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A graph G is equitably k-choosable if, for any given k-uniform list assignment L, G is L-colorable and each color
appears on at most d |V (G)|

k
e vertices. A graph is equitably k-colorable if the vertex set V (G) can be partitioned into

k independent subsets V1, V2, · · ·, Vk such that ||Vi| − |Vj || ≤ 1 for 1 ≤ i, j ≤ k. In this paper, we prove that if G
is a planar graph without chordal 4- and 6-cycles, then G is equitably k-colorable and equitably k-choosable where
k ≥ max{∆(G), 7}.
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1 Introduction
The terminology and notation used but undefined in this paper can be found in Bondy and Murty (1976).
Let G = (V,E) be a graph. We use V (G), E(G), ∆(G) and δ(G) to denote the vertex set, edge set,
maximum degree and, minimum degree of G, respectively. Particularly, we use F (G) to denote the face
set of G when G is a plane graph. Let dG(x) or simply d(x), denote the degree of a vertex (resp. face) x
in G. A vertex (resp. face) x is called a k-vertex (resp. k-face), k+-vertex (resp. k+-face), k−-vertex
or k−−-vertex, if d(x) = k, d(x) ≥ k, 2 ≤ d(x) ≤ k, or 1 ≤ d(x) ≤ k. We use (d1, d2, · · · , dn) to
denote a face f if d1, d2, · · · , dn are the degrees of vertices incident with the face f where 3 ≤ n ≤ 5.
Let δ(f) denote the minimal degree of vertices incident with f . In the following, let fi(v) denote the
number of i-faces incident with v for each v ∈ V (G). Let ni(f) denote the number of i-vertices which
are incident with f . A graph G is k-degenerate if every subgraph of G has a vertex of degree at most k.
A cycle C of length k is called a k-cycle. Moreover, if there exists an edge xy ∈ E(G) − E(C) and x,
y ∈ V (C), then the cycle C is called a chordal k-cycle.

A proper k-coloring of a graph G is a mapping π from the vertex set V (G) to the set of colors
{1, 2, · · · , k} such that π(x) 6= π(y) for every edge xy ∈ E(G). A graph G is equitably k-colorable
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if G has a proper k-coloring such that the sizes of the color classes differ by at most 1. The equitable
chromatic number of G, denoted by χe(G), is the smallest integer k such that G is equitably k-colorable.
The equitable chromatic threshold of G, denoted by χ∗e(G), is the smallest integer k such that G is eq-
uitably l-colorable for every l ≥ k. It is obvious that χe(G) ≤ χ∗e(G) for any graph G. However these
two parameters may not be the same. For example, if K2n+1,2n+1 (n is a positive integer) is a complete
bipartite graph, then χe(K2n+1,2n+1) = 2, χ∗e(K2n+1,2n+1) = 2n+ 2.

In many applications of graph coloring, it is desirable that the color classes are not too large. For
example, when using a coloring model to find an optimal final exam schedule, one would like to have
approximately equal number of final exams in each time slot because the whole exam period should be as
short as possible and the number of classrooms available is limited. Recently, Pemmaraju (2001), Janson
and Ruciński (2002) used equitable colorings to derive deviation bounds for sums of dependent random
variables that exhibit limited dependence. In all of these applications, the fewer colors we use, the better
the deviation bound is. Equitable coloring has a well-known property that restricts the size of each color
class by its definition.

In 1970, Hajnal and Szemerédi (1970) proved that χ∗e(G) ≤ ∆(G) + 1 for any graph G. This bound
is sharp as the example of K2n+1,2n+1 shows. In 1973, Meyer (1973) introduced the notion of equitable
coloring and made the following conjecture.

Conjecture 1 If G is a connected graph which is neither a complete graph nor odd cycle, then χe(G) ≤
∆(G).

In 1994, Chen et al. (1994) put forth the following conjecture.

Conjecture 2 For any connected graph G, if it is different from a complete graph, a complete bipartite
graph and an odd cycle, then χ∗e(G) ≤ ∆(G).

Chen et al. (1994); Chen and Lih (1994) proved Conjecture 2 for graphs with ∆(G) ≤ 3 or ∆(G) ≥
|V (G)|

2 . Recently, Chen and Yen (2012) improved the former result and confirmed the Conjecture 2 for
graphs with ∆(G) ≥ |V (G)|

3 + 1. Yap and Zhang (1997, 1998) showed that Conjecture 2 holds for
planar graphs with ∆(G) ≥ 13. Recently, Nakprasit (2012a) confirmed the Conjecture 2 for planar
graphs with ∆(G) ≥ 9. Lih and Wu (1996) verified χ∗e(G) ≤ ∆(G) for bipartite graphs other than
complete bipartite graphs. Wang and Zhang (2000) proved Conjecture 2 for line graphs, and Kostochka
and Nakprasit (2003, 2005) proved it for graphs with low average degree, and d-degenerate graphs with
∆(G) ≥ 14d + 1. Yan and Wang (2014) showed that Conjecture 2 holds for Kronecker products of
complete multipartite graphs and complete graphs. Wu and Wang (2008), Luo et al. (2010) confirmed
Conjecture 2 for some planar graphs with large girth, respectively. Recently, Li and Bu (2009), Zhu
and Bu (2008), Dong et al. (2012a,b, 2013), Nakprasit (2012b) confirmed Conjecture 2 for some planar
graphs with some forbidden cycles, respectively. Zhang and Wu (2011), Zhu et al. (2013) verified the
Conjecture 2 for some series-parallel graphs and outerplanar graphs, respectively.

For a graphG and a list assignment L assigned to each vertex v ∈ V (G) a set L(v) of acceptable colors,
an L-coloring of G is a proper vertex coloring such that for every v ∈ V (G) the color on v belongs to
L(v). A list assignment L for G is k-uniform if |L(v)| = k for all v ∈ V (G). A graph G is equitably
k-choosble if, for any k-uniform list assignment L, G is L-colorable and each color appears on at most
d |V (G)|

k e vertices.
In 2003, Kostochka, Pelsmajer and West investigated the equitable list coloring of graphs. They pro-

posed the following conjectures in Kostochka et al. (2003).
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Conjecture 3 Every graph G is equitably k-choosable whenever k > ∆(G).

Conjecture 4 If G is a connected graph with maximum degree at least 3, then G is equitably ∆(G)-
choosable, unless G is a complete graph or is Kk,k for some odd k.

It has been proved that Conjecture 3 holds for graphs with ∆(G) ≤ 3 in Pelsmajer (2004); Wang and
Lih (2004) and graphs with ∆(G) ≤ 7 in Kierstead and Kostochka (2012). Kostochka, Pelsmajer and
West proved that a graph G is equitably k-choosable if either G 6= Kk+1,Kk,k (with k odd in Kk,k) and
k ≥ max{∆, |V (G)|

2 }, or G is a connected interval graph and k ≥ ∆(G) or G is a 2-degenerate graph
and k ≥ max{∆(G), 5} in Kostochka et al. (2003). Pelsmajer proved that every graph is equitably k-
choosable for any k ≥ ∆(G)(∆(G)−1)

2 + 2 in Pelsmajer (2004). Bu and his collaborators have established
a series results for Conjecture 4 in class of planar graph as follows Li and Bu (2009); Zhu and Bu (2008);
Zhu et al. (2013); Zhu and Bu (2010). Zhang and Wu proved Conjecture 4 for series-parallel graphs
in Zhang and Wu (2011). Some improved results on planar graphs were obtained in Dong et al. (2012a),
Dong et al. (2012b) and Dong et al. (2013).

In this paper, we improve the result in Li and Bu (2009) and confirm the Conjecture 2, Conjecture 4
for some planar graphs in which 4- and 6-cycles are allowed to exist, which shows that if G is a planar
graph without chordal 4- and 6-cycles, then G is equitably k-colorable and equitably k-choosable where
k ≥ max{∆(G), 7}.

2 Planar graphs without chordal 4- and 6-cycles
First let us introduce some lemmas.
Lemma 2.1 Let G be a planar graph without chordal 4- or 6-cycles. Then in G, there is no 3-cycle
adjacent to a 3-cycle, nor a 4-cycle adjacent to two 3-cycles. Furthermore, if δ(G) ≥ 3, then there is no
3-cycle adjacent to a 5-cycle, nor a 4-cycle adjacent to a 4-cycle.

By Lemma 2.1, we have the following lemma.

Lemma 2.2 Let G be a planar graph with δ(G) ≥ 3 and f be a 3-face which is incident with a 3-vertex
in G. Then f is adjacent to at least one 6+-face.

Lemma 2.3 Let G be a planar graph without chordal 4- and 6-cycles. If δ(G) ≥ 4, then G contains the
configuration H depicted in Figure 1.

Proof: Suppose to the contrary thatG does not contain the configurationH depicted in Figure 1, i.e. none
of the (4, 4, 4)-faces is adjacent to a (4, 4, 4, 4)-face.

By Euler’s formula, we have∑
v∈V (G)

(2d(v)− 6) +
∑

f∈F (G)

(d(f)− 6) = −6(|V | − |E|+ |F |) = −12. (1)

Define an initial charge function w on V (G) ∪ F (G) by setting w(v) = 2d(v) − 6 if v ∈ V (G) and
w(f) = d(f)− 6 if f ∈ F (G), then

∑
x∈V (G)∪F (G) w(x) = −12 by Equation (1). Now redistribute the

charges according to the following discharging rules.
D1. If f is a 3-face incident with a vertex v, then v gives 1 to f if d(v) = 4 and f is a (4, 4, 4)-face, v
gives 3

4 if d(v) = 4 and f is a 3-face of another type, and v gives 3
2 if d(v) ≥ 5.
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Fig. 1:

D2. If f is a 4-face incident with a vertex v, then v gives 1
2 to f if d(v) = 4 and f is a (4, 4, 4, 4)-face, v

gives 2
5 if d(v) = 4 and f is a 4-face of another type, and v gives 4

5 if d(v) ≥ 5.
D3. Transfer 1

5 from each vertex v to the 5-face which is incident with v.

Let the new charge of each element x ∈ V (G) ∪ F (G) be w′(x). In the following, we will show that∑
x∈V (G)∪F (G) w

′(x) ≥ 0, a contradiction to Equation (1). This will complete the proof.

Consider any vertex v ∈ V (G), suppose d(v) = 4. Then w(v) = 2, f3(v) ≤ 2 by Lemma 2.1.
First, we assume that f3(v) = 2. Then f4(v) = 0 and f5(v) = 0 by Lemma 2.1. Thus w′(v) ≥

2− 1× 2 = 0 by D1.
Now we assume that f3(v) = 1. Then f4(v) ≤ 2 by Lemma 2.1. If f4(v) = 2, then f5(v) ≤ 1. Since

G does not contain the configuration H depicted in Figure 1, thus w′(v) ≥ 2 − 1 − 2
5 × 2 − 1

5 = 0 or
w′(v) ≥ 2− 3

4 −
1
2 × 2− 1

5 = 1
20 > 0 by D1, D2 and D3. If f4(v) ≤ 1, then f5(v) ≤ 1 by Lemma 2.1.

Thus w′(v) ≥ 2− 1− 1
2 −

1
5 = 3

10 > 0 by D1, D2 and D3.
Now we assume that f3(v) = 0. Then f4(v) ≤ 2, f5(v) ≤ 4 by Lemma 2.1. Thus w′(v) >

2− 1
2 × 2− 1

5 × 4 = 1
5 > 0 by D2 and D3.

Suppose d(v) = 5. Then w(v) = 4, f3(v) ≤ 2 by Lemma 2.1. If f3(v) = 2, then f4(v) ≤ 1 and
f5(v) = 0 by Lemma 2.1. Thus w′(v) ≥ 4 − 3

2 × 2 − 4
5 = 1

5 > 0 by D1 and D2. If f3(v) = 1, then
f4(v) ≤ 2 and f5(v) ≤ 2 by Lemma 2.1. Thus w′(v) ≥ 4− 3

2 −
4
5 × 2− 1

5 × 2 = 1
2 > 0 by D1, D2 and

D3. If f3(v) = 0, then f4(v) ≤ 2 and f5(v) ≤ 5 by Lemma 2.1. Thusw′(v) > 4− 4
5×2− 1

5×5 = 7
5 > 0

by D2 and D3.

Suppose d(v) ≥ 6. Then w(v) = 2d(v) − 6, f4(v) ≤ d(v) − 2f3(v), f5(v) ≤ d(v) − 2f3(v) by
Lemma 2.1. So w′(v) ≥ 2d(v)− 6− 3

2f3(v)− 4
5f4(v)− 1

5f5(v) ≥ d(v)− 6 + 1
2f3(v) ≥ d(v)− 6 ≥ 0

by D1, D2 and D3.

Consider any face f ∈ F (G), suppose d(f) = 3. Then w(f) = −3. If f is a (4, 4, 4)-face, then
w′(f) = −3 + 1× 3 = 0 by D1. Otherwise, w′(f) ≥ −3 + 3

4 + 3
4 + 3

2 = 0 by D1.

Suppose d(f) = 4. Then w(f) = −2. If f is a (4, 4, 4, 4)-face, we have that w′(f) ≥ −2 + 1
2 × 4 = 0

by D2. Otherwise, w′(f) ≥ −2 + 2
5 × 3 + 4

5 = 0 by D2.
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Suppose d(f) = 5. Then w(f) = −1. We have w′(f) ≥ −1 + 1
5 × 5 = 0 by D3.

Suppose d(f) ≥ 6. Then w′(f) = w(f) ≥ 0. 2

Lemma 2.4 (Zhu and Bu (2008)) Let S = {x1, x2, · · · , xk} be a set of k different vertices in G such that
G − S has an equitable k-coloring. If |NG(xi) − S| ≤ k − i for 1 ≤ i ≤ k, then G has an equitable
k-coloring.

Lemma 2.5 (Kostochka et al. (2003)) Let G be a graph with a k-uniform list assignment L. Let S =
{x1, x2, · · · , xk}, where x1, x2, · · · , xk are distinct vertices in G. If G − S has an equitable L-coloring
and |NG(xi)− S| ≤ k − i for 1 ≤ i ≤ k, then G has an equitable L-coloring.

Lemma 2.6 (Borodin (1996)) Every planar graph without adjacent triangles is 4-degenerate.

By Lemma 2.6, we have the following corollary.

Corollary 2.7 Let G be a planar graph without chordal 4-cycles. Then G is 4-degenerate.

Lemma 2.8 LetG be a connected planar graph with order at least 5 and without chordal 4- and 6-cycles.
If δ(G) ≤ 3, then G has at least one of the configurations depicted in Figure 2.
Proof: Suppose to the contrary that G does not contain the configurations H1 . . . H41 depicted in Figure
2.
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Fig. 2:

Each configuration depicted in Figure 2 is such that: (1) the vertices labelled xk, xk−1, xk−2 are
distinct and the other vertices may coincide if they have the same degree and multiple edges cannot be
resulted in; (2) solid vertices have no incident edges other than the ones shown; and (3) except for being
specially pointed, the degree of a hollow vertex may be any integer from [d,∆(G)], where d is the number
of edges incident with the hollow vertex shown in the configuration; (4) the order of the vertices on the
boundary of a 4-face can be rearranged except for the vertex which is also adjacent to other labelled
vertex that is not on the boundary of the 4-face.

A face is said to be a special face if it is a (3, 3, 5+)-face, (3, 4, 4)-face, (3, 4, 5)-face or a (3, 4, 6)-
faces. In the following, we call a 3-vertex a special 3-vertex if it is incident with a special face, otherwise,
it is called a simple 3-vertex.

Since G contains neither H1 nor H2, we obtain the following property.

Claim 1 There is at most one special face in G.

By Claim 1, G has at most two special 3-vertices. For convenience, let n3(v) denote the number of
simple 3-vertices adjacent to v for each v ∈ V (G). Since G contains neither H3 nor H4, we can conclude
the following properties.

Claim 2 For each v ∈ V (G) with d(v) ≥ 4, if v is adjacent to a simple 3-vertex which is adjacent to two
3−−-vertices, then it is not adjacent to another 4−−-vertex.

Claim 3 For any v ∈ V (G) with d(v) ≥ 4, v is adjacent to at most one simple 3-vertex which is adjacent
to another 3−−-vertex.

By Euler’s formula |V | − |E|+ |F | = 2 and
∑
v∈V (G) d(v) =

∑
f∈F (G) d(f) = 2|E|, thus

∑
v∈V (G)

(3d(v)− 10) +
∑

f∈F (G)

(2d(f)− 10) = −10(|V | − |E|+ |F |) = −20. (2)

Define an initial charge function w on V (G) ∪ F (G) by setting w(v) = 3d(v) − 10 if v ∈ V (G) and
w(f) = 2d(f)− 10 if f ∈ F (G).

In the following, we divide the proof into four cases.

Case 1. δ(G) = 3.
Since G does not contain the configuration H5, G has the following property.
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Fact 1 Any 3-face in G is a (3, 3, 5+)-, (3, 4+, 4+)- or (4+, 4+, 4+)-face, i.e. there is no (3, 3, 4−)-face.

Since G does not contain the configuration H6, G has the following property.

Fact 2 Any 4-face in G is a (3, 3, 5+, 5+)-, (3, 4+, 4+, 4+)- or (4+, 4+, 4+, 4+)-face, i.e. there is no
(3, 3, 3, 3+)- or (3, 3, 4, 4+)-face.

For convenience, if a face is a (3, 3, 5, 5+)- or (3, 4, 5−, 6−)-face, then we call it a bad face. The
3-vertex which is incident with a bad face is said to be a bad 3-vertex. If a vertex v is adjacent to a bad
3-vertex w and v is not incident with the bad face f which is incident with the vertex w, then we say that
v is weakly incident with the bad face f .

Now redistribute the charge according to the following discharging rules.

• R1. Transfer 1 from each 5+-vertex to every adjacent simple 3-vertex which is adjacent to
exactly two 3−−-vertices.

• R2. Transfer 1
2 from each 4+-vertex to every adjacent simple 3-vertex which is adjacent to

exactly one 3−−-vertex.

• R3. Transfer 1
3 from each 4+-vertex to every adjacent simple 3-vertex which is not adjacent

to any 3−−-vertex.

• R4. Transfer 1
3 from each 6+-face f to every adjacent 3-face and 4-face via each common

edge.

• R5. If f is a 4-face incident with a vertex v, then v gives 1
2 to f if d(v) = 4 and f is a

(3, 4, 5−, 5−)- or (4, 4, 4, 4+)-face, 1
3 if d(v) = 4 and f is either a (3, 4, 4+, 6+)- or a (4, 4+, 5+, 5+)-

face;
1
2 if d(v) = 5 and f is a (5, 5+, 5+, 5+)-face; 2

3 if d(v) = 5 and f is a 4-face of another type;

1 if d(v) = 6 and f is a (3, 3, 6, 6+)- or (3, 4, 6, 4+)-face, 2
3 if d(v) = 6 and f is a (3, 6, 5+, 5+)-

or (4+, 6, 4+, 4+)-face;
4
3 if d(v) ≥ 7.

• R6. If f is a 3-face incident with a vertex v with d(v) = 4, then v gives 2
3 to f if f is a (3, 4, 4+)-

face, 4
3 if f is a (4, 4, 4)-face, 1 if f is a (4, 4, 5+)- or (4, 5, 5+)-face, 0 if f is a (4, 6+, 6+)-face;

If f is a 3-face incident with a vertex v with d(v) = 5, then v gives 11
6 to f if f is a (3, 5, 3+)-

face, 2 if f is a (4, 4, 5)- or (4, 5, 5)-face, 4
3 if f is a (5, 5, 5)-face, 1 if f is a (4, 5, 6+)-, (5, 5, 6+)-

or (5, 6+, 6+)-face;

If f is a 3-face incident with a vertex v with d(v) = 6, then v gives 2 to f ;

If f is a 3-face incident with a vertex v with d(v) ≥ 7, then v gives 3 to f if f is a (3, 3, 7+)- or
(3, 4, 7+)-face, 2 if f is a (3, 5+, 7+)- or (4+, 4+, 7+)-face.

• R7. If f is a bad face and v is weakly incident with f , then v gives charge 1
2 to f .
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In the following, let us check the new charge of each element x for x ∈ V (G) ∪ F (G).
For convenience, we use fαk (v) (respectively, nα3 (v)) to denote the number of k-faces (respectively,

3-vertices) which are incident with v and receive charge at least α from v according to the discharging
rules.

By Claim 2, Claim 3, R1, R2 and R3, we have the following fact.

Fact 3 For each v ∈ V (G), obviously, n
1
2
3 (v) ≤ 1, and if n1

3(v) 6= 0, then n3(v) = 1 and the degrees of
other neighbors of v are at least 5.

Since G contains no configurations H7 and H8, thus the following fact holds.

Fact 4 For each v ∈ V (G), v is weakly incident with at most one bad face. Furthermore, if v is weakly
incident with a bad face, then n3(v) = 1.

Let v ∈ V (G). Suppose d(v) = 3. Then w(v) = −1. Since G contains no configuration H9, v is not
weakly incident with any bad face. Since G contains no configuration H10, v is adjacent to at least one
5+-vertex or is adjacent to at least two 4+-vertices. If v is a simple 3-vertex, then w′(v) = −1 + 1 = 0
by R1, w′(v) = −1 + 1

2 × 2 = 0 by R2 or w′(v) = −1 + 1
3 × 3 = 0 by R3. Otherwise, i.e. if v is a

special 3-vertex, then w′(v) = w(v) = −1.

Suppose d(v) = 4. Then w(v) = 2.
First, we assume that v is weakly incident with a bad face. Since G contains no configuration H11, we

have f3(v) ≤ 1. Additionally, if fα3 = 1, we have α = 0 because G contains no configuration H12 and
by R6. By Lemma 2.1, we have f4(v) ≤ 1. Clearly, w′(v) ≥ 2− 1

2 −
1
2 −

1
2 = 1

2 > 0 by Fact 4, R2, R5
and R7.

Now we assume that v is not weakly incident with a bad face. Clearly, we have f3(v) ≤ 2. For conve-
nience, we divide the proof into the following cases.

Case 1.1 f3(v) = 2. Then n3(v) ≤ 1, f4(v) = 0 for the reason that G contains no configuration H13,

by Fact 1 and Lemma 2.1. If f3(v) = 2, n3(v) = 1, then we have that f
4
3

3 (v) = 0 and n
1
2
3 (v) = 0 for the

reason thatG contains no configurationsH15,H14 and byR6,R2,R1. Clearly,w′(v) ≥ 2− 2
3−1− 1

3 = 0

by R6 and R3. If f3(v) = 2, n3(v) = 0 and f
4
3

3 (v) 6= 0, then we have that w′(v) ≥ 2 − 4
3 = 2

3 > 0 for

the reason that G contains no configuration H15 and by R6. If f3(v) = 2, n3(v) = 0 and f
4
3

3 (v) = 0,
then we have that w′(v) ≥ 2− 1× 2 = 0 by R6.

Case 1.2 f3(v) = 1. Then f4(v) ≤ 2 by Lemma 2.1.
Case 1.2.1 f4(v) = 2.

If f4(v) = 2 and the 3-face incident with v is a (3, 4, 4+)-face, then n3(v) = 1 and n
1
2
3 (v) = 0 for the

reason that G contains no configurations H13, H14 and by R2, R1. Thus w′(v) ≥ 2− 2
3 −

1
2 × 2− 1

3 = 0
by R6, R5, R3.

If f4(v) = 2 and the 3-face incident with v is a (4, 4, 4)-face, then n3(v) = 0, f
1
2

4 (v) = 0 for the reason
that G contains no configuration H16 and R5. Thus w′(v) ≥ 2− 4

3 −
1
3 × 2 = 0 by R6, R5.

If f4(v) = 2 and the 3-face is a (4, 4, 5+)- or (4, 5, 5+)-face, then n3(v) ≤ 1 for the reason that G
contains no configuration H17. First, we assume n3(v) = 1. Since G contains no configurations H18,
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H19 and by R5, we have that f
1
2

4 (v) = 0. So w′(v) ≥ 2− 1− 1
3 × 2− 1

3 = 0 by R6, R5 and R3. Now,
we assume that n3(v) = 0. Thus w′(v) > 2− 1− 1

2 × 2 = 0 by R6 and R5.

If f4(v) = 2 and the 3-face is a (4, 6+, 6+)-face, then f
2
3

3 (v) = 0 by R6. Furthermore, as n3(v) ≤ 2,
we have that w′(v) > 2− 1

2 × 2− 1
3 −

1
2 = 1

6 > 0 by R5, R3 and R2. By Fact 1, this concludes the case
where f4(v) = 2.

Case 1.2.2 f4(v) = 1.
If f4(v) = 1 and the 3-face is a (4, 4, 4)-face, then n3(v) = 0 for the reason that G contains no

configurations H16, H20 and H21. Thus w′(v) ≥ 2− 4
3 −

1
2 = 1

6 > 0 by R6 and R5.

If f4(v) = 1 and the 3-face is a (4, 4, 5+)- or (4, 5, 5+)-face, then n3(v) = 1 and n
1
2
3 (v) = 0 for the

reason that G contains no configurations H17, H22 and by R2, R1. Thus w′(v) ≥ 2−1− 1
2 −

1
3 = 1

6 > 0
by R6, R5, R3.

If f4(v) = 1 and the 3-face is a (3, 4, 4+)-face, then n3(v) = 1 and n
1
2
3 (v) = 0 for the reason that G

contains no configurations H13 and H14 and by R2, R1. Thus w′(v) ≥ 2− 2
3 −

1
2 −

1
3 = 1

2 > 0 by R6,
R5 and R3.

If f4(v) = 1 and the 3-face is a (4, 6+, 6+)-face, then f
2
3

3 (v) = 0, n3(v) ≤ 2 by Fact 2 and R6. Thus
w′(v) ≥ 2− 1

2 −
1
2 × 2 = 1

2 > 0 by R5 and R2. By fact 1, this completes this subcase.

Case 1.2.3 f4(v) = 0.

If the 3-face is a (4, 4, 4)-face, then n3(v) ≤ 1 and n
1
2
3 (v) = 0 for the reason that G contains no

configurations H17, H22 and by R2, R1. Thus w′(v) ≥ 2− 4
3 −

1
3 = 1

3 > 0 by R6 and R3.
If the 3-face is a (3, 4, 4+)- or (4, 4+, 5+)-face, then n3(v) ≤ 2 for the reason that G contains no con-

figuration H13. Thus w′(v) ≥ 2− 1− 1 = 0 by Fact 3, R5 and R1. By Fact 1, this conclude the subcase
f4(v) = 0.

Case 1.3 f3(v) = 0. Then f4(v) ≤ 2 by Lemma 2.1.
If f4(v) = 2, then n3(v) ≤ 2 by Fact 2. Thus w′(v) ≥ 2 − 1

2 × 2 − 1 = 0 by Fact 3, R6 and R1. If
f4(v) = 1, then n3(v) ≤ 3 by Fact 2. Thus w′(v) ≥ 2 − 1

2 −
1
2 −

1
3 × 2 = 1

3 > 0 by R5, R2 and R3.
Otherwise, f4(v) = 0, then n3(v) ≤ 4. Thus w′(v) ≥ 2− 1

2 −
1
3 × 3 = 1

2 > 0 by Fact 3 and R2 and R3.

Suppose d(v) = 5. Then w(v) = 5.
Case 1.4 v is weakly incident with a bad face. Clearly, f3(v) ≤ 2. Furthermore, if f3(v) = 2, then

f4(v) ≤ 1 by Lemma 2.1.
If f3(v) = 2 and f4(v) = 1, then one of the two 3-faces must be adjacent to a bad face which is weakly

incident with v by Lemma 2.1. Obviously, it is a (3, 5, 3+)-face. In detail, it is a special face (i.e. a
(3, 5, 3)-face) or a (3, 5, 4+)-face. Since G contains no configuration H23, the other 3-face is neither a
(4, 4, 5)- nor a (4, 5, 5)-face. Thusw′(v) ≥ 5− 11

6 −
4
3−

2
3−

1
2 = 2

3 > 0 orw′(v) ≥ 5− 11
6 −

4
3−

2
3−

1
2−

1
2 =

1
6 > 0 by Fact 4, R6, R5, R7 and R2.

If f3(v) = 2 and f4(v) = 0, we have that w′(v) ≥ 5− 2× 2− 1
2 −

1
2 = 0 by R6, R2 and R7.

If f3(v) ≤ 1, then f4(v) ≤ 2. We have that w′(v) ≥ 5− 2− 2
3 × 2− 1

2 −
1
2 = 2

3 > 0 by R6, R5, R7
and R2.
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Case 1.5 v is not weakly incident with a bad face. Clearly, f3(v) ≤ 2.
Case 1.5.1 f3(v) = 2. Then f4(v) ≤ 1.
If both of the 3-faces are (4, 4, 5)- or (4, 5, 5)-faces, then n3(v) = 0 for the reason that G contains no

configuration H24. Thus w′(v) ≥ 5− 2× 2− 2
3 = 1

3 > 0 by R6 and R5.
If only one of the 3-faces is a (4, 4, 5)- or (4, 5, 5)-face, then the other 3-face is not a (3, 5, 3+)-face for

the reason that G contains no configuration H23. Thus n3(v) ≤ 1 and n1
3 = 0 by the Fact 3. We have that

w′(v) ≥ 5− 2− 4
3 −

2
3 −

1
2 = 1

2 > 0 by R6, R5 and R2.

If both of the 3-faces are (3, 5, 3+)-faces, then n3(v) = 2, n
1
2
3 (v) = 0 for the reason that G contains no

configurations H25, H26 and by R2, R1. Thus w′(v) ≥ 5− 11
6 × 2− 2

3 −
1
3 × 2 = 0 by R6, R5 and R3.

If only one of the 3-faces is a (3, 5, 3+)-face, then n3(v) ≤ 2, n
1
2
3 (v) ≤ 1 for the reason that G contains

no configurations H25 and H26 and by R2, R1. Thus w′(v) ≥ 5− 11
6 −

4
3 −

2
3 −

1
3 −

1
2 = 1

3 > 0 by R6,
R5, R3 and R2.

If any of the 3-faces does not belong to (3, 5, 3+)-, (4, 4, 5)- and (4, 5, 5)-faces, then n3(v) ≤ 1. Thus
w′(v) ≥ 5− 4

3 × 2− 2
3 − 1 = 2

3 > 0 by R6, R5 and R1.

Case 1.5.2 f3(v) = 1. Then f4(v) ≤ 2, n3(v) ≤ 4 (v could be adjacent to five 3-vertices, but at most
four of them are simple) by Lemma 2.1. Clearly, w′(v) ≥ 5− 2− 2

3 × 2− 1
2 −

1
3 × 3 = 1

6 > 0 by Fact 3,
R6, R5, R2 and R3.

Case 1.5.3 f3(v) = 0. Then f4(v) ≤ 2, n3(v) ≤ 5 by Lemma 2.1. Clearly, w′(v) ≥ 5− 2
3 × 2− 1

2 −
1
3 × 4 = 11

6 > 0 by Fact 3, R5, R2 and R3.

Suppose d(v) = 6. Then w(v) = 8.
First, we assume that v is weakly incident with a bad face. Clearly, f3(v) ≤ 3. If f3(v) = 3, then

f4(v) = 0 by Lemma 2.1. Clearly, w′(v) ≥ 8 − 2 × 3 − 1
2 −

1
2 = 1 > 0 by Fact 4, R6, R7 and R2. If

f3(v) ≤ 2, then f4(v) ≤ 2. Clearly, w′(v) ≥ 8− 2× 2− 1× 2− 1
2 −

1
2 = 1 > 0 by Fact 4, R6, R5, R7

and R2.

Now we assume that v is not weakly incident with a bad face. Clearly, f3(v) ≤ 3. If f3(v) = 3,
then f4(v) = 0, n3(v) ≤ 3 (a 3-face is incident with at most one simple 3-vertex) by Lemma 2.1. Thus
w′(v) ≥ 8 − 2 × 3 − 1

2 −
1
3 × 2 = 5

6 > 0 by Fact 3, R6, R2 and R3. If f3(v) = 2. Then f4(v) ≤ 2,
n3(v) ≤ 4 by Lemma 2.1. Thus w′(v) ≥ 8−2×2−1×2− 1

3×3− 1
2 = 1

2 > 0 byR6,R5,R3 andR2. If
f3(v) ≤ 1, then f4(v) ≤ 3, n3(v) ≤ 6 by Lemma 2.1. Clearly, w′(v) > 8−2−1×3− 1

3×5− 1
2 = 5

6 > 0
by R6, R5, R3 and R2.

Suppose d(v) = 7. Then w(v) = 11.
First, we assume that v is weakly incident with a bad face. Clearly, f3(v) ≤ 3 by Lemma 2.1. Fur-

thermore, f3
3 (v) ≤ 1 for the reason that G contains no configuration H27 and by R6. If f3(v) = 3, then

f4(v) ≤ 1 by Lemma 2.1. Clearly, w′(v) ≥ 11− 3− 2× 2− 4
3 −

1
2 −

1
2 = 5

3 > 0 by R6, R5, R7 and R2.
If f3(v) ≤ 2, then f4(v) ≤ 3. Clearly, w′(v) ≥ 11−3−2− 4

3×3− 1
2−

1
2 = 1 > 0 byR6,R5,R7 andR2.

Now we assume that v is not weakly incident with a bad face. Clearly, we have f3(v) ≤ 3. SinceG con-
tains no configuration H27, there exists at most one (3, 4, 7)-face which is incident with v. If f3(v) = 3,
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then f4(v) ≤ 1, n3(v) ≤ 4 by Lemma 2.1. Thus w′(v) ≥ 11 − 3 − 2 × 2 − 4
3 −

1
3 × 3 − 1

2 = 7
6 > 0

by Fact 3, R6, R5, R3 and R2. If f3(v) = 2, then f4(v) ≤ 3, n3(v) ≤ 5 by Lemma 2.1. Thus
w′(v) ≥ 11 − 3 − 2 − 4

3 × 3 − 1
3 × 4 − 1

2 = 1
6 > 0 by Fact 3, R6, R5, R3 and R2. If f3(v) ≤ 1, then

f4(v) ≤ 3, n3(v) ≤ 7 by Lemma 2.1. Thus w′(v) ≥ 11 − 3 − 4
3 × 3 − 1

3 × 6 − 1
2 = 3

2 > 0 by Fact 3,
R6, R5, R3 and R2.

Suppose d(v) ≥ 8. Then w(v) = 3d(v)− 10.
In any case, whether v is weakly incident with a bad face or not, we have

f3(v) + f4(v) ≤ 3

4
d(v) (3)

by Lemma 2.1. Moreover,

f3
3 (v) ≤ 1 (4)

for the reason that G contains no configuration H27 and by R6. Since a 3-face has at most one simple
3-vertex,

n3(v) ≤ f3(v) + d(v)− 2f3(v) = d(v)− f3(v). (5)

It follows from (3) and (5) that f4(v) ≤ 3
4d(v) − f3(v) and n3(v) ≤ d(v) − f3(v), respectively. Thus

w′(v) ≥ 3d(v)− 10− 3− 2(f3(v)− 1)− 4
3f4(v)− 1

2 −
1
3 (n3(v)− 1)− 1

2 ≥ 3d(v)− 10− 3− 2f3(v) +
2− d(v) + 4

3f3(v)− 1
2 −

1
3d(v) + 1

3f3(v) + 1
3 −

1
2 = 5

3d(v)− 1
3f3(v)− 70

6 by R6, R5, R2, R3 and R7.
Since

f3(v) ≤ 1

2
d(v),

we obtain w′(v) ≥ 3
2d(v)− 70

6 ≥
1
3 > 0.

Now we consider f ∈ F (G). Suppose d(f) = 3. Then w(f) = −4. By Fact 1, we only discuss the
following situations. If f is a special face (3, 3, 5+)-face, then we have that w′(f) ≥ −4 + 11

6 + 1
3 =

− 11
6 > −2 by Lemma 2.2,R6 andR4. If f is a (3, 4, 4)-, (3, 4, 5)- or (3, 4, 6)-face, we have thatw′(f) ≥

−4+ 2
3×2+ 1

3 = − 7
3 by Lemma 2.2,R6 andR4. If f is a (3, 4, 7+)-face, thenw′(f) ≥ −4+ 2

3 +3+ 1
3 = 0

by Lemma 2.2, R6 and R4. If f is a (3, 5+, 5+)-face, then w′(f) ≥ −4 + 11
6 × 2 + 1

3 = 0 by Lemma 2.2,
R6 and R4. If f is a (4, 4, 4)-face, then w′(f) ≥ −4 + 4

3 × 3 = 0 by R6. If f is a (4, 4, 5+)-face, then
w′(f) ≥ −4+1×2+2 = 0 byR6. If f is a (4, 5, 5+)-face, we have w′(f) ≥ −4+1+2×2 = 1 > 0 by
R6. If f is a (4, 6+, 6+)-face, then w′(f) ≥ −4 + 2× 2 = 0 by R6. If f is a (5, 5, 5)-face, we have that
w′(f) ≥ −4 + 4

3 × 3 = 0 by R6. If f is a (5+, 5+, 6+)-face, we have that w′(f) ≥ −4 + 1× 2 + 2 = 0
by R6.

Suppose d(f) = 4. Then w(f) = −2. If f is a (3, 3, 5, 5+)-face, then it is a bad face. Thus w′(f) ≥
−2+ 1

2 ×2+ 2
3 ×2 = 1

3 > 0 byR5 andR7. If f is a (3, 3, 6+, 6+)-face, then w′(v) ≥ −2+1×2 = 0 by
R5. If f is a (3, 4, 4, 4)- or (3, 4, 4, 5)-face, then it is a bad face. Thus w′(f) ≥ −2 + 1

2 + 1
2 × 2 + 1

2 = 0
by R5 and R7. If f is a (3, 4, 4, 6)-face, then it is a bad face. Thus w′(f) ≥ −2 + 1

2 + 1
3 × 2 + 1 = 1

6 > 0
by R5 and R7. If f is a (3, 4, 4, 7+)-face, then we have that w′(v) ≥ −2 + 1

3 × 2 + 4
3 = 0 by R5. If f is

a (3, 4, 5, 5)-face, then it is a bad face. Thus w′(f) ≥ −2 + 1
2 + 1

2 + 2
3 × 2 = 1

3 > 0 by R5 and R7. If f
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is a (3, 4, 5, 6)-face, then it is a bad face. Thus w′(f) ≥ −2 + 1
2 + 1

3 + 2
3 + 1 = 1

2 > 0 by R5 and R7. If
f is a (3, 4, 5, 7+)-face, then w′(f) ≥ −2 + 1

3 + 2
3 + 4

3 = 1
3 > 0 by R5. If f is a (3, 4, 6+, 6+)-face, then

w′(f) ≥ −2 + 1
3 + 1× 2 = 1

3 > 0 by R5. If f is a (3, 5+, 5+, 5+)-face, then w′(f) ≥ −2 + 2
3 × 3 = 0

by R5. If f is a (4, 4, 4, 4+)-face, then w′(f) ≥ −2 + 1
2 × 4 = 0 by R5. If f is a (4+, 4+, 5+, 5+)-face,

then w′(f) ≥ −2 + 1
3 × 2 + 2

3 × 2 = 0 by R5.

Suppose d(f) = 5. Then w′(f) = w(f) = 0.

Suppose d(f) ≥ 6. Then w′(f) ≥ w(f)− 1
3 × d(f) = 2d(f)− 10− 1

3 × d(f) ≥ 0 by R4.

From the above discussion, if x is neither a special vertex nor a special face, then w′(x) ≥ 0 for each
x ∈ V (G) ∪ F (G). Let w′s denote the total new charge of the special 3-vertices and the special 3-faces.
Since the new charge of the special 3-vertices is −1 (see the case ”d(v) = 3”) and since the new charge
of the special face is at least −2 if it is a (3, 3, 5+)-face and at least − 7

3 if it is a (3, 4, 4)-, a (3, 4, 5)-, or a
(3, 4, 6)-face (see the case ”d(f) = 3”), Claim 1 implies that w′s ≥ min{−2− 1− 1,− 7

3 − 1} = −4. So
we obtain that ∑

x∈V (G)∪F (G)

w′(x) ≥ −4, (6)

a contradiction to Equation 2.

Case 2. δ(G) = 2 and there are at most two 2-vertices in G.
Since G contains no structure isomorphic to the configuration H5, the 3-faces which are incident with

2-vertices may be (2, 3, 5)- or (2, 4+, 4+)-faces. Since G contains no structure isomorphic to the configu-
rationH6, the 4-faces which are incident with 2-vertices may be (2, 3−, 5+, 5+)- or (2, 4+, 4+, 4+)-faces.

The discharging rules are the same as the rules in Case 1 except for the charge which is given to a 3-
or 4-face which is incident with 2-vertices. For each v ∈ V (G), if d(v) ≥ 4, then v gives charge 2

3 to its
incident (2, x, y)-face f ; and v gives charge 1

3 to its incident (2, x, y, z)-face f only if the face f is not
adjacent to other 4-faces which are incident with v, otherwise, v gives charge 1

3 to only one of the adjacent
4-faces. Clearly, the charge which is given to a (2, x, y)- (resp. (2, x, y, z))-face is not greater than that
which is given to (3, x, y)- (resp. (3, x, y, z))-faces. For each v ∈ V (G), the number of (2, x, y)- (resp.
(2, x, y, z))-faces which is incident with and accept charge from v is not greater than that of (3, x, y)-
(resp. (3, x, y, z))-faces which is incident with v. So we can guarantee the new charge of each element
x ∈ V (G) ∪ F (G) is larger than or equal to zero except for the special 3-vertices, the special 3-faces,
the 2-vertices and the 3- or 4-faces which are incident with the 2-vertices. For convenience, let w′t1 (resp.
w′t2) denote the total new charge of one 2-vertex (resp. two 2-vertices) and the faces which are incident
with the 2-vertex (resp. the two 2-vertices).

Suppose that there exists only one 2-vertex in G. If the 2-vertex is incident with one 3-face, then it
will be not incident with any 4-face by Lemma 2.1. Since G contains no configuration H5, the 3-face is a
(2, 3+, 5+)- or (2, 4+, 4+)-face, thus w′t1 ≥ −4 − 4 + 2

3 = − 22
3 or w′t1 ≥ −4 − 4 + 2

3 × 2 = − 20
3 . If

the 2-vertex is incident with a 4-face, then it may be incident with two 4-faces. Furthermore, the 4-face is
a (2, 3+, 5+, 5+)- or a (2, 4+, 4+, 4+)-face for the reason that G contains no configuration H6. Clearly,
w′t1 ≥ −2− 2− 4 + 1

3 × 2 = − 22
3 or w′t1 ≥ −2− 2− 4 + 1

3 × 3 = −7. From the above discussion, we
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obtain that

w′t1 ≥ min{−7,−20

3
,−22

3
} = −22

3
. (7)

By (6), we have that
∑
x∈V (G)∪F (G) w

′(x) ≥ −4+w′t1 ≥ −4− 22
3 = − 34

3 , a contradiction to Equation 2.

Suppose that there exist two 2-vertices in G. If the two 2-vertices are incident with a same 3-face,
then f is a (2, 2, 5+)-face for the reason that G contains no configuration H5. Thus w′t2 ≥ −4× 2− 4 +
2
3 = − 34

3 . If the two 2-vertices are incident with a same 4-face, then the 4-face is a (2, 2, 5+, 5+)-face
for the reason that G contains no configuration H6. Since each of the two 2-vertices may be incident
with another 4-face, we have that w′t2 ≥ −2 − 2 − 2 − 4 − 4 + 1

3 × 2 = − 40
3 . If the two 2-vertices

are not incident with a same face, then the discussion is similar to the situation when there exists only
one 2-vertex in G. By (7), we have w′t2 ≥ − 22

3 × 2 = − 44
3 . From the above discussion, we have

w′t2 ≥ min{− 44
3 ,−

34
3 ,−

40
3 } = − 44

3 . By (6), we have that
∑
x∈V (G)∪F (G) w

′(x) ≥ −4− 44
3 = − 56

3 , a
contradiction to Equation 2.

Case 3. δ(G) = 2 and there are at least three 2-vertices in G.
Since G contains no configurations H28 . . . H35, G has the following properties.

Fact 5 Any vertex v is adjacent to at most one 2-vertex.
Fact 6 No two 2-vertices are adjacent to each other.
Fact 7 For each v ∈ V (G) with d(v) ≥ 4, if v is adjacent to a 2-vertex, then it is not incident with any
3-face that is incident with a 3-vertex.
Fact 8 If v is adjacent to a 3-vertex, then it is not incident with any 3-face that is incident with a 2-vertex.
Fact 9 Every 3-face in G that is incident with a 2-vertex is a (2, 6+, 6+)-face.
Fact 10 If a vertex is adjacent to a 2-vertex, then it is not adjacent to any 3-vertex that is adjacent to
another 3−−-vertex.
Fact 11 There is at most one 2-vertex which is adjacent to a k-vertex (3 ≤ k ≤ 4) in G.
Fact 12 Any 4-face that is incident with a 2-vertex in G is a (2, 3+, 7+, 7+)- or (2, 6+, 6+, 6+)-face.

For convenience, we call a 2-vertex a special 2-vertex if it is adjacent to a k-vertex (3 ≤ k ≤ 4),
otherwise a simple 2-vertex. By Fact 11, there is at most one special 2-vertex. Let n2(v) denote the
number of simple 2-vertices which are adjacent to v. Obviously, n2(v) ∈ {0, 1} by Fact 5.

Now redistribute the charge according to the following discharging rules.
For each x ∈ V (G)

⋃
F (G), if x is neither a 2-vertex nor a face which is not incident with any 2-vertex,

then the discharging rules are the same as those in Case 1. Otherwise, the following discharging rules are
abided.

• R8. Transfer 2 from each 5+-vertex to every adjacent 2-vertex.

• R9. Transfer 2 from each 6+-vertex to every incident 3-face.

• R10. If f is a 4-face which is incident with a 2-vertex and v, then v gives 0 to f if d(v) = 3, 4
or 5; 2

3 if d(v) = 6; 4
3 if d(v) ≥ 7.

By Fact 10, R1 and R2, we have the following fact.
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Fact 13 For each v ∈ V (G), if n2(v) = 1, then n
1
2
3 (v) = 0.

In the following, let us check the new charge of each element x ∈ V (G)
⋃
F (G).

Consider any vertex v ∈ V (G), suppose d(v) = 2. Then w(v) = −4, n2(v) = 0 by Fact 6. Since
G contains no structure H9, v is not weakly incident with any bad face. If v is a simple 2-vertex, then
w′(v) = −4 + 2× 2 = 0 by R8. Otherwise, v is a special 2-vertex. We have w′(v) = w(v) = −4.

Suppose d(v) ≥ 3. If n2(v) = 0, then the discussion is similar to the one of the corresponding situation
in Case 1. In the following, we only focus on the situation n2(v) = 1.

Since G contains no configurations H7 and H8, we have the following fact.

Fact 14 For each v ∈ V (G), if n2(v) = 1, then v is not weakly incident with any bad face.

Suppose d(v) = 3. By Fact 7, v is a simple 3-vertex. Since G contains no configuration H10, v is
adjacent to at least one 5+-vertex or is adjacent to at least two 4+-vertices. We have w′(v) = −1 + 1 = 0
by R1, or w′(v) = −1 + 1

2 × 2 = 0 by R2.

Suppose d(v) = 4. Then w(v) = 2, f3(v) ≤ 1 by Fact 9.
First we assume f3(v) = 1. Then f4(v) ≤ 2. If the 3-face is a (4, 4, 4)-face, then f4(v) ≤ 1 and

n3(v) = 0 for the reason that G contains no configuration H16, H17 and by Fact 12. Thus w′(v) ≥
2 − 4

3 −
1
2 − 0 = 1

6 > 0 by R6, R9 and R10. Otherwise, if the 3-face is not a (4, 4, 4)-face, we have

f4(v) ≤ 2, f
1
2

4 (v) ≤ 1 and n3(v) ≤ 1 for the reason that G contains no H13 and by Fact 12, R5, R10.
Thus w′(v) ≥ 2− 1− 1

2 −
1
3 = 1

6 > 0 by Fact 13, R6, R9, R5 and R3.

Now we assume that f3(v) = 0. Then f4(v) ≤ 2, f
1
3

4 ≤ 1 and n3(v) ≤ 3 for the reason that G contains
no chordal 6-cycles and by R10. Thus w′(v) ≥ 2− 1

2 −
1
3 × 3 = 1

2 > 0 by Fact 13, R10 and R3.

Suppose d(v) = 5. Then w(v) = 5, f3(v) ≤ 2.
Case 3.1 f3(v) = 2. Then f4(v) ≤ 1 for the reason that G contains no chordal 4- and 6-cycles. By

Fact 9 and Fact 12, the 4-face which is incident with v is a (2, 5, 7+, 7+)-face. Thus f
2
3

4 (v) = 0 by R10.

Additionally, since G contains no configuration H36, we have that f
11
6

3 (v) = 0 by Fact 7 and R6. Thus
w′(v) ≥ 5− 4

3 × 2− 2− 0 = 1
3 > 0 by R6, R9, R5 and R8.

Case 3.2 f3(v) = 1. Since G contains neither chordal 4- and 6-cycles nor configuration H37, we have
f4(v) ≤ 3.

Case 3.2.1 f4(v) = 3. Then n3(v) ≤ 1 by Fact 7 and Fact 12. Furthermore, since at most one 4-face

which is incident with v is not a (2, 5, 7+, 7+)-face, we have that f
2
3

4 (v) ≤ 1 by R5 and R10. Thus
w′(v) ≥ 5− 2− 2

3 − 2− 1
3 = 0 by Fact 13, R6, R9, R5, R8 and R3.

Case 3.2.2 f4(v) = 2.
Case 3.2.2.1 The 2-vertex which is adjacent to v is not around any of the two 4-faces. If the 3-face

which is incident with v is a (5, 6+, 6+)-face, then f
2
3

4 (v) ≤ 2, n3(v) ≤ 2 as G contains no configuration
H37 and by R5, Fact 7. Thus we have w′(v) ≥ 5 − 1 − 2

3 × 2 − 2 − 1
3 × 2 = 0 by R6, R9, R5, R8

and R3. Otherwise, the 4-faces which are incident with v are both (5, 5+, 5+, 5+)-faces as G contains no
configuration H37. Clearly, n3(v) = 0. Thus we have w′(v) ≥ 5 − 2 − 1

2 × 2 − 2 = 0 by R6, R9, R5
and R8.
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Case 3.2.2.2 The 2-vertex which is adjacent to v is around one of the two 4-faces. Then f
2
3

4 (v) ≤ 1,
n3(v) ≤ 1 as G contains no configuration H38 and by R5, Fact 7. Thus we have w′(v) ≥ 5 − 2 − 2

3 −
2− 1

3 = 0 by R6, R9, R5, R8 and R3.

Case 3.2.2.3 The 2-vertex which is adjacent to v is around the two 4-faces. Then f
1
2

4 (v) = 0, n3(v) ≤ 1
by Fact 12. Thus we have w′(v) ≥ 5− 2− 2− 1

3 = 2
3 > 0 by R6, R9, R8 and R3.

Case 3.2.3 f4(v) = 1. Then n3(v) ≤ 2 by Fact 9 and Fact 10. If n3(v) = 2, then the 4-face is adjacent
to the 3-face and the 3-face is a (5, 6+, 6+)-face as G contains no configuration H37 and H38. We have
w′(v) ≥ 5 − 1 − 2

3 − 2 − 1
3 × 2 = 2

3 > 0 by R6, R5, R8 and R3. Otherwise, n3(v) ≤ 1. We have
w′(v) ≥ 5− 2− 2

3 − 2− 1
3 = 0 by R6, R5, R8 and R3.

Case 3.2.4 f4(v) = 0. Then n3(v) ≤ 2 by Fact 9 and Fact 10. We have w′(v) ≥ 5− 2− 2− 1
3 × 2 =

1
3 > 0 by R6, R8 and R3.

Case 3.3 f3(v) = 0. Then f4(v) ≤ 3 for the reason that G contains no chordal 6-cycles. Since at most

two 4-faces which are incident with v are not (2, 5, 7+, 7+)-faces, we have f
2
3

4 (v) ≤ 2 by R5. Further-
more, n3(v) ≤ 4. Thus w′(v) ≥ 5− 2

3 × 2− 1
3 × 4− 2 = 1

3 > 0 by R5, R3 and R8.

Suppose d(v) = 6. Then w(v) = 8, f3(v) ≤ 3. If f3(v) = 3, then f4(v) = 0, n3(v) = 0 for the
reason that G contains no chordal 4- and 6-cycles and by Fact 7. Thus w′(v) ≥ 8 − 2 × 3 − 2 = 0 by
R6, R9 and R8. If f3(v) = 2, then f4(v) ≤ 2, n3(v) ≤ 1 for the reason that G contains no chordal
4- and 6-cycles and by Fact 7, Fact 8. Since G contains no configuration H38 and by R10, we have that
f1

4 (v) = 0. Thus w′(v) ≥ 8− 2× 2− 2
3 × 2− 2− 1

3 = 1
3 > 0 by Fact 11, R6, R9, R10, R8 and R3. If

f3(v) ≤ 1, then f4(v) ≤ 3, n3(v) ≤ 5. Since G contains no configuration H38, we have that f1
4 (v) = 0.

Thus w′(v) ≥ 8− 2− 2
3 × 3− 2− 1

3 × 5 = 1
3 > 0 by Fact 13, R6, R9, R10, R8 and R3.

Suppose d(v) = 7. Then w(v) = 11, f3(v) ≤ 3. By Fact 7, there is no (3, 4, 7)-face which is incident
with v. If f3(v) = 3, then f4(v) ≤ 1, n3(v) = 0 for the reason that G contains no chordal 4- and 6-cycles
and by Fact 7. Thus w′(v) ≥ 11 − 2 × 3 − 4

3 − 2 = 5
3 > 0 by R6, R9, R10 and R8. If f3(v) = 2,

then f4(v) ≤ 3, n3(v) ≤ 2 for the reason that G contains no chordal 4- and 6-cycles and by Fact 7,
Fact 8. Thus w′(v) ≥ 11 − 2 × 2 − 4

3 × 3 − 1
3 × 2 − 2 = 1

3 > 0 by Fact 13, R6, R9, R10, R3 and
R8. If f3(v) = 1, then f4(v) ≤ 4, n3(v) ≤ 4 for the reason that G contains no chordal 6-cycles and by
Fact 7, Fact 8. Thus w′(v) ≥ 11 − 2 − 4

3 × 4 − 1
3 × 4 − 2 = 1

3 > 0 by Fact 13, R6, R9, R10, R3 and
R8. If f3(v) = 0, then f4(v) ≤ 4, n3(v) ≤ 6 for the reason that G contains no chordal 6-cycles. Thus
w′(v) ≥ 11− 4

3 × 4− 1
3 × 6− 2 = 5

3 > 0 by Fact 13, R10, R3 and R8.

Suppose d(v) ≥ 8. Then w(v) = 3d(v) − 10. By Fact 7, there is no (3, 4, 8+)-face which is incident
with v. Since n3(v) + 2f3(v) + 1 ≤ d(v), we have that

n3(v) ≤ d(v)− 2f3(v)− 1.

Since G contains no chordal 4- and 6-cycles, we have that f3(v) + f4(v) ≤ 3
4d(v) + 1. Thus

f4(v) ≤ 3

4
d(v)− f3(v) + 1.

Thus w′(v) ≥ 3d(v)− 10− 2f3(v)− 4
3f4(v)− 1

3n3(v)− 2 ≥ 3d(v)− 10− 2f3(v)− d(v) + 4
3f3(v))−



Equitable Coloring and Equitable Choosability 17

4
3 −

1
3d(v) + 2

3f3(v) + 1
3 − 2 = 5

3d(v)− 39
3 ≥

1
3 ≥ 0 by Fact 13, R6, R9, R10, R3 and R8.

Consider f ∈ F (G). Suppose d(f) = 3. Then w(f) = −4 and n2(f) ≤ 1. If n2(f) = 1, then f is a
(2, 6+, 6+)-face by Fact 9. Thus w′(f) ≥ −4 + 2× 2 = 0 by R9. Otherwise, the discussion is similar to
the corresponding situation when d(f) = 3 in Case 1, so it is omitted here.

Suppose d(f) = 4. Then w(f) = −2, n2(f) ≤ 1 by Fact 6.
If n2(f) = 1. Then f is a (2, 3+, 7+, 7+)- or a (2, 6+, 6+, 6+)-face by Fact 12. Thus w′(f) ≥
−2 + 4

3 × 2 = 2
3 > 0 or w′(v) ≥ −2 + 2

3 × 3 = 0 by R10. If n2(f) = 0, then the discussion is similar
to the corresponding situation when d(f) = 4 in Case 1, so it is omitted here.

Suppose d(f) ≥ 5. Then the discussion is similar to the corresponding situation in Case 1 and is
omitted here.

From the above discussion, we can obtain that w′(x) ≥ 0 for each x ∈ V (G) ∪ F (G) that is not a
special 3-vertex, a special 2-vertex, nor a special face. From (6), we have w′s ≥ −4− 4 = −8 by Claim 1
and Fact 11. So we obtain

∑
x∈V (G)∪F (G) w

′(x) ≥ −8, a contradiction to Equation 2.

Case 4 δ(G) = 1.
Now, the 3-faces in G are (3−, 5+, 5+)-faces or (4+, 4+, 4+)-faces and any 4-face that is incident with

a 2-vertex is a (2, 5+, 5+, 5+)-face for the reason that G contains no configurations H39 and H40. Then
there is neither any special 3-vertex nor any special face in G.

Case 4.1 There is only one 1-vertex in G.
Case 4.1.1 There are at most two 2-vertices in G.
The discharging rules are the same as the rules in Case 1 except for the charge which is given to a 3-

or 4-face which is incident with 2-vertices. For each v ∈ V (G), if d(v) ≥ 5, then v gives charge 1 to its
incident (2, x, y)-face f ; and v gives charge 1

2 to its incident (2, x, y, z)-face f only if the face f is not
adjacent to other 4-faces which are incident with v, otherwise, v gives charge 1

2 to only one of the adjacent
4-faces. Clearly, the charge which is given to a (2, x, y)- (resp. (2, x, y, z))-face is not greater than that
which is given to (3, x, y)- (resp. (3, x, y, z))-faces. For each v ∈ V (G), the number of (2, x, y)- (resp.
(2, x, y, z))-faces which is incident with and accept charge from v is not greater than that of (3, x, y)-
(resp. (3, x, y, z))-faces which is incident with v. So we can guarantee the new charge of each element
x ∈ V (G) ∪ F (G) is larger than or equal to zero except for the 2-vertices and the 3- or 4-faces which
are incident with the 2-vertices. For convenience, let w′t1 (resp. w′t2) denote the total new charge of one
2-vertex (resp. two 2-vertices) and the faces which are incident to the 2-vertex (resp. the two 2-vertices).

Suppose that there is one 2-vertex in G. If the 2-vertex is incident with one 3-face, then it will be not
incident with any 4-face asG contains no chordal 4-cycles. Since the 3-face is a (2, 5+, 5+)-face, we have
that w′t1 ≥ −4− 4 + 1× 2 = −6. If the 2-vertex is incident with some 4-faces, since each such 4-face is
a (2, 5+, 5+, 5+)-face, we have that w′t1 ≥ −2 − 2 − 4 + 1

2 × 4 = −6. From the above discussion, we
obtain that

w′t1 ≥ −6. (8)

So
∑
x∈V (G)∪F (G) w

′(x) ≥ −7 + w′t1 ≥ −7 − 6 ≥ −13 (a 1-vertex has charge −7), a contradiction to
Equation 2.
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Suppose that there are two 2-vertices in G. Since the two 2-vertices are not incident with a same 3-
or 4-face, by (8), we have that w′t2 ≥ −6 × 2 = −12. So

∑
x∈V (G)∪F (G) w

′(x) ≥ −7 − 12 = −19, a
contradiction to Equation 2.

Case 4.1.2 There are at least three 2-vertices in G. The discharging rules are the same as Case 3. It
follows from the discussion which is the same as the situation in Case 3 that

∑
x∈V (G)∪F (G) w

′(x) ≥
−7− 4 = −11, a contradiction to Equation 2.

Case 4.2 There are at least two 1-vertices in G.
If there are two 1-vertices in G, then there is neither a 2-vertex nor a third 1-vertex in G for the reason

that G contains no configuration H41. The discharging rules are the same as Case 1. It follows from the
discussion which is the same as the situation in Case 1 that

∑
x∈V (G)∪F (G) w

′(x) ≥ −7 × 2 = −14, a
contradiction to Equation 2. 2

Lemma 2.9 (Hajnal and Szemerédi (1970)) Every graph has an equitable k-coloring whenever k ≥
∆(G) + 1.

Lemma 2.10 (Pelsmajer (2004); Wang and Lih (2004)) Every graph G with maximum degree ∆(G) ≤ 3
is equitably k-choosable whenever k ≥ ∆(G) + 1.

In the following, let us give the proof of the main theorem.

Theorem 2.11 If G is a planar graph without chordal 4- and 6-cycles, then G is equitably k-colorable
where k ≥ max{7,∆(G)}.

Proof: LetG be a counterexample with fewest vertices. If each component ofG has at most four vertices,
then ∆(G) ≤ 3. Clearly, G is equitably k-colorable by Lemma 2.9. Otherwise, there is at least one
component with at least five vertices.

For convenience, we divide all the configurations in Figure 1 and Figure 2 into two classes according to
whether it contains the vertex which is labelled xk−3 or not. A configuration belongs to C1 if it contains
the vertex labelled xk−3, otherwise, it belongs to C2.

Suppose that G has one of the configurations of C1. In the following, we show how to find a set S in
order to apply Lemma 2.4. For convenience, let S′ be the set of the labelled vertices of this configuration.
For example, if G has the configuration H depicted in Figure 1, then let S′ = {xk, xk−1, · · · , xk−4, x1}.
By Corollary 2.7,G is 4-degenerate. Thus starting from S′, we can find the remaining unspecified vertices
to obtain the set S of Lemma 2.4 from highest to lowest indices by choosing a vertex with the minimum
degree in the graph obtained from G by deleting the vertices already being chosen for S at each step. By
the minimality of G, we have G − S is equitably k-colorable. By Lemma 2.4, we can obtain that G is
equitably k-colorable, a contradiction.

Thus G has a configuration of C2 and δ(G) ≤ 3 by Lemma 2.3. Similarly, let S′′ be the set of
the labelled vertices of this configuration, in which the vertices are labelled as they are in Figure 2.
Let G′ = G − S′′. If there exists a vertex v ∈ V (G′) such that dG′(v) ≤ 3 or there exists a vertex
u ∈ {x1, x2, x3} ∩ S′′ such that dG(u) ≤ 4, then we label v or u with xk−3 and let S′′′ = S′′ ∪ {xk−3}.
By Corollary 2.7, G is 4-degenerate. Now starting from S′′′, we can find the remaining unspecified
vertices to obtain the set S of Lemma 2.4 from highest to lowest indices by choosing a vertex with the
minimum degree in the graph obtained from G by deleting the vertices already being chosen for S at each
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step. By the minimality of G, we have G−S is equitably k-colorable. By Lemma 2.4, we can obtain that
G is equitably k-colorable, a contradiction.

Thus δ(G′) ≥ 4 and dG(v) ≥ 5 for each vertex v ∈ {x1, x2, x3} ∩ S′′. Clearly, it follows the Fact.
Fact 15 For each x ∈ V (H ′)− {xk, xk−1, xk−2}, we have that dG(x) ≥ 5 where H ′ ∈ C2.

Now we can easily get that G has only one configuration that belongs to C2. Otherwise, δ(G′) ≤ 3.
Additionally, by Lemma 2.3, G′ contains the configuration H of Figure 1. If G does not contain the
configuration H41, then by Fact 15, at most one 1-vertex, at most two 3−-vertices and at most one special
face can exist in G simultaneously, i.e. G contains the configuration H39. Let us now show a self-
contradictory conclusion by a discharging procedure. The discharging rules are the same as Case 1 in
Lemma 2.8. Clearly, we can guarantee that the new charge of each face other than the special face, and
each vertex v ∈ V (G) with d(v) ≥ 4 is larger than or equal to zero. Hence

∑
x∈V (G)∪F (G) w

′(x) ≥
−7 +−4× 2− 4 = −19, a contradiction to

∑
x∈V (G)∪F (G) w(x) = −20.

Thus G contains the configuration H41. Additionally, from the above discussion, we know G has
no configuration H , and G′ has the configuration H in Figure 1. It is clear that one of the vertices
{xk, xk−1, xk−2, x1} of configurationH41 in Figure 2 must be adjacent to one of the vertices {xk, xk−1, xk−2}
of configuration H in Figure 1. It is not difficult to find a set S̄, starting from which, we can find the re-
maining unspecified vertices in S of Lemma 2.4 from highest to lowest indices by choosing a vertex with
the minimum degree in the graph obtained from G by deleting the vertices already being chosen for S at
each step. By the minimality of G, we have that G− S is equitably k-colorable. By Lemma 2.4, we have
that G is equitably k-colorable, a contradiction. In the following, we give the detailed steps on how to
find the set S̄.

For convenience, we use w1, w2, w3 and w4 to denote the vertices xk, xk−1, xk−2 and x1 of configu-
ration H41 in Figure 2, respectively, and use u1, u2 and u3 to denote the vertices xk, xk−1 and xk−2 of
configuration H in Figure 1, respectively.

If there exists one 1-vertex which is adjacent to one of the vertices in {u1, u2, u3}, then the 1-vertex
only may be w2 or w3 from the above discussion. Without loss of generality, we assume w2 and u′

are adjacent to u for which {u, u′} ⊂ {u1, u2, u3}. Now we label the vertices w2, w1, w3, u, u
′ with

xk, xk−1, xk−2, xk−3, xk−4, respectively. We choose S̄ = {xk, xk−1, xk−2, xk−3, xk−4}.
Otherwise, if w3 is adjacent to one of the vertices in {u1, u2, u3, u4} such that dG(w3) = 2, for

convenience, we assume w3 and u′ are adjacent to u for which {u, u′} ⊂ {u1, u2, u3}. Now we
label the vertices w1, w2, w3, u, u

′, w4 with xk, xk−1, xk−2, xk−3, xk−4, x1, respectively. We choose
S̄ = {xk, xk−1, xk−2, xk−3, xk−4, x1}.

If w4 is adjacent to one of the vertices in {u1, u2, u3, u4}, for convenience, we assume w4 and u′ are
adjacent to u for which {u, u′} ⊂ {u1, u2, u3}. Now we label the vertices w1, w2, w3, u, u

′, w4 with
xk, xk−1, xk−2, xk−3, xk−4, x1, respectively. We choose S̄ = {xk, xk−1, xk−2, xk−3, xk−4, x1}. This
completes the proof of Theorem 2.11. 2

Corollary 2.12 Let G be a planar graph without chordal 4- and 6-cycles. If ∆(G) ≥ 7, then χe(G) ≤
∆(G).

Corollary 2.13 Let G be a planar graph without chordal 4- and 6-cycles. If ∆(G) ≥ 7, then χ∗e(G) ≤
∆(G).

Theorem 2.14 If G is a planar graph without chordal 4- and 6-cycles and k ≥ max{7,∆(G)}, then G
is equitably k-choosable.
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Proof: LetG be a counterexample with the fewest vertices, i.e. G is a critical graph. If each component of
G has at most four vertices, then ∆(G) ≤ 3. So G is equitably k-choosable by Lemma 2.10. Otherwise,
the proof is similar to the proof of Theorem 2.11 by Lemma 2.8 and Lemma 2.5. 2

Corollary 2.15 Let G be a planar graph without chordal 4- and 6-cycles. If ∆(G) ≥ 7, then G is
equitably ∆(G)-choosable.

3 Remarks and perspective
Most of the results on equitable and list equitable colorings on planar graphs are restricted to 3-degenerate
graphs. In this paper, we confirm the Conjecture 2 and Conjecture 4 for the planar graphs without
chordal 4- and 6-cycles which are not necessarily 3-degenerate. Can a similar conclusion be drawn for
4-degenerate graphs and ordinary planar graphs?
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