c \choose c} \alpha^{a+b+c}$$

$$= \sum_{b,c \ge 0} {b+c \choose c} \frac{\alpha^{b+c}}{(1-\alpha)^{c+1}}$$

$$= \frac{1}{(1-\alpha)^{2}} \sum_{c \ge 0} \left(\frac{\alpha}{(1-\alpha)^{2}}\right)^{c}$$
(24)

The last line (24) converges when $\alpha/(1-\alpha)^2 < 1$, which occurs when $0 < \alpha < (3-\sqrt{5})/2$.

As α increases from $(3 - \sqrt{5})/2$ to $(\sqrt{5} - 1)/2$ a phase transition occurs where $\mathbf{E}_{\alpha}[D^2]$ becomes infinite. With a more precise analysis of the size of $x_r(A, B)$ that depends more closely on the relative order of A and B, one might be able to obtain the exact location where this phase transition occurs.

Acknowledgements

We wish to express thanks to Tobias Johnson and Anne Schilling for useful discussions.

References

- D. Aldous and J. M. Steele. The objective method: probabilistic combinatorial optimization and local weak convergence. In *Probability on discrete structures*, volume 110 of *Encyclopaedia Math. Sci.*, pages 1–72. Springer, Berlin, 2004. doi: 10.1007/978-3-662-09444-0_1. URL http://dx.doi.org/10.1007/978-3-662-09444-0_1.
- I. Benjamini and O. Schramm. Recurrence of distributional limits of finite planar graphs. *Electron. J. Probab.*, 6:no. 23, 13 pp. (electronic), 2001. ISSN 1083-6489. doi: 10.1214/EJP.v6-96. URL http://dx.doi.org/10.1214/EJP.v6-96.
- P. Billingsley. Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley & Sons, Inc., New York, second edition, 1999. ISBN 0-471-19745-9. doi: 10.1002/9780470316962. URL http://dx.doi.org/10.1002/9780470316962. A Wiley-Interscience Publication.
- T. Johnson, A. Schilling, and E. Slivken. Local limit of the fixed point forest. *Electron. J. Probab.*, 22: Paper No. 18, 26, 2017. ISSN 1083-6489. doi: 10.1214/17-EJP36. URL https://doi.org/10.1214/17-EJP36.

- J. F. C. Kingman. *Poisson processes*, volume 3 of *Oxford Studies in Probability*. The Clarendon Press, Oxford University Press, New York, 1993. ISBN 0-19-853693-3. Oxford Science Publications.
- D. E. Knuth. *The Art of Computer Programming, Volume 3: (2Nd Ed.) Sorting and Searching*. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1998. ISBN 0-201-89685-0.
- G. McKinley. A problem in card shuffling, UC Davis Undergraduate Thesis, 2015. https://www.math.ucdavis.edu/files/1114/3950/6599/McKinley_UG_Thesis_SP15.pdf.
- J. Neveu. Arbres et processus de Galton-Watson. Ann. Inst. H. Poincaré Probab. Statist., 22(2):199–207, 1986. ISSN 0246-0203. URL http://www.numdam.org/item?id=AIHPB_1986_22_2_199_0.
- H. W. Watson and F. Galton. On the probability of the extinction of families. *J. Anthr. Inst. Great Britain*, 4:138–144, 1875.
- H. S. Wilf. *generatingfunctionology*. A K Peters, Ltd., Wellesley, MA, third edition, 2006. ISBN 978-1-56881-279-3; 1-56881-279-5.