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For two given graphs G and H , the planar Ramsey number PR(G,H) is the smallest integer n such that every
planar graph F on n vertices either contains a copy of G, or its complement contains a copy of H . In this paper, we
determine all planar Ramsey numbers for a triangle versus wheels.
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1 Introduction
We assume that the reader is familiar with standard graph-theoretic terminology and refer the readers
to Bondy and Murty (2008) for any concept and notation that is not defined here. In this paper, we
consider simple, undirected graphs.

Given two graphsG andH , the Ramsey numberR(G,H) is the smallest integer n such that every graph
F on n vertices contains a copy of G, or its complement F contains a copy of H . The determination of
Ramsey numbers is notoriously difficult in general. A variant considered here is the concept of planar
Ramsey numbers, introduced by Walker (1967) and rediscovered by Steinberg and Tovey (1993).

For two given graphs G and H the planar Ramsey number PR(G,H) is the smallest integer n such
that every planar graph F on n vertices either contains a copy of G, or its complement contains a copy of
H . It is easy to see that PR(G,H) ≤ R(G,H). Moreover, since the complement of a planar graph F
may not be planar, the planar Ramsey number is not symmetric with respect to G and H .

The planar Ramsey numbers for all pairs of complete graphs was determined in Steinberg and Tovey
(1993). Meanwhile, planar Ramsey numbers for several other pairs of graphs were determined, see
e.g. Dudek and Ruciński (2005) and Gorgol and Ruciński (2008).

Let G be a graph and G the complement of G. Let U ⊆ V (G), denote by G[U ] the subgraph induced
by U in G. We call U a cut set of a connected graph G if G − U is not connected. Let v be a vertex in
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G, denote by NG(v) the neighbors of v in G, and denote by dG(v) the degree of v in G. Further, denote
by NG[v] the closed neighborhood of v in G, i.e., NG[v] = NG(v)∪ {v}. The independence number, the
connectivity and the minimum degree of G, are denoted by α(G), κ(G) and δ(G) respectively. A wheel
Wn = {x} + Cn is the graph of order n + 1 consisting of a cycle Cn and an extra vertex x, the hub,
which is joined to every vertex of Cn. A graph G of order n is said to be Hamiltonian if it contains an
n-cycle; and G is said to be pancyclic if G contains cycles of length k, for all k = 3, 4, · · · , n. A graph H
is called a minor of the graph G if H is isomorphic to a graph that can be obtained by zero or more edge
contractions on a subgraph of G.

In this paper, we determine PR(Cm,Wn) for all pairs of m = 3 and n ≥ 3. That is, our main result is
the following.

Theorem 1 The Planar Ramsey numbers of a triangle versus wheels are

PR(C3,Wn) =


9, if n ∈ {3, 4},
10, if n = 5,
11, if n = 6,
n+ 4, if n ≥ 7.

2 Preliminaries
In order to prove Theorem 1, we need some auxiliary results.

We refer the following observations about Hamiltonian and pancyclic graphs due to Chvátal and Erdős
(1972) and Bondy (1971), respectively.

Theorem 2 (Chvátal and Erdős (1972)) If α(G) ≤ k(G), then G is Hamiltonian.

Theorem 3 (Bondy (1971)) If G is Hamiltonian and ε(G) ≥ n2

4 , then G is pancyclic unless G = Kn
2 ,n2

.

Brandt (1997) proved the following result about the existence of cycles in non-bipartite graphs.

Theorem 4 (Brandt (1997)) Every non-bipartite graph of order n with more than (n− 1)2/4 + 1 edges
contains cycles of every length between 3 and the length of a longest cycle.

Gorgol and Ruciński (2008) proved that

Theorem 5 (Gorgol and Ruciński (2008)) PR(C3, C3) = 6, PR(C3, C4) = 7 and PR(C3, Cn) =
n+ 2 for n ≥ 5.

The following lemma is used several times in the proof of our main result.
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Lemma 1 If G is a planar triangle-free graph and U is a cut set of G then

(a) G− U has exactly two components.

(b) one of the components has at most two vertices, and

(c) both components of G− U are complete graphs.

Proof:

(a) If the number of components of G − U is at least 3, then by taking one vertex in each component,
we get a C3 in G, a contradiction to the initial hypothesis.

(b) If there are two components of G−U such that the order of each component is at least 3, then there
is a K3,3 in G, which contradicts the fact that G is a planar graph.

(c) Suppose that U1 and U2 are two components of G−U such that |U1| ≤ 2 and |U2| ≥ 3. If U2 does
not induce a complete graph in G, then there are two vertices u and v in U2 such that u and v are
not adjacent in G, and hence they are adjacent in G. Take one vertex of U1, say w, then in G, w is
adjacent to u and v. This implies that uvw is a C3 in G, a contradiction. A similar argument will
deduce that U1 is also a complete graph.

Now we are prepared for the proof of Theorem 1.

3 Proof of Theorem 1
If n = 3, since W3 = K4, and PR(K3,Kl) = 3l − 3 for l ≥ 3 (Steinberg and Tovey (1993)), so
PR(C3,W3) = 9.
For n = 4 we obtain that 8 < PR(C3,W4) ≤ PR(C3,K5 − e) = 9 from Table 10 of Dudek and
Ruciński (2005).
For 5 ≤ n ≤ 7, the upper bound can be verified along the lines of the proof below. Anyway, it needs some
extra reasoning and in the case n = 7, so we omit it here. We also checked these values by the computer
program “Planram” due to Dudek.

(a) (b) (c) (d)

Fig. 1: Triangle-free planar graphs whose complement contains no Wn for n = 4, 5, 6, 7 respectively.
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In Figure 1 we illustrate four triangle-free planar graphs whose complement contains no W4,W5,W6

and W7 respectively, this implies that PR(C3,W4) ≥ 9, PR(C3,W5) ≥ 10, PR(C3,W6) ≥ 11,
PR(C3,W7) ≥ 11. As a matter of fact, by using a program “Planram” due to Dudek, we can easily

check that the above inequalities can be reversed, so we have

Lemma 2 PR(C3,W4) = 9, PR(C3,W5) = 10, PR(C3,W6) = 11, PR(C3,W7) = 11.

Now it is left to consider the case that n ≥ 8.

Theorem 6 PR(C3,Wn) ≤ n+ 4 for n ≥ 8.

Proof: Let G be a triangle-free planar graph of order n + 4 with n ≥ 8. Let v ∈ V (G)such that
dG(v) = δ(G). If δ(G) ≤ 1 then by Theorem 2 the complement of G − v has an n-cycle so G contains
Wn with hub v. Since by Euler’s formula we know that every triangle-free planar graph G has at most
2|V (G)|−4 edges we may assume that 2 ≤ δ(G) ≤ 3. Among the edges vw ∈ E(G) with dG(v) = δ(G)
we choose one edge such that dG(w) as large as possible.

We first show that for H = G−NG[v], H contains a cycle of length at least n. Indeed, since H ⊆ G,
H is also triangle free, so α(H) ≤ 2, moreover, since |V (H)| ≥ n, by Theorem 2 , H has a cycle at
least n if H is 2-connected. So we assume that κ(H) ≤ 1. Choose a vertex u ∈ V (H) such that H − u
is disconnected and the order of the largest component is as small as possible. By Lemma 1 there are
exactly two components of H − u with vertex sets U1, U2, where |U1| ≤ |U2| and |U1| ≤ 2, and both
sets induce complete subgraphs of H . By the choice of u, we know that u has at least two neighbors in
U2 and therefore H[{u} ∪ U2] is Hamiltonian and |H[{u} ∪ U2]| ≥ |U2| − 1 . So we may assume that
|U2| ≤ n− 2.

First assume that |U1| = 2. Then |U2| ≥ n− 3 and both vertices of U1 have in G degree at least n− 3.
If dG(w) ≥ n− 3 as well, then since n ≥ 8 w has a neighbor in U2. Since G is triangle-free, w has no

neighbor in U1 and therefore all its neighbors except v and possibly u belong to U2. But then G contains
a K3,3 with one partite set being {w} ∪ U1, contradicting the planarity of G.

If dG(w) < n − 3, then by the choice of vw every vertex of U2 has degree at least 3, and, since U2 is
an independent set of G, every vertex of U2 has an neighbor outside U1 ∪ U2. To avoid a K3,3 subgraph,
u can be adjacent to at most two vertices of U2 so three vertices of U2 must have an neighbor in NG(v).
Deleting u and the other vertices of U2 and contracting {v} ∪NG(v) into one vertex v∗ we obtain a K3,3

with one partite set {v∗} ∪ U1. Therefore G has a K3,3 minor, contradicting to the planarity of G.
Finally, assume that |U1| = 1. Then |U2| = n− 2 and δ(G) = 3. Since {v}∪U2 forms an independent

set in G of cardinality n− 1, G contains at least 3(n− 1) edges, which exceeds 2(n+ 4)− 4 for n ≥ 8.
This again contradicts the fact that G is triangle-free and planar.

Therefore,H contains a cycleC of length at least n ≥ 8. NowH contains at most 2|V (H)|−4 edges of
G. Since n ≥ 8 the graphH is non-bipartite and has at least

(|V (H)|
2

)
−2|V (H)|+4 > (|V (H)|−1)2/4+1

edges. By Theorem 4 it contains a cycle C ′ of length exactly n. Now the subgraph of G induced by
{v} ∪ V (C ′) contains a wheel Wn with hub v.

The lower bounds for PR(C3,Wn) follows by considering the Ramsey graphs illustrated in Figure 2
and noticing that they are all planar graphs without triangles, and each of them has minimum degree 3,
thus its complement contains no Wn (the hub of the wheel need to have its degree at least n). Therefore,
PR(C3,Wn) ≥ n+ 4 for n ≥ 8. This completes the proof of Theorem 1.
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(a) n+ 3 ≡ 0 (mod 3)

. . .

. . .

. . .

(b) n+ 3 ≡ 1 (mod 3)

. . .

. . .

. . .

(c) n+ 3 ≡ 2 (mod 3)

Fig. 2: The planar Ramsey graphs of order n+ 3 for n ≥ 8.
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