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Using existing classification results for the 7- and 8-cycles in the pancake graph, we determine the number of per-

mutations that require 4 pancake flips (prefix reversals) to be sorted. A similar characterization of the 8-cycles in the

burnt pancake graph, due to the authors, is used to derive a formula for the number of signed permutations requiring 4

(burnt) pancake flips to be sorted. We furthermore provide an analogous characterization of the 9-cycles in the burnt

pancake graph. Finally we present numerical evidence that polynomial formulas exist giving the number of signed

permutations that require k flips to be sorted, with 5 ≤ k ≤ 9.

Keywords: Pancake graph, burnt Pancake graph, Cayley graphs, cycle embedding

1 Introduction

The idea of sorting permutations is a classical one in combinatorics and computer science. Of particular

interest is when the sorting is performed utilizing only prefix reversals (see, for example, [CFM+09,

Cib11, GP79]). Problems like the pancake problem that ask to determine the minimum number of prefix-

reversal flips that are needed to sort any permutation in Sn are computationally hard to solve [BFR15]. In

this context a natural question arises: How many permutations in Sn require k prefix-reversal flips to be

sorted? One of our main contributions is the answer to the case k = 4 (the cases k ≤ 3 are trivial) for

both permutations and signed permutations. Our methods rely on an existing classification of the 6-,7-,

and 8-cycles in the pancake graph and a classification of the 8-cycles in the burnt pancake graph, which

is due to the authors [BBP19]. In particular, our main results are the following.

(I) We provide an explicit formula that gives the number of permutations in Sn that require exactly

four prefix reversal flips to be sorted. This formula is given by a simple integer-valued polynomial

1

2

(
2n4 − 15n3 + 29n2 + 6n− 34

)
,

where n ≥ 4. The details are given in Section 3.
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(II) We give an explicit formula for the number of signed permutations in Bn that require exactly four

prefix-reversal flips to be sorted. This formula is also given by a simple integer-valued polynomial,

namely,
1

2
n(n− 1)2(2n− 3),

with n ≥ 1. The details are given in Section 4.

(III) We also provide a classification of all the 9-cycles in the burnt pancake graph. Concretely, we

prove that all of these 9-cycles can be described by two canonical forms. The details are given in

Section 5.

We point out that the polynomial in (I) can also be derived from the algorithm described in [HV16],

where the authors utilize structural properties of certain permutations to obtain generating functions. Our

methods are entirely elementary and rely on the classification of cycles inside the pancake and burnt

pancake graph and on the principle of inclusion-exclusion. Presently, the algorithm in [HV16] cannot be

applied to signed permutations, and in particular, no other proof for our second main result (II) is known.

The reader is referred to Section 2 for the basic definitions and notation used throughout the paper. We

end the paper with conjectures for closed formulas giving the number of signed permutations requiring

exactly k prefix-reversal flips to be sorted with 5 ≤ k ≤ 9, and other conjectures.

2 Preliminaries and notation

Throughout this note, n will denote a positive integer greater than 1, and for a positive integer k ≤ n,

[k] will denote the set {1, 2, . . . , k}. We will use Sn to denote the set of permutations of the set [n].
Furthermore, if 2 ≤ i ≤ n, we denote by ri the following permutation, written in one-line notation:

ri = i (i− 1) · · · 2 1 (i+ 1) · · · n.

The elements of the set R := {ri}
n
i=2 are referred to as prefix reversals or pancake flips.

Similarly one can define prefix reversals on the group of signed permutations. A signed permuta-

tion is a permutation w of the set [±n] := {−n,−(n − 1), . . . ,−2,−1, 1, 2, . . . n − 1, n} satisfying

w(−i) = −w(i) for all i ∈ [n]. For convenience, we will use i instead of −i. We will use win-

dow notation (see [BB05, Section 8.1]) to denote signed permutations. More specifically, we will use

[w(1)w(2) . . . w(n)] to denote w. In Coxeter groups literature, the group of signed permutations is

denoted by Bn (see [BB05, Chapter 8]). In this context, if i ∈ [n], a signed prefix reversal is given by

rBi = [i i− 1 · · · 1 (i + 1) (i+ 2) · · · n].

We refer to the elements of the set RB := {rBi }
n
i=1 as signed prefix reversals or burnt pancake flips.

If clear from the context, we may drop the words “signed,” “burnt,” and the B superscript. It is worth

pointing out that for any i ∈ [n], ri and rBi are both involutions (elements of order two) of Sn and Bn,

respectively. That is,

(ri)
2
= 1 2 · · · (i− 1) i (i+ 1) · · ·n, and

(
rBi
)2

= [1 2 · · · (i − 1) i (i+ 1) · · ·n].
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The graph Pn := (Sn, En) where

En := {{π, πri} : π ∈ Sn, 2 ≤ i ≤ n}

is called the pancake graph of order n. Similarly, the graph BPn := (Bn, E
B
n ), where

EB
n := {{π, πrBi } : π ∈ Bn, i ∈ [n]},

is called the burnt pancake graph.

Both Pn and BPn are Cayley graphs of Sn and Bn, respectively, since the groups Sn and Bn are

generated by R and RB, respectively. Therefore, both Pn and BPn are vertex transitive graphs; that

is, given any two vertices u, v in a vertex transitive graph, there exists a graph isomorphism f such that

v = f(u).
We will use Pn−1(q) (BPn−1(q), respectively) to denote the subgraph of Pn (BPn, respectively) in-

duced by the subset of Sn (Bn, respectively) of all permutations that end with q, with q ∈ [n] ([±n],
respectively) in one-line notation. Furthermore, for 1 < k < n, we use Pk−1(p) (BPk−1(p), respec-

tively) to denote the subgraph of Pn−1(n) (BPn−1(n), respectively) whose vertices are the set of all

π ∈ Sn with

π = π1 π2 · · · πk−1 p (k + 1) (k + 2) · · · n,

where p ∈ [k] and πi ∈ [k] \ {p} or, respectively, π ∈ Bn with

π = [π1 π2 · · · πk−1 p (k + 1) (k + 2) · · · n],

where p ∈ [±k] and πi ∈ [±k] \ {p}. The edges of Pk(p) being {{π, πri} : π ∈ Pk(p), 2 ≤ i ≤ k − 1}
({{π, πri} : π ∈ BPk(p), i ∈ [k − 1]}, respectively). One readily notices that each Pk(p) (BPk(p),
respectively) is isomorphic to Pk−1 (BPk−1, respectively).

A key result that we will use is the following classification of the 6-, 7-, and 8-cycles in Pn, n ≥ 4. We

will refer to each cycle C in Pn (BPn, respectively) by listing the edges that form C consecutively, and

we label each edge {π, πri} ({π, πrBi }, respectively), with π ∈ Sn, ri ∈ R (with π ∈ Bn, r
B
i ∈ RB ,

respectively) by ri (rBi , respectively). Since there are multiple ways to refer to a cycle, we choose a

canonical form for every cycle. We say that a cycle C is in canonical form if C = ri1 · · · riℓ (C =
rBi1 · · · r

B
iℓ

, if in BPn) and the sequence (i1, . . . , iℓ) is lexicographically maximal among all sequences

corresponding to indices of prefix reversals that would also traverse C. For example, r3r2r3r2r3r2 is in

canonical form whereas r2r3r2r3r2r3 is not since (232323) <
lex

(323232). We are now ready to spell out

the cycle classifications that are used in the proofs of our main results.

The following is an amalgam of results spanning three articles written by Konstantinova and Medvedev,

which classifying the canonical forms of small cycles (6-,7-,8-, and 9-cycles) in Pn. This single theorem is

actually a restatement of four separate results found in [KM10, Lemma 3], [KM10, Theorem 1], [KM14,

Theorem 1.3], and [KM11, Theorem 4].

Theorem 2.1 If n ≥ 3, then

there is only one canonical 6-cycle in Pn:

r3r2r3r2r3r2. (2.1)
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Furthermore, the 7-cycles in Pn have the following canonical forms:

rkrk−1rkrk−1rk−2rkr2, 4 ≤ k ≤ n. (2.2)

Moreover, the 8-cycles in Pn have the following canonical forms:

rkrjrirjrkrk−j+irirk−j+i, 2 ≤ i < j ≤ k − 1, 4 ≤ k ≤ n, (2.3)

rkrk−1r2rk−1rkr2r3r2, 4 ≤ k ≤ n, (2.4)

rkrk−irk−1rirkrk−irk−1ri, 2 ≤ i ≤ k − 2, 4 ≤ k ≤ n, (2.5)

rkrk−i+1rkrirkrk−irk−1ri−1, 3 ≤ i ≤ k − 2, 5 ≤ k ≤ n, (2.6)

rkrk−1ri−1rkrk−i+1rk−irkri, 3 ≤ i ≤ k − 2, 5 ≤ k ≤ n, (2.7)

rkrk−1rkrk−irk−i−1rkriri+1, 2 ≤ i ≤ k − 3, 5 ≤ k ≤ n, (2.8)

rkrk−j+1rkrirkrk−j+1rkri, 2 ≤ i < j ≤ k − 1, 4 ≤ k ≤ n, and (2.9)

r4r3r4r3r4r3r4r3. (2.10)

Additionally, the 9-cycles in Pn have the following canonical forms:

rkrk−1rirk−1rkriri−1ri+1r2, 3 ≤ i ≤ k − 2, 5 ≤ k ≤ n, (2.11)

r2rk−i+2rkri−2ri−1riri−1rkrk−i+2, 4 ≤ i ≤ k − 1, 5 ≤ k ≤ n, (2.12)

rkrk−irk−1rk−j+i−1rk−jrkrj−i+1rjri, 2 ≤ i < j ≤ k − 2, 5 ≤ k ≤ n, (2.13)

rkrk−1riri−1rk−1rkriri+1r2, 3 ≤ i ≤ k − 2, 5 ≤ k ≤ n, (2.14)

rkrk−1rk−2rk−1rk−2rkr3rkrk−2, 4 ≤ k ≤ n, (2.15)

rkrk−1rk−2rirkr2rkrirk−1, 2 ≤ i ≤ k − 3, 5 ≤ k ≤ n, (2.16)

rkrk−j+irkrjrirkrk−jrk−irj−i, 2 ≤ i ≤ j − 2, i+ 2 ≤ j ≤ k − 2, 6 ≤ k ≤ n, (2.17)

rkrk−j+irk−jrkrjrirkrk−irj−i, 2 ≤ i ≤ j − 2, i+ 2 ≤ j ≤ k − 2, 6 ≤ k ≤ n, (2.18)

rkrk−j+irk−j+1rkrjrirkrk−i+1rj−i+1, 2 ≤ i < j ≤ k − 1, 4 ≤ k ≤ n, (2.19)

rkrk−1rkrk−1rkrk−1rk−3rkr3, 5 ≤ k ≤ n. (2.20)

In the same spirit as the classification of the cycles in Pn, the authors proved the following theorem

classifying the 8-cycles in BPn, for n ≥ 2.

Theorem 2.2 (Theorem 4.1 in [BBP19]) If n ≥ 2 then each 8-cycle in BPn has one of the following

canonical forms:

rkrjrirjrkrk−j+irirk−j+i, 1 ≤ i < j ≤ k − 1, 3 ≤ k ≤ n, (2.21)

rkrjrkrirkrjrkri, 2 ≤ i, j ≤ k − 2, i+ j ≤ k, 4 ≤ k ≤ n, (2.22)

rkrirkr1rkrirkr1, 2 ≤ i ≤ k − 1, 3 ≤ k ≤ n, and (2.23)

rkr1rkr1rkr1rkr1 2 ≤ k ≤ n. (2.24)

Our question is a very natural one: How many pancake stacks require k flips to be sorted? Equivalently,

how many permutations in Sn require composition with k prefix reversals to be sorted? Naturally, we will

think of permutations instead of pancake stacks for convenience in notation. In this light, we define the

pancake distance between two permutations as follows.
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Definition 2.3 Given π1, π2 ∈ Sn, we write d(π1, π2) = k if π2 = π1ri1 · · · rik for some ri1 , . . . , rik ∈
R, and k is minimal. Namely, if π2 = π1rj1rj2 · · · rjk′

then k ≤ k′. We call d(·, ·), the pancake distance.

By the same token, if given σ1, σ2 ∈ Bn such that σ1 = σ2r
B
i1
rBi2 · · · r

B
iℓ

and ℓ is minimal, we say that

the burnt pancake distance between σ1 and σ2 is ℓ and write dB(σ1, σ2) = ℓ.

If k ≥ 1, we denote by Rk(n) the number of permutations in Sn that require k flips to be sorted, that

is, Rk(n) = |{π ∈ Sn : d(e, π) = k}|. Similarly, we use RB
k (n) to denote the cardinality of the set

|{π ∈ Bn : dB(e, π) = k}|
One easily sees that R0(n) = 1 (corresponding to the identity permutation that is already sorted) and

that R1(n) = n−1, as the only stacks that can be sorted with one flip are the prefix-reversal permutations.

For k = 2, 3 the cycle structure of Pn allows us to conclude that

R2(n) = (n− 1)(n− 2) and R3(n) = (n− 1)(n− 2)2 − 1 if n ≥ 3.

Indeed, the smallest cycle in Pn is a 6-cycle and there is only one such a cycle, namely, r3r2r3r2r3r2
(see [KM14, Theorem 1.1-1.2]). Hence, since there are n− 1 prefix reversals, R2(n) = (n− 1)(n − 2)
and R3(n) = (n− 1)(n− 2)2 − 1. The first non-trivial computation is R4(n).

We have computed values of Rk(n) and RB
k (n) for several instances of n, k utilizing a system with

Dual Xeon CPUs and 256GB of RAM for the largest computations. We have summarized the values found

in Table 1 and Table 2 and remark that due to computing limitations, several entries are still unknown.

However, we were able to compute enough values to be able to offer some conjectures, which we present

in Section 6. We are happy to share our code upon request.

We are now ready to prove the first main result of this paper, an explicit description of R4(n).

3 Permutations requiring four flips to be sorted
The approach we use to obtain the number of pancake stacks that require four flips is the following: we will

use the principle of inclusion-exclusion (PIE) using a family of sets Ai and we will use the classification

of 7- and 8-cycles in Pn when obtaining the cardinality of the intersections of said sets. More formally,

our aim is to obtain the cardinality of the set A4 := {π ∈ Sn : d(e, π) = 4}. We furthermore let Ai ⊆ A4,

for 0 ≤ i ≤ 4, be the following sets.

1. If 0 ≤ i ≤ 3,

Ai := {π = rj1rj2rj3rj4 ∈ A4 : ji+1 = n, jk 6= n for k < i+ 1}.

2. If i = 4,

A4 := {π = rj1rj2rj3rj4 ∈ A4 : jk 6= n for all k ∈ [4]}.

In other words, if one were to think of a path between e and π ∈ A4 in Pn, Ai would contain all the

paths that have i+ 1 vertices inside Pn−1(n). It follows that

R4(n) = |A
4| =

∣∣∣∣∣

n⋃

i=0

Ai

∣∣∣∣∣ . (3.1)

We will utilize PIE to compute the cardinality of the union
⋃n

i=0
Ai.

In the proof of Theorem 3.3, we will need to determine substrings of larger strings. It will be more

clear in the exposition if we establish the following convention.
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1234

3214 2134

4321

4123

2314 3124

4312

3421 2341

2143

14234132

1324

42131342

3412

2431

1243

3241

1432

24133142

4231

Fig. 1: Pancake graph P4. The different colors indicate the different pancake generators. The 12-cycle

r4r3r2r4r2r3r4r3r2r4r2r3 is highlighted.

Definition 3.1 Let ri1ri2 · · · rim represent a cycle in Pn or BPn. We say that a string s is a continuous

substring of ri1ri2 · · · rim if s or its reversal can be written in the form r′j1r
′
j2
· · · r′jℓ where jk+1 = jk +1

(mod m) for 1 ≤ k ≤ ℓ− 1.

For example, consider the cycle r4r3r2r4r2r3r4r3r2r4r2r3 (highlighted in Figure 1.) Then r2r4r2r3r4
is a continuous substring as is r2r3r4r3.

Our intention with this definition is to emphasize that if ri1ri2 · · · rim is a cycle, then rim and ri1 should

be considered consecutive edges.

Observation 3.2 (a) There are six continuous substrings of the form rnrarbrc in the only canonical

form for a 7-cycle containing rn, rnrn−1rnrn−1rn−2rnr2. These are indicated by an arrow on top

of the longer string (the directions indicate how to read the substring):

−−−−−−−−−−→rnrn−1rnrn−1rn−2rnr2, rnrn−1
−−−−−−−−−−→rnrn−1rn−2rnr2,

−−−−→rnrn−1rnrn−1rn−2rnr2, rnrn−1rnrn−1rn−2rn
←−r2 ,

rnrn−1
←−−−−−−−−−−rnrn−1rn−2rnr2, and rnrn−1rnrn−1

←−−−−−−rn−2rnr2.

We let Q0 denote the set of these continuous substrings. That is,

Q0 := {rnrn−1rnrn−1, rnrn−1rn−2rn,

rnr2rnrn−1, rnrn−1rnr2,

rnrn−2rn−1rn, rnr2rnrn−2}.
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(b) There are six continuous substrings of the form rarnrbrc in rnrn−1rnrn−1rn−2rnr2, the only

canonical form for a 7-cycle containing rn. These are indicated by an arrow on top of the longer

string (the directions indicate how to read the substring):

rn
−−−−−−−−−−−→rn−1rnrn−1rn−2rnr2,

−→rnrn−1rnrn−1rn−2rnr2,
−−−−−−→rnrn−1rnrn−1rn−2rnr2,

←−−−−−−−−−−rnrn−1rnrn−1rn−2rnr2,

rnrn−1rn
←−−−−−−−−−rn−1rn−2rnr2, and rnrn−1rnrn−1rn−2

←−−rnr2.

We let Q1 denote the set of these continuous substrings. That is,

Q1 := {rn−1rnrn−1rn−2, rn−2rnr2rn,

r2rnrn−1rn, rn−1rnrn−1rn,

r2rnrn−2rn−1, rn−1rnr2rn}.

(c) There are two continuous substrings of the form rarbrnrc with a 6= n in rnrn−1rnrn−1rn−2rnr2.

These are shown by an arrow over the top of the canonical form of the 7-cycles (the directions

indicate how to read the substring): rnrn−1rn
−−−−−−−−−→rn−1rn−2rnr2 and rn

←−−−−−−−−−−−rn−1rnrn−1rn−2rnr2. We let

Q2 denote the set of these continuous substrings. That is,

Q2 := {rn−1rn−2rnr2, rn−2rn−1rnrn−1}.

(d) Since there is only once 6-cycle, r2r3r2r3r2r3, then r2r3r2rn = r3r2r3rn. We define

Q3 := {r2r3r2rn}.

The sets Q0, Q1, Q2, and Q3 are important to identify since they are those length 4 paths in Pn for

which there is a “short cut,” of length 3, in Q0, Q1, and Q2. While Q3 represents a length 4 path that

potentially may be double counted since it has another representation. Thus these paths will need to be

accounted for in the cardinalities of the sets Ai.

Theorem 3.3 If n ≥ 4, then

R4(n) =
1

2
(2n4 − 15n3 + 29n2 + 6n− 34).

Proof: We will use PIE with the sets Ai, for 0 ≤ i ≤ 4 and (3.1). We verify each of the cardinalities, one

by one. To obtain the relevant cardinality of intersections of the sets, we will use Theorem 2.1 since some

permutations that can be sorted in four flips can also be sorted in three, and even if said permutations

require four flips to be sorted, there might be more than one way of doing so. We explain each of the cases

in detail in the proof. To obtain a recurrence for Rk(n), we will assume that n > 4.

|A4|. Due to the recursive structure of Pn, it follows that |A4| = R4(n− 1).
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|A3|. Any permutation in A3 will be of the form rarbrcrn where 2 ≤ a, b, c ≤ n− 1, a 6= b, and b 6= c.
We can choose a in n−2ways and b, c in n−3ways. By Observation 3.2(d), r2r3r2rn = r3r2r3rn
so to avoid double counting we remove the string in Q3 from the set of strings of the form rarbrcrn
to get A3. Hence, |A3| = (n− 2)(n− 3)2 − 1.

|A2|. Any permutation in A2 will be of the form rarbrnrc where 2 ≤ a, b, c ≤ n− 1 and a 6= b. We can

choose a, c in n − 2 ways each and b in n − 3 ways, so there are (n − 2)2(n − 3) strings of this

form. All of these strings represent permutations that can be sorted in four flips, but some of these

can be also be sorted in three flips. So we need to exclude those permutations that can be sorted in

three flips to get A2. Notice that any permutation that can be sorted in four flips and also in three

flips will be part of a 7-cycle in Pn. By Observation 3.2(c), there are two strings of this form, those

in Q2, that lead to the same permutation. Therefore, |A2| = (n− 2)2(n− 3)− 2.

|A1|. Any permutation in A1 will be of the form rarnrbrc where 2 ≤ a, b ≤ n − 1, 2 ≤ c ≤ n, and

b 6= c. We can choose a, b, c in n − 2 ways each, and so there are (n − 2)3 strings of this form.

All of these strings represent permutations that can be sorted in four flips but some of these can

be also be sorted in three flips. Notice that any permutation that can be sorted in four flips and

also in three flips will be part of a 7-cycle in Pn. So if we can find rarnrbrc as a continuous

substring of rnrn−1rnrn−1rn−2rnr2 (the only canonical form for a 7-cycle containing rn), then

the permutation obtained from rarnrbrc can be sorted in three flips, and should not be counted in

A1. By Observation 3.2(b), there are six strings that should not be counted in A1, those in Q1.

Furthermore, unlike in the previous case, there are some 8-cycles to consider: The two strings of

the form rarnrbrc and rzrnryrx (with 2 ≤ x ≤ n, 2 ≤ y, z ≤ n − 1) would represent the same

permutation, if they are part of an 8-cycle of the form rarnrbrcrxryrnrz . Comparing with the

canonical forms of the 8-cycles in Theorem 2.1. First, there are 2(n− 4) cycles of the form (2.7),

ri−1rnrn−i+1rn−i rnrirnrn−1, for 3 ≤ i ≤ n− 2, and

rn−irnrirn rn−1ri−1rnrn−i+1, for 3 ≤ i ≤ n− 2.

Second, there are n−4 cycles of the form (2.8): rn−i−1rnriri+1 rnrn−1rnrn−i with 2 ≤ i ≤ n−3.

For a total of 3(n − 4) such strings that are double counted of the form rarnrbrc. Therefore,

|A1| = (n− 2)3 − 3(n− 4)− 6.

|A0|. Any permutation in A0 will be of the form rnrarbrc where 2 ≤ a ≤ n − 1, 2 ≤ b, c ≤ n and

b 6= c. We can choose a, b, c in n− 2 ways each, so there are (n− 2)3 strings that follow this form.

The two strings rnr2r3r2 and rnr3r2r3 lead to the same permutation because of the only 6-cycle

r3r2r3r2r3r2 in Pn (so r3r2r3 = r2r3r2) so we will exclude the string rnr2r3r2 to avoid double

counting. As before, we need to account for strings that yield permutations that are part of 7-cycles,

since these can be sorted in three flips. Let π = rnrarbrc denote a permutation that can be sorted

in three flips, then π must form part of a 7-cycle. By Observation 3.2(a), there are six strings, those

in Q0, that should not be counted as part of A0. In this case, no 8-cycle leads to double counting as

if there exists rnrxryrz with 2 ≤ x ≤ n − 1 and 2 ≤ y, z ≤ n with rnrarbrc = rnrxryrz , then

rnrarbrcrzryrxrn must be an 8-cycle, which is not possible by observing the canonical forms for

8-cycles in Pn given in Theorem 2.1. Therefore, |A0| = (n− 2)3 − 7.
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|A0 ∩ A1|. If π ∈ A0 ∩ A1, then there must be an 8-cycle of the form rxrnryrzrarbrcrn with 2 ≤
a, b, z ≤ n, 2 ≤ c, x, y ≤ n − 1, y 6= z, a 6= z, a 6= b, and c 6= b where rxrnryrz 6∈ Q1 and

rnrcrbra /∈ Q0. Since in this cycle the two rns are separated by one reversal, no such 8-cycles exist

of the form (2.3), (2.4), nor (2.5).

By comparing with (2.6), we see that the form

rn−i+1rnrirk rn−irn−1ri−1rn,

with 3 ≤ i ≤ n− 2, contributes n− 4 to |A0 ∩ A1|.

By comparing with (2.7) we see that the forms

rirnrn−1ri−1 rnrn−i+1rn−irn, for 3 ≤ i ≤ n− 2, and

rirnrn−irn−i+1 rnri−1rn−1rn, for 3 ≤ i ≤ n− 2,

contribute 2(n− 4) to |A0 ∩ A1|.

By comparing with (2.8) we see that the form

rn−1rnrn−irn−i−1 rnriri+1rn,

with 2 ≤ i ≤ n− 3, contributes n− 4 to |A0 ∩ A1|.

By comparing with (2.9) we get that the following cycles

rn−j+1rnrirn rn−j+1rnrirn,

with 2 ≤ i < j ≤ n − 1, contribute 1

2
(n − 2)(n − 3) to |A0 ∩ A1|. However, when i = 2 and

j = 3 the cycle is rn−2rnr2rnrn−2rnr2rn. So rn−2rnr2rn = rnr2rnrn−2, but the left-hand-

side string is in Q1 and the right-hand-side string is in Q0. Thus this cycle should be excluded,

since both strings actually represent the same permutation rn−1rnrn−1. Therefore, |A0 ∩ A1| =
1

2
(n− 2)(n− 3) + 4(n− 4)− 1 = 1

2
(n2 + 3n− 28).

|A0 ∩ A2|. If π ∈ A0 ∩ A2, then there must be an 8-cycle of the form rxryrnrzrarbrcrn with 2 ≤
a, b, x ≤ n, 2 ≤ c, y, z ≤ n − 1, x 6= y, z 6= a, a 6= b, and b 6= c where rxryrnrz /∈ Q2 and

rnrcrbra /∈ Q0. Since in this cycle a pair of rns are separated by two reversals, no such cycle of

the form (2.3), (2.4), (2.5), (2.6), nor (2.9) exists.

Upon comparison with (2.7) we see that the forms

rn−1ri−1rnrn−i+1 rn−irnrirn, for 3 ≤ i ≤ n− 2,

rn−i+1rn−irnri rnrn−1ri−1rn, for 3 ≤ i ≤ n− 2,

rn−irn−i+1rnri−1 rn−1rnrirn, for 3 ≤ i ≤ n− 2, and

ri−1rn−1rnri rnrn−irn−i+1rn, for 3 ≤ i ≤ n− 2,

contribute 4(n− 4) to |A0 ∩ A2|.
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Furthermore, upon comparing with (2.8), we see that

rn−irn−i−1rnri ri+1rnrn−1rn, for 2 ≤ i ≤ n− 3, and

riri+1rnrn−1 rnrn−irn−i−1rn, for 2 ≤ i ≤ n− 3,

contribute 2(n− 4) to |A0 ∩ A2|.

Hence |A0 ∩ A2| = 6(n− 4).

|A0 ∩ A3|. If π ∈ A0 ∩ A3, then there must be an 8-cycle of the form rxryrzrnrarbrcrn with 2 ≤
a, c, x, y, z ≤ n − 1, 2 ≤ b ≤ n, x 6= y, y 6= z, a 6= b, and b 6= c where rxryrzrn /∈ Q1 and

rnrcrbra /∈ Q0. Since in this cycle a pair of rns are separated by three reversals, no such cycle of

the form (2.7), (2.8), nor (2.9) exists.

Let us compare with form (2.3), we see that the form

rjrirjrn rn−j+irirn−j+irn,

with 2 ≤ i < j ≤ n− 1, contributes 1

2
(n− 2)(n− 3) to |A0 ∩ A3|.

When we compare with form (2.4), r2r3r2rn rn−1rnrirn actually does not contribute to |A0 ∩A3|
since r2r3r2rn ∈ Q3.

We now compare with (2.5),

rn−irn−1rirnrn−irn−1rirn,

with 2 ≤ i ≤ n− 2. Each value of i gives a valid cycle (neither of the paths are in Q0 nor Q3).

We now compare with (2.6),

rn−irn−1ri−1rnrn−i+1rnrirn, for 3 ≤ i ≤ n− 2.

This form contributes n− 4 to |A0 ∩ A3|.

Hence,

|A0 ∩ A3| =
1

2
(n− 2)(n− 3) + (n− 4) + (n− 3) =

1

2
(n2 − n− 8).

|A0 ∩ A4|. If a permutation π ∈ A0 ∩ A4, then there must be an 8-cycle of the form rwrxryrzrarbrcrn,

where 2 ≤ w, x, y, z ≤ n− 1 and rnrcrbra /∈ Q0. No such 8-cycle exist since there are no cycles

with four reversals between a pair of rn in Theorem 2.1. So |A0 ∩ A4| = 0.

|A1 ∩ A2|. If a permutation π ∈ A1 ∩ A2, then there must be an 8-cycle of the form rxryrnrzrarbrnrc
with 2 ≤ a ≤ n, 2 ≤ b, c, x, y, z ≤ n − 1, x 6= y, z 6= a, and a 6= b where rxryrnrz /∈ Q2 and

rcrnrbra /∈ Q1. Since in this cycle a pair of rn are separated by three reversals, no such cycle of

the form (2.7), (2.8), nor (2.9) exists.

From form (2.3), we get: rirjrnrn−j+i rirn−j+irnrj with 2 ≤ i < j ≤ n− 1. Each value of i and

j give a valid cycle (the paths are not in Q1 or Q2) except when i = n− 2 and j = n − 1. Hence

the contribution of (2.3) is 1

2
(n− 2)(n− 3)− 1.
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From form (2.4), we get: r2rn−1rnr2r3r2rnrn−1 and r3r2rnrn−1r2rn−1rnr2. Thus this form

contributes 2 to |A1 ∩ A2|.

From form (2.5), we get: rn−1rirnrn−i rn−1rirnrn−i with 2 ≤ i ≤ n− 2. Each value of i except

for i = n− 2 gives a valid cycle (the paths are not in Q1 or Q2). Thus this form contributes n− 4
to |A1 ∩ A2|.

From form (2.6) we get: rn−1ri−1rnrn−i+1 rnrirnrn−i with 3 ≤ i ≤ n − 2. If we replace i − 1
with i in this form, we obtain the cycles whose first four reversals are the same as those obtained

from the form (2.5) in the previous paragraph. So the permutations that were contributed from form

(2.6) were already considered and would be double counted. Thus this particular form contributes

nothing to |A1 ∩ A2|.

Therefore, |A1 ∩ A2| =
1

2
(n− 2)(n− 3) + (n− 4) + 1 = 1

2
(n2 − 3n).

Other intersections of two sets. All other intersections A1∩A3, A1∩A4, A2∩A3, A2∩A4, and A3∩A4

are empty. Otherwise, there would be an 8-cycle that could not be matched to any of the canonical

forms of Theorem 2.1. Specifically, it can seen that the number of reversals between any two rn
would be greater than or equal to four, which does not occur in any of the 8-cycles in Theorem 2.1.

|A0 ∩ A1 ∩ A2|. If a permutation belongs to these three sets, π ∈ A0 ∩ A1 ∩ A2, then it must be that

the permutation can be written in the forms π = rnrwrvru, π = rcrnrbra and π = rxryrnrz with

2 ≤ b, c, x, y, w, z ≤ n− 1 and 2 ≤ a, u, v ≤ n and none in Q0, Q1, or Q2. Thus, Pn must contain

8-cycles of the following forms:

rxryrnrzrarbrnrc, (3.2)

rxryrnrzrurvrwrn, or (3.3)

rcrnrarbrurvrwrn. (3.4)

Notice that if there are cycles of the form (3.2) and of the form (3.3), there will be cycles that can

be written in the form (3.4) as well. Once again we will use the classification of the 8-cycles given

in Theorem 2.1 to see if there are cycles that can be written in the form (3.2), that would share the

first four reversals from (3.3) at the same time.

Comparing (2.3) with (3.2) we obtain the cycles of the form

rirjrnrn−j+i rirn−j+irnrj , (3.5)

with 2 ≤ i < j ≤ n− 1. With the substitutions of n− 1 for j and i− 1 for i, these cycles become

ri−1rn−1rnri ri−1rirnrn−1,

with 3 ≤ i ≤ n− 1. Notice when comparing with the form (2.7),

ri−1rn−1rnrirnrn−irn−i+1rn,

with 2 ≤ i ≤ n − 3 the first four reversals match. So each value of i in the overlap of indices,

3 ≤ i ≤ n− 2, corresponds to a permutation in this intersection and contributes a total of n− 4 to

|A0 ∩A1 ∩ A2|.
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Now substituting i+ 1 for j in (3.5), we obtain the following form

riri+1rnrn−1rirn−1rnri+1,

which matches (2.8)

riri+1rnrn−1rnrn−irn−i−1rn,

in the first four reversals, with 2 ≤ i ≤ n − 3. So each value i in the above form contributes a

permutation to the intersection for a total of n− 4 to |A0 ∩ A1 ∩ A2|. No other canonical 8-cycles

would have the first four reversals from the form (3.2), and so the total contribution to |A0∩A1∩A2|
starting from (2.3) is 2(n− 4).

Moreover, comparing (2.4) with (3.2), we do not find any additional cycles that are also of the form

(3.3).

Furthermore, comparing (2.5) with (3.2), we find the form

rn−1rirnrn−i rn−1rirnrn−i, (3.6)

with 2 ≤ i ≤ n− 2. By substituting i− 1 for i in (3.6), we obtain

rn−1ri−1rnrn−i+1 rn−1ri−1rnrn−i+1,

with 3 ≤ i ≤ n− 1. The first four reversals of which match with form (2.7)

rn−1ri−1rnrn−i+1 rn−irnrirn,

with 3 ≤ i ≤ n− 2. So each value of i in the overlap of these intervals, 3 ≤ i ≤ n− 2, contribute

a permutation to this intersection for a total of n − 4 added to |A0 ∩ A1 ∩ A2|. No other matches

with form (2.5) are obtained, and thus the contribution to |A0 ∩ A1 ∩A2| from (2.5) is n− 4.

Finally, we compare (2.6) with (3.2) and obtain the form

rn−1ri−1rnrn−i+1 rnrirnrn−i, (3.7)

with 3 ≤ i ≤ n − 2. If we compare form (3.7) with any of the other canonical forms of 8-cycles

in Pn, we would find a match with form (2.5) after substituting i − 1 for i in (3.7). However, these

cycles have already been counted.

This completes the count of permutations found in A0∩A1∩A2, and thus |A0∩A1∩A2| = 3(n−4).

An exhaustive argument gives that any other intersections of three of the sets A0, . . . , A4 will be empty,

since no cycle matching three forms at the same time exists. Therefore if n > 4,

R4(n) =

∣∣∣∣∣

4⋃

i=0

Ai

∣∣∣∣∣

=
∑

S⊆{0,1,2,3,4},S 6=∅

(−1)|S|+1
⋂

i∈S

Ai

= |A0|+ |A1|+ |A2|+ |A3|+ |A4| − |A0 ∩ A1| − |A0 ∩ A2| − |A0 ∩A3| − |A1 ∩A2|

+ |A0 ∩ A1 ∩ A2|

= R4(n− 1) +
1

2
(8n3 − 57n2 + 111n− 40).
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n

k
0 1 2 3 4 5 6 7 8 9 10 11

1 1 0 0 0 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0 0 0 0

3 1 2 2 1 0 0 0 0 0 0 0 0

4 1 3 6 11 3 0 0 0 0 0 0 0

5 1 4 12 35 48 20 0 0 0 0 0 0

6 1 5 20 79 199 281 133 2 0 0 0 0

7 1 6 30 149 543 1357 1903 1016 35 0 0 0

8 1 7 42 251 1191 4281 10561 15011 8520 455 0 0

9 1 8 56 391 2278 10666 38015 93585 132697 79379 5804 0

10 1 9 72 575 3963 22825 106461 377863 919365 1309756 814678 73232

11 1 10 90 809 6429 43891 252737 1174766 4126515 9981073 14250471 9123648

12 1 11 110 1099 9883 77937 533397 3064788 14141929 49337252 118420043 169332213

13 1 12 132 1451 14556 130096 1030505 7046318 40309555 184992275 639783475 1525125357

14 1 13 156 1871 20703 206681 1858149 14721545 100464346 572626637

15 1 14 182 2365 28603 315305 3169675 28528986 226016576

16 1 15 210 2939 38559 465001 5165641 52027677 468966948

17 1 16 240 3599 50898 666342 8102491 90238067 911274131

18 1 17 272 4351 65971 931561 12301949 150044655 1677036683

19 1 18 306 5201 84153 1274671 18161133 240665410 2947991637

20 1 19 342 6155 105843 1711585 26163389 374193014 4982872347

21 1 20 380 7219 131464 2260236 36889845 566212968 8141208511

Tab. 1: Numbers of the form Rk(n) for several values of n and k. In particular, notice that if n ≥ 4,

R4(n) =
1

2
(2n4 − 15n3 + 29n2 + 6n− 34). The empty entries are unknown to us.

Using the initial condition R4(4) = 3 (see Table 1) and solving the recurrence, it follows that if n ≥ 4,

R4(n) =
1

2
(2n4 − 15n3 + 29n2 + 6n− 34),

as desired. ✷

4 Signed permutations requiring four flips to be sorted

We write RB
k (n) to denote the number of sign permutations that require k burnt pancake flips to be sorted.

Since the smallest cycle that can be found in BPn has length 8 (See [Com11]), it follows that if n ≥ 1,

RB
1 (n) = n,RB

2 (n) = n(n− 1), and RB
3 (n) = n(n− 1)2.

So the first non-trivial case is the computation of RB
4 (n). We will follow the same method used in

Section 3: We will define certain sets whose union will the set of all signed permutations requiring four

flips to sort. The cardinality of this union will then equal the number of burnt pancake stacks that require

four flips to be sorted. The computation of the cardinality of the union of the sets that we will define is

carried out utilizing the principle of inclusion-exclusion. We will use the classification of canonical forms

of the 8-cycles, due to the authors [BBP19], from Theorem 2.2.

Our aim is to obtain the cardinality of the set BA4 := {π ∈ Bn : dB(e, π) = 4}. We furthermore let

BAi ⊆ BA4, 0 ≤ i ≤ 4, be the following sets.

1. If 0 ≤ i ≤ 3,

BAi := {π = rBj1r
B
j2
rBj3r

B
j4
∈ BA4 : ji+1 = n, jk 6= n for k < i+ 1}.

2. If i = 4,

BA4 := {π = rBj1r
B
j2
rBj3r

B
j4
∈ BA4 : jk 6= n for all k ∈ [4]}.
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In other words, if one were to think of a path between the identity and π ∈ BA4 in BPn, BAi would

contain all the paths that have i+ 1 vertices inside BPn−1(n). It follows that

RB
4 (n) = |BA4| =

∣∣∣∣∣

n⋃

i=0

BAi

∣∣∣∣∣ . (4.1)

Just like in the previous section, we will use PIE to compute the cardinality of the union
⋃n

i=0
BAi.

In the proof of the main theorem of this section, the following two results will be used.

Lemma 4.1 (Lemma 4.5 in [BBP19]) If π1, π2 ∈ V (BPn−1(p)), for any p ∈ [±n], with dB(π1, π2) ≤
2, then π1r

B
n and π2r

B
n must belong to distinct copies of BPn−1 in BPn.

Moreover, the following corollary also follows.

Corollary 4.2 Let C be an 8-cycle in BPn, with n ≥ 2. If C has vertices in exactly two copies BPn−1(i)
and BPn−1(j) with i, j ∈ [±n], then C has four vertices in BPn−1(i) and four vertices in BPn−1(j).

Proof: By Lemma 4.1, if the endpoints in the BPk−1(p) copy (say π1 and π2) are at a distance of at most

two, then π1rk and π2rk will belong to distinct copies of BPk−1. Hence an 8-cycle cannot occur in such

a way that it has six vertices in one copy of BPn−1 and two in the other, or with five vertices in one copy

and two in the other. Therefore an 8-cycle with vertices in exactly two copies of BPn−1 can only have

four vertices in each of the copies. ✷

We now state and prove the main theorem of this section, that is, an explicit formula for RB
4 (n).

Theorem 4.3 If n ≥ 1, then

RB
4 (n) =

1

2
n(n− 1)2(2n− 3).

Proof: We will use PIE with the sets BAi, 0 ≤ i ≤ 4, and (4.1), and the canonical forms for the 8-cycles

from Theorem 2.2. We analyze each of the cardinalities individually. To derive a recurrence for RB
k (n),

we will first assume that n > 3.

|BA4|. Due to the recursive structure of BPn, it follows that |BA4| = R4(n− 1).

|BA3|. Any permutation in BA3 will be of the form rBa rBb rBc rBn where 1 ≤ a, b, c ≤ n− 1, a 6= b, and

b 6= c. We can choose a in n − 1 ways and b, c in n − 2 ways each. Since there are no 6-, nor 7-

cycles in BPn, each choice of a, b, c will give a different signed permutation that requires four flips

to be sorted. Indeed, if there were two strings rBd rBe rBf rBn and rBx rBb yBc zBn corresponding to the

same permutation, rBd rBe rBf rBz rBy rBx would be a 6-cycle in BPn, and these do not exist. Therefore,

|BA3| = (n− 1)(n− 2)2.

|BA2|. Any permutation in BA2 will be of the form rBa r
B
b rBn rBc where 1 ≤ a, b, c ≤ n − 1, a 6= b.

All of these signed permutations require four flips to be sorted, as there are no 6-, nor 7-cycles.

Furthermore, if two strings of this form produced the same signed permutation, then there would

be an 8-cycle of the form rBd rBe rBn rBf rBz rBn rBy rBx , which cannot be placed in any of the canonical

forms given in Theorem 2.2. Therefore, |BA2| = (n− 1)2(n− 2).
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|BA1|. Any permutation in BA1 will be of the form rBa rBn rBb rBc where 1 ≤ a, b ≤ n − 1, 1 ≤ c ≤ n,

and b 6= c. We can choose a, b, c in n − 1. The same arguments presented in the previous cases

yield that each of these strings give a different signed permutation, and so |BA1| = (n− 1)3.

|BA0|. Any permutation in BA0 will be of the form rBn rBa rBb rBc where 1 ≤ a ≤ n − 1, 1 ≤ b, c ≤ n,

and b 6= c. Since there are no 6-, nor 7- cycles, each of these strings will lead to a different signed

permutation, and so |BA0| = (n− 1)3.

|BA0 ∩BA1|. If π ∈ BA0 ∩ BA1, then there must be an 8-cycle of the form rBn rBa rBb r
B
c rBz rBy rBn rBx

where 1 ≤ a, x, y ≤ n − 1, 1 ≤ b, c, y, z ≤ n, a 6= b, b 6= c, and y 6= z. We find contributions to

this form from the canonical forms (2.22), (2.23), and (2.24) only. For form (2.22), we obtain the

following cycles

rBn rBj rBn rBi rBn rBj rBn r
B
i , (4.2)

with 2 ≤ i, j ≤ n − 2, i + j ≤ n. Considering the possible values of i, j can take in (4.2), we get
1

2
(n− 3)(n− 2) 8-cycles.

Similarly, comparing with (2.23) we get 2(n − 2) 8-cycles arising from all possible values of i in

the forms below.

rBn rBi r
B
n rB1 rBn rBi rBn rB1 , with 2 ≤ i ≤ n− 1, and

rBn rB1 r
B
n rBi rBn rB1 rBn rBi , with 2 ≤ i ≤ n− 1.

Furthermore, by comparing with (2.24) we get only one 8-cycle: rBn r
B
1 rBn rB1 rBn rB1 rBn rB1 . Putting

the pieces together, we have

|BA0 ∩BA1| =
1

2
(n− 2)(n− 3) + 2(n− 2) + 1.

|BA0 ∩BA2|. If π ∈ BA0 ∩BA2, then there must be an 8-cycle of the form rBn rBa rBb rBc rBz rBn r
B
y rBx . If

such a cycle existed, it would have five vertices in one copy of BPn−1, which contradicts Corol-

lary 4.2. Hence, |BA0 ∩BA2| = 0.

|BA0 ∩BA3|. If π ∈ BA0 ∩ BA3, then there must be an 8-cycle of the form rBn rBa rBb rBc rBn rBz rBy rx
where 1 ≤ a, c, x, y, z ≤ n− 1, 1 ≤ b ≤ n, a 6= b, b 6= c, x 6= y, and y 6= z. The only canonical

form that can match this is (2.21), obtaining

rBn rBj rBi rBj rBn rBn−j+ir
B
i r

B
n−j+i, (4.3)

with 1 ≤ i < j ≤ n− 1. There are 1

2
(n− 1)(n− 2) possible values for i, j in (4.3), and so

|BA0 ∩BA3| =
1

2
(n− 1)(n− 2).

|BA0 ∩BA4|. Essentially the same argument as the case BA0 ∩BA2 gives that |BA0 ∩BA4| = 0.
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|BA1 ∩BA2|. If π ∈ BA1 ∩ BA2, then there must be an 8-cycle of the form rBa rBn rBb r
B
c rBz rBn rBy rBx

where 1 ≤ a, b, x, y, z ≤ n− 1, 1 ≤ c ≤ n, a 6= x, b 6= c, c 6= z, and x 6= y. The only canonical

form from Theorem 2.2 that matches this form is (2.21), we get

rBn−j+ir
B
n rBj rBi rBj rBn rBn−j+ir

B
i , (4.4)

with 1 ≤ i < j ≤ n− 1. Considering all possible values for i, j in (4.4), we have

|BA1 ∩BA2| =
1

2
(n− 1)(n− 2).

Other intersections All other intersections BA1 ∩ BA3, BA1 ∩ BA4, BA2 ∩ BA3, BA2 ∩ BA4, and

BA3∩BA4 are empty. By the same token, all the intersections of three distinct sets from {BAi}
4
i=0

are empty as well. Indeed, if one of these intersections were not empty, then there would be an 8-

cycle that could not be matched to any of the canonical forms of Theorem 2.2.

Now, using PIE, if n > 3 it follows that

RB
4 (n) =

∣∣∣∣∣

4⋃

i=0

BAi

∣∣∣∣∣

=
∑

S⊆{0,1,2,3,4},S 6=∅

(−1)|S|+1
⋂

i∈S

BAi

= |BA0|+ |BA1|+ |BA2|+ |BA3|+ |BA4| − |BA0 ∩BA1| − |BA0 ∩BA3|

− |BA1 ∩BA2|

= RB
4 (n− 1) +

1

2
(8n3 − 33n2 + 45n− 20).

After solving the recurrence relation, using the initial condition RB
4 (3) = 18 (see Table 2), we obtain that

for n ≥ 3,

RB
4 (n) =

1

2
n(n− 1)2(2n− 3).

Upon further inspection, it turns out that the if we plug in n = 1, 2 into 1

2
n(n − 1)2(2n − 3) we obtain

0, 1 respectively. Since these are indeed the true values of RB
4 (1) and RB

4 (2), we have that for n ≥ 1,

RB
4 (n) =

1

2
n(n− 1)2(2n− 3). This completes the proof of the theorem. ✷

5 Classification of the 9-cycles in the Burnt Pancake Graph

In this section, we present classification of any 9-cycle in BPn, with n ≥ 2. This presentation is in the

same spirit as [BBP19, KM10, KM11, KM14, KM16] where similar forms for 6-,7-,8- and 9-cycles in

the pancake graphs Pn and 8-cycles in the burnt pancake graph BPn are given. We start the description

of 9-cycles in BPn, with n ≥ 2, by giving some preliminary definitions, notation, and lemmas.

In classifying the 9-cycles we will look at decomposing the window notation of the a signed permutation

σ ∈ Bn into substrings, σ = [XY Z]. A convenient notation that will be employed is for a signed reversal
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n

k
0 1 2 3 4 5 6 7 8 9 10 11

1 1 1 0 0 0 0 0 0 0 0 0 0

2 1 2 2 2 1 0 0 0 0 0 0 0

3 1 3 6 12 18 6 2 0 0 0 0 0

4 1 4 12 36 90 124 96 18 3 0 0 0

5 1 5 20 80 280 680 1214 1127 389 40 4 0

6 1 6 30 150 675 2340 6604 12795 15519 6957 959 43

7 1 7 42 252 1386 6230 24024 71568 159326 222995 136301 21951

8 1 8 56 392 2548 14056 68656 276136 901970 2195663 3531887 2743477

9 1 9 72 576 4320 28224 166740 843822 3636954 12675375 33773653 60758618

10 1 10 90 810 6885 51960 359928 2193534 11738418 53257425 198586153

11 1 11 110 1100 10450 89430 710358 5060220 32328648 180577749

12 1 12 132 1452 15246 145860 1306448 10645866 79016157

13 1 13 156 1872 21528 227656 2269410 20812077 175905015

14 1 14 182 2366 29575 342524 3760484 38319281 363216425

15 1 15 210 2940 39690 499590 5988892 67117596

16 1 16 240 3600 52200 709520 9220512 112694400

17 1 17 272 4352 67456 984640 13787272 182483644

18 1 18 306 5202 85833 1339056 20097264 286341948

19 1 19 342 6156 107730 1788774 28645578

20 1 20 380 7220 133570 2351820 40025856

21 1 21 420 8400 163800 3048360 54942566

22 1 22 462 9702 198891 3900820 74223996

23 1 23 506 11132 239338 4934006 98835968

24 1 24 552 12696 285660 6175224 129896272

25 1 25 600 14400 338400 7654400 168689820

Tab. 2: Numbers of the form RB
k (n) for several values of n and k. In particular, notice that if n ≥ 1, then

RB
4 (n) =

1

2
n(n− 1)2(2n− 3). The empty entries are unknown to us.

of a substring, that is if X = [x1 x2 · · · xi−1 xi], then X = [xi xi−1 · · · x2 x1]. As is customary,

for a graph G we shall use V (G) for its set of vertices and E(G) for its set of edges. In this section, we

generally follow the convention of using names of signed permutations based on the last character, e.g.,

π ∈ V (BPn−1(p)), π ∈ V (BPn−1(p)), ρ ∈ V (BPn−1(q)), etc.

In addition to Lemma 4.1, a few other lemmas from [BBP19] will be necessary in the classification of

all the 9-cycles in BPn, with n ≥ 3. We recall that BP2 is itself an 8-cycle [Com11, Theorem 10], so if

a 9-cycle exists in BPn, then n ≥ 3.

Lemma 5.1 (Lemma 4.2 in [BBP19]) If π ∈ V (BPn−1(p)) and πrBn ∈ V (BPn−1(q)), then |p| 6= |q|.

Moreover, the following lemma is also used.

Lemma 5.2 (Lemma 4.3 in [BBP19]) Let π, τ ∈ Bn have the same first element q ∈ [±n] in window

notation. Then d(π, τ) = 3 if and only if τ = πrBj rBi rBj , 1 ≤ i < j ≤ n where π = [ABC], τ = [ABC],
|A| = j − i, |B| = i, and |C| ≥ 0.

We are now ready to state and prove the main result of this section, the classification of all the 9-cycles

in BPn, with n ≥ 3.

Theorem 5.3 If n ≥ 3, then the canonical forms of 9-cycles in BPn are as follows:

rBk rBk−ir
B
k rBk−jr

B
k−i−jr

B
k rBj r

B
i+jr

B
i 1 ≤ i, j ≤ k − 2, i+ j ≤ k − 1, 3 ≤ k ≤ n; (5.1)

rBk rBi+jr
B
i r

B
k rBk−ir

B
j rBk rBk−jr

B
k−i−j 1 ≤ i, j ≤ k − 2, i+ j ≤ k − 1, 3 ≤ k ≤ n. (5.2)

Proof: As mentioned before, BPk has a recursive structure and we can find 2k copies of BPk−1 em-

bedded into BPk, with 3 ≤ k ≤ n. Recall that we use BPk−1(x), with x ∈ [±k], to denote the

subgraph isomorphic to BPk−1 induced by looking at the vertices of BPk that end with the string
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BPk−1(q) BPk−1(p)

ρ1

ρ2

ρ3

ρ4

ρ5 π4

π3

π2

π1

Fig. 2: A 9-cycle incident on two copies of BPk−1 would need to be a (5+4) cycle.

x (k+1) (k+2) · · · n. We will make use of this recursive structure to classify all 9-cycles in BPn−1(n),
which is the copy including the identity, by considering the vertices of the 9-cycles in different copies of

BPk−1 embedded in BPk. Due to the vertex transitive nature of BPn, if there is a cycle C in BPn, there

would be a cycle with the same labels as C that includes the identity, and therefore it is enough to consider

the cycles that contain the identity.

Since each vertex in BPk−1(x) is connected to exactly one other vertex in some BPk−1(y), with

y ∈ [±k] \ {x}, any 9-cycle will share at least two vertices with any copy of BPk−1. We will identify a

9-cycle with a partition (a1 + a2 + · · ·+ am) of 9. That is, a1 + a2 + · · ·+ am = 9, where ai indicates

the number of vertices in the ith copy of BPk−1 the cycle is incident upon. As noted above, ai ≥ 2 for

all i. Thus a 9-cycle can be formed by using two, three, or four copies of BPk−1. Enumerating through

each possible partition will exhaust all possible 9-cycles.

CASE I :- A cycle incident upon two copies of BPk−1.

We know from Lemma 4.1 that if two permutations π1 and π2 belong to the same copy of BPk−1

and are at a distance of less than 3, then π1r
B
k and π2r

B
k belong to different copies of BPk−1.

Hence it is necessary that five vertices are in one copy and four vertices are in the other.

Let the two copies used be BPk−1(p) and BPk−1(q). By Lemma 5.1, |p| 6= |q|. So we may

track the position and sign of both p and q in a every permutation of the cycle. Suppose that four

vertices of such a 9-cycle belong to BPk−1(p), and the other five vertices belong to BPk−1(q) (see

Figure 2). The four vertices of BPk−1(p) form a path of length three whose endpoints are adjacent

to vertices fromBPk−1(q), which means both vertices should have q in their first positions. Starting

with one of these vertices in BPk−1(p) we have the form π1 = [qXp]. By Lemma 5.2, we can

describe the forms of the remaining vertices of BPk−1(p). With 1 ≤ i < j ≤ k − 1 we have

π2 = π1r
B
j = [X1qX2p], π3 = π2r

B
i = [X12X11qX2p], π4 = π3r

B
j = [qX11X12X2p] where

X = X1X2, X1 = X11X12, |X1| = j − 1, and |X12| = i. Continuing in BPk−1(q) we see

ρ1 = [pX2 X12 X11q] and ρ5 = [pX2X12X11q]. Taking A = pX2 and B = X11q it is clear

that |A|, |B|, |X12| ≥ 1. We need a path of length four from ρ5 = [AX12B] to ρ1 = [AX12B].
rB|A|+|X12|

rB|X12|
rB|A|+|X12|

is a path of length three. Thus if a path of length four existed, there

would be a 7-cycle in BPk−1(q), which is not possible since the length of the smallest cycle in

BPn is eight. Hence cycles of form (5+4) are not possible.

CASE II :- A cycle incident upon three copies of BPk−1.

There can be three possibilities for the partition of vertices (5+2+2) or (4+3+2) or (3+3+3). Let the
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BPk−1(p)

BPk−1(q)

BPk−1(s)

π1

π2

π3

π4

π5 σ2

σ1

ρ2

ρ1

Fig. 3: A 9-cycle incident upon three copies of BPk−1 with vertex partition (5+2+2).

BPk−1(p)

BPk−1(q)

BPk−1(s)

π1

π2

π3

π4

σ3

σ2

σ1

ρ2

ρ1

Fig. 4: A 9-cycle incident upon three copies of BPk−1 with vertex partition (4+3+2).

three copies incident upon be BPk−1(p), BPk−1(q), and BPk−1(s). By Lemma 5.1, it follows that

|p| 6= |q|, |p| 6= |s|, and |q| 6= |s|.

Suppose five vertices of such a 9-cycle belong to the copy BPk−1(p), two vertices belong to a copy

BPk−1(q) and the other two vertices belong to a copy BPk−1(s) (see Figure 3). As ρ2 will have

s in its first position and that π1 is exactly two edges away, we see that π1 = [qXsY p]. This gives

ρ1 = π1r
B
k = [pY sXq], ρ2 = ρ1r

B
|Y |+2

= [sY pXq], σ1 = ρ2r
B
k = [qXpY s]. σ2 must have p in

its first position, which is not possible in one edge from σ1. Hence cycles of form (5+2+2) do not

exist in the burnt pancake graph.

Suppose four vertices of such a 9-cycle belong to the copy BPk−1(p), two vertices belong to a

copy BPk−1(q), and the other three vertices belong to a copy BPk−1(s) (see Figure 4). As ρ2 will

have s in its first position and that π1 is exactly two edges away, we see that π1 = [qXsY p]. This

gives ρ1 = π1r
B
k = [pY sXq], ρ2 = ρ1r

B
|Y |+2

= [sY pXq], σ1 = ρ2r
B
k = [qXpY s]. Now, σ3

must have p in its first position, so in the path from σ1 to σ3, p should be involved in both the flips.

σ2 = σ1r
B
|X|+|Y2|+2

= [Y2pXqY1s] where Y = Y1Y2. This gives σ3 = σ2r
B
|Y2|+1

= [pY2 XqY1s],

π4 = σ3r
B
k = [sY1qXY2p]. Taking A = sY1, B = qX , C = Y2p where |A|, |B|, |C| ≥ 1 we

need to find a path of length three between π4 = [ABC] and π1 = [BAC]. One may verify that

π4r
B
|A|r

B
|A|+|B|r

B
|B| = π1. Taking |X | = i− 1, |Y1| = j − 1 we get |Y2| = k − i− j − 1 ≥ 0 and a

cycle corresponding to (5.1).

Suppose three vertices of such a 9-cycle belong to a copy BPk−1(p), three vertices belong to a
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BPk−1(p)

BPk−1(q)

BPk−1(s)

π1

π2

π3

σ1

σ2

σ3

ρ3

ρ2

ρ1

Fig. 5: A 9-cycle incident upon three copies of BPk−1 with vertex partition (3+3+3).

copy BPk−1(q) and the other three vertices belong to a copy BPk−1(s) (see Figure 5). The vertex

in BPk−1(p) that is adjacent to a vertex in BPk−1(q), π1, can be of the form (a) π1 = [qXsY p] or

(b) π1 = [qXsY p].

(a) Since π1 = [qXsY p], then ρ1 = π1r
B
k = [pY sXq]. As π3 must have s in its first position, s

should be involved in only one reversal in the path from π1 to π3. So the first reversal must not

involve s. This gives π2 = π1r
B
|X1|+1

= [X1qX2sY p] where X = X1X2, π3 = π2r
B
|X|+2

=

[sX2qX1Y p], and σ1 = π3r
B
k = [pY X1qX2s]. As σ3 must have q in its first position, q

should be involved in one reversal in the path from σ1 to σ3. So the first reversal must not

involve q. This gives two possibilities:

i. σ2 = σ1r
B
|Y2|+1

[Y2pY1 X1qX2s] where Y = Y1Y2 and σ3 = σ2r
B
|Y |+|X1|+2

= [qX1Y1p

Y2X2s]. Following through with this possibility we get ρ3 = [sX2Y2pY1 X1q]. We

need a path of length two from ρ3 to ρ1 = [pY2 Y1sX2 X1q]. As ρ1 has p in its first

position, p should be involved in only the second reversal. In order for this to be so,

without having to exchange the positions of Y1, it must be that |Y1| = 0. Then we get

ρ3r
B
|X2|+1

rB|X2|+|Y2|+2
= ρ1. Taking |X | = i − 1 and |X2| = j − 1 we get |Y2| =

k − i− j − 1 ≥ 0 and a cycle corresponding to (5.2).

ii. σ2 = σ1r
B
|Y |+|X12|+1

= [X12Y pX11qX2s] where X1 = X11X12 with |X12| ≥ 1

and σ3 = σ2r
B
|Y |+|X1|+2

= [qX11pY pX12X2s]. Following through with this pos-

sibility we get ρ3 = [sX2X12Y pX11q]. We need a path of length two from ρ3 to

ρ1 = [pY sX2 X12 X11q]. As ρ1 has p in its first position, p should be involved in

only the second reversal. We have ρ3r
B
|X2|+|X12|+1

rB|X12
|rB|X2|+|X12|+|Y |+2

= ρ1. This is

a path of length three which can be reduced to length two if and only if |X12| = 0. Since

|X12| ≥ 1 this possibility does not give any 9-cycle.

(b) If π1 = [qXsY p], then ρ1 = π1r
B
k = [pY sXq]. As π3 must have s in its first position,

s should be involved in both the reversals. This gives π2 = π1r
B
|X|+|Y1|+2

= [Y1sXqY2p]

where Y = Y1Y2, π3 = π2r
B
|Y1|+1

= [sY1XqY2p], and σ1 = π3r
B
k = [pY2qXY1s]. As σ3

must have q in its first position, q should be involved in both the reversals in the path from σ1

to σ3. This gives two possibilities:
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BPk−1(p)

BPk−1(q)

BPk−1(s)

BPk−1(t)

π1

π2

π3

τ2 τ1

σ2

σ1

ρ2ρ1

(a) pairwise different absolute values.

BPk−1(p)

BPk−1(q)

BPk−1(p)

BPk−1(t)

π1

π2

π3

τ2 τ1

π2

π1

ρ2ρ1

(b) equal absolute values non-adjacent.

Fig. 6: 9-cycles incident upon four copies of BPk−1 with vertex partition (3+2+2+2).

i. σ2 = σ1r
B
|X1|+|Y2|+2

= [X1qY2pX2Y1s] where X = X1X2 and σ3 = σ2r
B
|X1|+1

=

[qX1Y2pX2Y1s]. Following through with this possibility we get ρ3 = σ3r
B
k = [sY1X2p

Y2 X1q]. We need a path of length two from ρ3 to ρ1 = [pY2 Y1sX2 X1q]. As ρ1 has

pY2 in its prefix, X2 with the same sign and ordering of characters, but s will have the

opposite sign in ρ3, then pY2 and X2 must be part of both reversals but s must only be

part of one. This is only possible if |X2| = 0. Then ρ3r
B
|Y |+2

rB|Y2|+1
= ρ1. Taking

|X1| = j − 1, |Y1| = i − 1 we get |Y2| = k − i − j − 1 and a cycle corresponding to

(5.2).

ii. σ2 = σ1r
B
|X|+|Y2|+|Y12|+2

= [Y12XqY2pY11s] where Y1 = Y11Y12 with |Y12| ≥ 1 and

σ3 = σ2r
B
|X|+|Y12|+1

= [qXY12Y2pY11s]. Following through with this possibility we

get ρ3 = σ3r
B
k = [sY11pY2Y12Xq]. We need a path of length two from ρ3 to ρ1 =

[pY2 Y12 Y11sXq]. As ρ1 has p in its first position, p should be involved in both the rever-

sals in this path. However, it can be seen that ρ3r
B
|Y11|+|Y12|+|Y2|+2

rB|Y12|
rB|Y12|+|Y2|+1

=

ρ1. This is a path of length three within BPk−1(q) which can be reduced to length two

if and only if |Y12| = 0 but by assumption |Y12| ≥ 1. Therefore this possibility does not

yield a 9-cycle.

CASE III :- A cycle incident upon four copies of BPk−1.

Due to the constraints on the part sizes in our partition, there can be only one possibility (3+2+2+2).

Let the four copies used be BPk−1(p), BPk−1(q), BPk−1(s), and BPk−1(t) with three vertices in

BPk−1(p) and two vertices in each of the other copies. Let us assume, without loss of generality,

that one vertex of BPk−1(p) is adjacent to a vertex of BPk−1(q). Here the absolute values of

p, q, s, and t may not be distinct. By Lemma 5.1 only non-adjacent copies can have the same

absolute value. This gives rise to three subcases, which we describe below.
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BPk−1(p)

BPk−1(q)

BPk−1(s)

BPk−1(q)

π1

π2

π3

ρ2 ρ1

σ2

σ1

ρ2ρ1

(c) equal absolute values non-adjacent

BPk−1(p)

BPk−1(q)

BPk−1(p)

BPk−1(q)

π1

π2

π3

ρ2 ρ1

π2

π1

ρ2ρ1

(d) two pairs of equal absolute values.

Fig. 6: 9-cycles incident upon four copies of BPk−1 with vertex partition (3+2+2+2).

(a) The absolute values of p, q, s and t are pairwise different (see Figure 6a).

Since none are opposites, p, q, s, and t, or their opposites, are present in all the signed permu-

tations in the cycle. Then depending upon the relative position and signs of s and t in our first

signed permutation four cases arise. Since ρ2 is two reversals away from π1 with one revers-

ing all elements and ρ2 must begin with s it is necessary that s be in π1. The four possible

cases of π1 are [qXsY tZp], [qXsY tZp], [qXtY sZp], and [qXtY sZp].

i. If π1 = [qXsY tZp], then ρ1 = π1r
B
k = [pZtY sXq], ρ2 = ρ1r

B
|Y |+|Z|+3

= [sY tZp

Xq], and σ1 = ρ2r
B
k = [qXpZtY s]. Now σ2 must have t in its first position, which is

not possible in one reversal from σ1. So this case does not yield any 9-cycles.

ii. If π1 = [qXsY tZp], then ρ1 = π1r
B
k = [pZtY sXq], ρ2 = ρ1r

B
|Y |+|Z|+3

= [sY tZp

Xq], σ1 = ρ2r
B
k = [qXpZtY s], σ2 = σ1r

B
|X|+|Z|+3

= [tZpXqY s], and τ1 = σ2r
B
k =

[sY qXpZt]. Now τ2 must have p in its first position, which is not possible in one reversal

from τ1. So this case does not yield any 9-cycles.

iii. If π1 = [qXtY sZp], then ρ1 = π1r
B
k = [pZsY tXq], ρ2 = ρ1r

B
|Z|+2

= [sZpY tXq],

σ1 = ρ2r
B
k = [qXtY pZs], σ2 = σ1r

B
|X|+2

= [tXqY pZs], τ1 = σ2r
B
k = [sZpY qXt],

τ2 = τ1r
B
|Z|+2

= [pZsY qXt], and π3 = τ2r
B
k = [tXqY sZp]. We need a path of length

two from π3 to π1, however, π3r
B
|X|+2

= π1 which is a path of length one. As there are

no 3-cycles in the burnt pancake graph, a path of length two between π3 and π1 does not

exist. Hence this case does not yield any 9-cycles.

iv. If π1 = [qXtY sZp], then ρ1 = π1r
B
k = [pZsY tXq], ρ2 = ρ1r

B
|Z|+2

= [sZpY tXq],

and σ1 = ρ2r
B
k = [qXtY pZs]. Now σ2 must have t in its first position, which is not

possible in one reversal from σ1. So this case does not yield any 9-cycles.

(b) The absolute values of only one pair among p, q, s, t are the same. This gives rise to two cases.

One where the pair of copies with opposite signed last elements have only two vertices each.
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The other where the pair of copies with opposite signed last elements includes the one copy

with three vertices.

i. Say that s = p, |q| 6= |t| (see Figure 6b). In this case π1 can be either [qXtY p] or

[qXtY p].

If π1 = [qXtY p], then ρ1 = π1r
B
k = [pY tXq], ρ2 = ρ1r

B
1 = [pY tXq], π1 = ρ2r

B
k =

[qXtY p], π2 = π1r
B
|X|+2

= [tXqY p], τ1 = π2r
B
k = [pY qXt], τ2 = τ1r

B
1 = [pY qXt],

and π3 = τ2r
B
k = [tXqY p]. We need a path of length two from π3 to π1 but π3r

B
|X|+2

=
π1 which is a path of length one. As there are no 3-cycles in the burnt pancake graph a

path of length two between π3 and π1 does not exist. Hence this case does not yield any

9-cycle.

If π1 = [qXtY p], then ρ1 = π1r
B
k = [pY tXq], ρ2 = ρ1r

B
1 = [pY tXq], π1 = ρ2r

B
k =

[qXtY p]. As π2 must have t in its first position, which is not possible in one reversal

from π2. So this case does not yield a 9-cycle.

ii. Say that t = q, |p| 6= |s| (see Figure 6c).

As ρ2 will have s at first position π1 = [qXsY p]. This gives ρ1 = π1r
B
k = [pY sXq],

ρ2 = ρ1r
B
|Y |+2

= [sY pXq], σ1 = ρ2r
B
k = [qXpY s], σ2 = σ1r

B
1 = [qXpY s], ρ1 =

σ2r
B
k = [sY pXq], ρ2 = ρ1r

B
|Y |+2

= [pY sXq], π3 = ρ2r
B
k = [qXsY p]. We need a path

of length two from π3 to π1 but π3r
B
1 = π1 which is a path of length one. As there are no

3-cycles in burnt pancake graph a path of length two between π3 and π1 does not exist.

Hence this case does not give any 9-cycle.

(c) The absolute values of the two pairs among p, q, s, t are the same, i.e s = p and t = q (see

Figure 6d).

Let π1 = [qXp]. This gives ρ1 = π1r
B
k = [pXq], ρ2 = ρ1r

B
1 = [pXq], π1 = ρ2r

B
k = [qXp],

π2 = π1r
B
1 = [qXp], ρ1 = π2r

B
k = [pXq], ρ2 = ρ1r

B
1 = [pXq], and π3 = ρ2r

B
k = [qXp].

We need a path of length two from π3 to π1 but π3r
B
1 = π1, which is a path of length one. As

there are no 3-cycles in the burnt pancake graph a path of length two between π3 and π1 does

not exist. Hence this case does not yield any 9-cycle.

So there are no cycles of the form (3+2+2+2) in the burnt pancake graph.

This finalizes all possible partitions of the vertices, and thus gives all possible 9-cycles in BPk. ✷

6 Concluding Remarks

In the preceding sections, we have provided explicit formulas for the number of pancake and burnt pancake

stacks with n pancakes that require four flips to be sorted, utilizing entirely elementary methods using

cycle classification of the pancake and burnt pancake graph and the principle of inclusion-exclusion, as

well as providing a classification of all 9-cycles in the burnt pancake graph.

Having a classification of longer cycles in Pn andBPn might allow us to take a similar approach to what

we used in the proof of Theorem 3.3 and Theorem 4.3. Currently, there is no published classification of

the 10-cycles for either Pn and BPn. The authors have worked out said classification, though the number

of canonical forms alone makes it hard to do a systematic, manual approach using PIE. For example, we
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found 59 canonical forms for 10-cycles in Pn and 8 canonical forms for 10-cycles in BPn. However, the

process would be extremely tedious.

Utilizing structural characteristics of permutations satisfying certain properties, Homberger and Vat-

ter [HV16] gave an algorithm that can be used to enumerate certain permutations. In particular, they

prove that for “sufficiently large” n, the number of permutations of [n] that can be sorted with k prefix

reversals is given by a polynomial. More specifically, if one defines

R̃k(n) :=

k∑

i=0

Ri(n), (6.1)

then for sufficiently large n, R̃k(n) is given by a polynomial. From (6.1) it is possible to compute Rk(n)

from R̃k(n) if Ri(n) is known for 0 ≤ i < k. In this light, and using the output of the Homberger-Vatter

algorithm from [HV16] for R̃k(n) with k = 5, 6, one obtains the following.

1. If n ≥ 5, then

R5(n) =
1

6

(
6n5 − 65n4 + 173n3 + 296n2 − 1724n+ 1590

)
.

2. If n ≥ 6, then

R6(n) =
1

60

(
60n6 − 883n5 + 3140n4 + 10775n3 − 91400n2 + 171068n− 58020

)
.

These polynomials explain all the nonzero values for the columns k = 5, 6 in Table 1. The situation

for k > 6 is a bit more interesting, as the polynomial obtained by the Homberger-Vatter algorithm does

not explain all nonzero values of Rk(n). Indeed, their algorithm produces polynomials that are valid for

“sufficiently large” n. For example, the algorithm correctly computes R̃7(n) if n > 7. Indeed, if n > 7,

R7(n) = R̃7(n)−

6∑

i=1

Ri(n)

=
1

240
(240n7 − 4619n6 + 21881n5 + 109275n4− 1372445n3+

4476344n2− 4550196n− 850320). (6.2)

However, (6.2) does not account for R7(6) = 2 and R7(7) = 1016. Therefore, there is no polynomial

that would explain all the nonzero values of R7(n).

After computing R̃8(n) using the Homberger-Vatter algorithm, which took several days using a system

with Dual Xeon CPUs and 256GB of RAM, we found a polynomial that explains most of the nozero

entries of the column k = 8 in Table 1. Namely, if n > 7,
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R8(n) = R̃8(n)−
7∑

i=1

Ri(n)

=
1

5040
(5040n8 − 122683n7 + 759857n6 + 4519067n5− 79101715n4+

364661948n3− 561161062n2− 267373812n+ 844945920). (6.3)

Once again, (6.3) does not account for R8(7) = 35, so once again, there is no polynomial that explains

all the nonzero values of R8(k).
The situation for RB

k (n) does not seem to be as mysterious. While the Homberger-Vatter algorithm

does not apply to signed permutations, the numbers RB
k (n) seem to be given by polynomials. Using a

standard polynomial fitting procedure with the data from Table 2, we obtain the following conjecture.

Conjecture 6.1 If n ≥ 1, then

(i) RB
5 (n) =

1

6
n(n− 1)(n− 2)(6n2 − 17n+ 3),

(ii) RB
6 (n) =

1

60
n(n− 1)(n− 2)(60n3 − 343n2 + 401n+ 284),

(iii) RB
7 (n) =

1

240
n(n− 1)(n− 2)(n− 3)(240n3 − 1499n2 + 925n+ 5104),

(iv) RB
8 (n) =

1

5040
n(n− 1)(n− 2)(n− 3)(5040n4 − 52123n3 + 113415n2 + 314716n− 1027242),

and

(v) RB
9 (n) =

1

40320
(n− 1)(n− 2)(n− 3)(n− 4)(40320n5− 444061n4+644746n3+6638777n2−

18991470n).

These polynomials also conveniently explain the zero entries of Table 2, which seems to indicate that

RB
k (n) are better behaved than those of Rk(n).
Another question that might give interesting results is proving any summation identities that Rk(n) or

RB
k (n) satisfy. From their definitions, it is clear that

∑

k≥0

Rk(n) = |Sn| = n!

and that ∑

k≥0

RB
k (n) = |Bn| = 2nn!.

Notice that determining the maximum value of k, for a given n, such that Rk(n) (or RB
k (n)) is not zero

is equivalent to the classic pancake problem (or the burnt pancake problem).

A less trivial identity can be found by looking at the explicit formulas that describe the nonzero values

of Rk(n) for 0 ≤ k ≤ 6, namely, we have the following Corollary.

Corollary 6.2 If k ≤ 6 and Rk(n− i) > 0 for 1 ≤ i ≤ k + 1, then

Rk(n) =

k+1∑

i=1

(−1)i+1

(
k + 1

i

)
Rk(n− i).
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Since the polynomials (6.2) and (6.3) do not cover the values R7(6), R7(7), and R8(7), Corollary 6.2

would once again require n to be “sufficiently large.”

For signed permutations, we have observed the following identity, which would follow from RB
k (n)

being integer-valued polynomials and by using the Gregory-Newton interpolation formula for integer-

valued polynomials (for background see [CC97]).

Conjecture 6.3 If k, n ≥ 1, then

RB
k (n) =

k∑

j=1

(
k−j∑

i=0

(−1)i
(
i+ j − 1

i

)(
n

i+ j

))
RB

k (j), for k ≥ 1.

We have verified Conjecture 6.3 for all the values in Table 2. This conjecture would follow from a

result similar to Homberger-Vatter giving that the RB
k (n) are all polynomials and continue to explain the

zero and nonzero values.
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