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We prove that the joint embedding property is undecidable for hereditary graph classes, via a reduction from the tiling
problem. The proof is then adapted to show the undecidability of the joint homomorphism property as well.
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1 Introduction
A hereditary class C of structures has the joint embedding property (JEP) if, given A,B ∈ C, there exists
C ∈ C such that A,B embed into C. Among other things, this is equivalent to whether C is atomic, i.e.
cannot be expressed as a union of two proper hereditary subclasses. A general strategy for understanding
a hereditary class is to reduce this to understanding its atomic subclasses, as in the following lemma for
calculating growth rates in permutation classes (see Vatter (2014) for a reference).

Lemma 1.1 Suppose C is a permutation class, with no infinite antichain in the containment order. Then C
can be expressed as a finite union of atomic subclasses. Furthermore, the upper growth rate of C is equal
to the maximum upper growth rate among its atomic subclasses.

Our main theorem is the following.

Theorem 1.2 There is no algorithm that, given a finite set of forbidden induced subgraphs, decides
whether the corresponding hereditary graph class has the JEP.

Our next result considers a variation on the JEP called the joint homomorphism property, which is
of interest in infinite-domain constraint satisfaction problems Bodirsky (2012). Modifying our proof of
Theorem 1.2 gives the following, answering a question of Bodirsky (personal communication).

Theorem 1.3 There is no algorithm that, given a finite set of forbidden induced subgraphs, decides
whether the corresponding hereditary graph class has the joint homomorphism property.
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Theorem 1.2 is first proven for graphs enriched by a sufficient supply of unary predicates, and then a
formal reduction to the pure graph language is given. A very rough sketch of the proof is as follows. The
first two steps ensure that the tiling problem is equivalent to whether we can jointly embed two particular
graphs, and the third step ensures that joint embedding for the class is equivalent to joint embedding for
those two graphs.

1. Construct two graphs A∗, representing a grid, and B∗ representing a suitable collection of tiles.

2. Choose a finite set of constraints to ensure that successfully joint embedding A∗ and B∗ encodes a
solution to the tiling problem.

3. Show that if the tiling problem admits a solution, then the chosen class admits a joint embedding
procedure.

The JEP for a class C of finite structures specified by forbidden substructures is also equivalent to
C admitting a universal object for finite structures, i.e. a countable structure avoiding the forbidden
substructures and into which all members of C embed. In graph classes, the existence of a universal object
for countable structures, i.e. a countable graph avoiding the forbidden substructures and into which all
other such countable graphs embed, has received much attention. In particular, in Cherlin (2011) Cherlin
proved the undecidability of the existence of a countable universal graph for hereditary graph classes,
which serves as inspiration for the proof of Theorem 1.2.

This paper was motivated by a question of Ruškuc on the decidability of atomicity for finitely-based
permutation classes Ruškuc (2005), viewing permutations as structures in a language of two linear orders.
Based on our results, we believe there is a strong possibility Ruškuc’s problem is undecidable, although it
is not yet clear whether our methods are sufficient to show this. However, in forthcoming work, we intend
to adapt our arguments to show the undecidability of the corresponding problem for classes of structures in
a language of three linear orders.

2 The tiling problem
Rather than using a reduction from the halting problem to prove undecidability, we will use tiling problems.
The input to a tiling problem consists of a finite set Tiles of tile types, as well as a set of rules of the
form “Tiles of type i cannot be placed directly above tiles of type j” and “Tiles of type k cannot be placed
directly right of tiles of type `”. A solution to a tiling problem is a function τ : N2 → Tiles, interpreted as
placing tiles on a grid, that respects the tiling rules.

Theorem 2.1 (Berger (1966)) There is no algorithm that, given a set of tile types and tiling rules, decides
whether the corresponding tiling problem has a solution.

As we will be reducing from the tiling problem, which is co-recursively enumerable, we point out here
that if C is a hereditary class of finite structures in a finite relational language, then the JEP for C is also
co-recursively enumerable. To see this, consider A,B ∈ C that can be jointly embedded, as witnessed
by C ∈ C and embeddings f : A→ C and g : B → C. As C is hereditary, the substructure of C induced
on f(A) ∪ g(B) is also in C. Thus, given A,B ∈ C, there is a finite bound on the size of the possible
witnesses for joint embedding, and they can be exhaustively checked.
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3 Graphs with unary predicates
In this section, we work with a language with many of the features our argument needs built in. This
section’s argument is then augmented with coding tricks to give arguments in the standard graph language.

3.1 The language
We will work in the following language.

1. E: a symmetric, irreflexive binary edge relation

2. Oi, P ′i, Gi, T 1 for i ∈ { 0, 1 }: unary predicates, which will denote origin vertices, non-origin path
vertices, grid vertices, and tile vertices

3. Ci for 1 ≤ i ≤ 4: unary predicates, which will denote additional coding vertices

We also define a unary predicate P i = Oi ∪ P ′i, which will denote path vertices.

3.2 The Canonical Models
We here further flesh out steps (1) and (2) from the proof sketch in the introduction.

We also assume that our language contains a directed edge relation and two colored edges. We will show
how to code these in our language, using the available unary predicates, in §3.3.

Although we are concerned with the JEP for finite structures in a hereditary class C, the compactness
theorem implies that the JEP for the finite members of C is equivalent to the JEP for countable members of
C. Rather than work with families of increasingly large finite structures, we prefer to take our canonical
models to be countable.

A* B*

(0,0) (2,0)(1,0) (0,0) (1,0) (2,0)

Fig. 1: A portion of the canonical models A∗ and B∗, with the grid points in A∗ tiled by tiles attached
to grid points with the same coordinates in B∗. Path points are blue, with the origin a different shade.
Grid points are red, their y-coordinate determined by an orange edge and their x-coordinate by a green
edge. Tile points are purple. Points in 0-superscripted predicates have a black border, while points in
1-superscripted predicates do not.
This encodes a tiling of (0,0) with tile-type 2, (1,0) with tile-type 2, and (2,0) with tile-type 1.
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A∗ (see Figure 1) will contain a 1-way infinite directed path, with vertices in P 0, and a marked origin in
O0. To every pair of points in this path, we attach a G0-vertex, representing a grid point with coordinates
taken from the attached path points. Because we must distinguish between x and y-coordinates, we use the
colored edges to attach each grid point to its coordinates.
B∗ will look like a copy of A∗, using 1-superscripted predicates instead, but with a path of length t

(where t is the number of tile types in the given tiling problem) T 1-vertices attached to each G1-point.
These represent a full tile-set available at each coordinate, with the different tile-types being distinguished
by their distance from the corresponding G1-point.

When we try to jointly embed A∗ and B∗, we wish our constraints to force the following: for every
G0-point in A, with coordinates (x, y), we must add an edge to one tile-point attached to the G1-point in
B with the same coordinates. This is interpreted as tiling the point (x, y) by the corresponding tile-type,
and our constraints should further enforce the local tiling rules.

For the particular classes of structures we are dealing with here, namely graphs with forbidden induced
subgraphs, our choice of B∗ is rather baroque. We could have simply chosen B∗ to be a collection of t tile
points, with some further coding to distinguish the different tile-types. However, the construction presented
here is more flexible and better adapted to handling more complex classes of structures.

3.3 Preliminary definitions
We will now precisely state our constraints, but first will establish some notation.

Definition 3.1 We first define the “special” edges our construction uses.

1. x→i y if x, y ∈ P i and there exist a ∈ C1, b ∈ C2 such that xEaEbEy. In this case, we say x is
the predecessor of y, and y the successor of x.

2. Πi
1(v, w) if v ∈ Gi, w ∈ P i, and there exists a ∈ C3 such that vEaEw. In this case, we say w is an

x-projection of v.

3. Πi
2(v, w) if v ∈ Gi, w ∈ P i, and there exists a ∈ C4 such that vEaEw. In this case, we say w is a

y-projection of v.

We say g is a Gi-origin, or sometimes a grid origin, if there is an x ∈ Oi such that Πi
1(g, x) and

Πi
2(g, x).
Our constraints will force x and y-projections to be unique. Given g, g′ in Gi, we say g′ is a horizontal

successor of g if they have the same y-projection, and the x-projection of g′ is the→-successor of the
x-projection of g. Similarly for vertical successor, but with x and y switched.

We now define binary relations related to the tiles.

1. For i ∈ [t] (i.e. i ∈ { 1, . . . , t }), we say τi(x, y) if x ∈ G1, y ∈ T 1, and there exist v1, . . . , vi ∈ T 1

such that vi = y and xEv1E . . . Evi. In this case, we say y is a tile of type i associated to x.

2. τ(x, t) if x ∈ G0, there is some y ∈ G1 and i ∈ [t] such that τi(y, t), and xEt. In this case, we say
x is tiled by t or that x is tiled by a tile of type i.

Finally, we say x has a full set of tiles if there exist ti for i ∈ [t] such that for all i, τi(x, ti).
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3.4 Constraints
In addition to the constraints forcing a valid tiling to be produced when joint embedding the canonical
models, we have several constraints which ensure that the origin, path, and grid points encode something
grid-like. We would like to choose further constraints which ensure that every structure in our class looks
like A∗ or B∗. We would like every grid point to have coordinates from the path, or every G1-point to have
a complete tile-set. However, as we cannot enforce such “totality” conditions using forbidden structures,
we must allow for partial structures.

In the previous section, we noted that we would wish our constraints to force a G0-point to be tiled
using a tile from a G1-point with the same coordinates. However, as we are forbidding a finite number
of finite structures, our constraints must have a local character; as determining the coordinates of a grid
point requires walking back to the origin, and thus looking at an unbounded number of vertices, we cannot
use our constraints as desired. Instead, we will start the tiling at the origin, and then propagate it by local
constraints.

Given a tiling problem T , we now define GT as the class of all finite graphs with the following constraints.
Afterwards, we explicitly describe the forbidden subgraphs for some of the constraints.

1. The unary predicates in the language are disjoint.

2. A path vertex has at most 1→-predecessor.

3. An origin vertex has no→-predecessor.

4. A grid vertex has at most 1 x-projection and 1 y-projection.

5. Tile vertices are associated to at most one grid point, i.e. given t ∈ T 1, there do not exist distinct
g, h ∈ G1 such that τi(g, t) and τj(h, t).

6. Tile vertices have a unique type, i.e. if τi(g, t) and τj(g, t) then i = j.

7. The tiling rules of T are respected.

8. If g ∈ G0 and h ∈ G1 are grid-origins, and h has a full set of tiles, then g must be tiled by a tile
associated to h.

9. If a grid vertex is tiled, and there is an appropriate tile set for its neighbor, then its neighbor is also
tiled. More precisely, we require the following.

Suppose g, g′ ∈ G0 with g′ a horizontal (resp. vertical) successor of g, and h, h′ ∈ G1 with h′ a
horizontal (resp. vertical) successor of h. Suppose τ(g, t) where t is a tile vertex associated with h.
If h′ has a full tileset, then g′ must be tiled by a tile vertex associated with h′.

We note that only the last two constraints require the presence of edges, and so are the only ones that
require forbidding induced subgraphs.

We now give explicit forbidden subgraphs for some of the constraints. We sometimes forbid a non-
induced subgraph; this is equivalent to forbidding the finite set of induced subgraphs obtained by adding
edges in any fashion to the non-induced subgraph.

(1) For every pair of unary predicates, we forbid a point belonging to both predicates.
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(2) For i = 0, 1, we forbid the non-induced subgraphs consisting of points p, p′, q ∈ P i (and the
requisite coding vertices), such that p→i q and p′ →i q.

(7) Suppose T forbids a tile of type j to the right of (respectively, above) a tile of type i. Then we forbid
the following as a non-induced subgraph.

Let g, g′ ∈ G0 with g′ a horizontal (resp. vertical) successor of g. Let h, h′ ∈ G1 with h′ a
horizontal (resp. vertical) successor of h. Finally, let τ(g, th,i), τ(g′, th′,j) where th,i is a tile of type
i associated to h and th′,j is a tile of type j associated to h′.

(8) Let o0 ∈ O0, o1 ∈ O1, g ∈ G0, h ∈ G1, and t1, . . . , tt ∈ T 1, with Π0
1(g, o0), Π0

2(g, o0), Π1
1(h, o1),

Π1
2(h, o1), and hEt1E . . . Ett. We forbid this as an induced subgraph, as well as any graph obtained

by adding edges to this configuration, unless an edge is added between g and some ti.

3.5 An Informal Proof
We wish to prove the following.

Proposition 3.2 Let T be a tiling problem, and GT be the hereditary graph class defined above. Then GT
has the JEP if and only if T has a solution.

We first give an informal version of the proof, somewhat fleshing out the sketch from the introduction.

Proof: The easy direction: from the JEP to a tiling
Suppose GT has the JEP. Note that A∗, B∗ as described above are in GT , so we may jointly embed them.
By constraint 8, the g0-origin in A∗ must be tiled by adding an edge to a tile associated with the g1-origin
in B∗, and by constraint 9 this must propagate to a tiling of the whole grid in A∗, for each (i, j) adding
an edge from the g0-point in A∗ with coordinates (i, j) to a tile associated with the g1-point in B∗ with
coordinates (i, j). Since the tiling rules must be respected by constraint 7, we may then read a solution to
the tiling problem off the resulting graph.

The delicate direction: from a tiling to the JEP
Here, we are a bit sketchier. We first fix a solution θ : N2 → [t] to the tiling problem T . Given A,B ∈ GT ,
we initially take the disjoint union C = A tB.

As only constraints 8 and 9 require the presence of edges, these are the only constraints that may be
violated at this point, and in fact only constraint 8 may be. We thus use θ(0, 0) to tile all G0-origins in one
factor from all full tilesets attached to G1-origins in the other factor. However, now there may be violations
of constraint 9 for points with coordinates (1, 0) and (0, 1). We continue using θ to appropriately tile our
grids. The key point here is constraints 2-4 ensure that every grid point we must work with has well-defined
coordinates, so we have a definite input to give to θ. 2

In the following two subsections, we give the formal proof of Proposition 3.2.

3.6 From the JEP to a Tiling
Suppose GT has the JEP. For this direction, we may largely repeat the informal version.

Let Π0 = { p0i | i ∈ N }, and let Γ0 = (Π0)2, whose elements we denote g0i,j rather than (p0i , p
0
j ). Let

A∗ start with the vertex set Π0 ∪ Γ0, with p00 ∈ O0, Π0\ { p00 } ⊂ P ′0, and Γ0 ⊂ G0. Also, add coding
vertices in Ci and the associated edges needed to encode the relations p0i →0 p0i+1 for each p0i ∈ Π0, and
Π0

1(g0i,j , p
0
i ) and Π0

2(g0i,j , p
0
j ).
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Let B∗ be constructed as A∗, but using 1-superscripted points, sets, and predicates in place of 0-
superscripted ones. Let Θ1 = Γ1 × [t], and denote its elements as t1g,i rather than (g, i), Add these vertices
to B∗, with Θ1 ⊂ T 1. Finally, for each g ∈ Γ1, add edges so that gEt1g,1E . . . Et

1
g,t.

By inspection, A∗, B∗ ∈ GT . Let C ∈ GT jointly embed A∗ and B∗. We claim C encodes a solution to
T .

By constraint 1, no points in A∗ and B∗ got identified in C, except perhaps coding vertices. By
constraints 8 and 9, for every (i, j) ∈ N2 there is some k ∈ [T ] such that τ(g0i,j , t

1
gi,j ,k

). Define the
function θ : N2 → [t] by picking one such k for each (i, j). By constraint 7, θ is a solution to T .

3.7 From a Tiling to the JEP
For this section, we fix a solution θ : N2 → [t] to T .

We begin by establishing some effects of constraints 2-4, which will allow us to assign coordinates to
grid points. We note that, although it would add little additional overhead, it is not necessary to constrain
the number of→-successors, and so constraints 2 and 3 actually allow the path vertices to form a forest.

Definition 3.3 In any graph, let→i
n be the n-fold composition of→i.

Given p ∈ P i and o ∈ Oi, we say p is on a path with origin o if there is some n ∈ N so that o→i
n p. In

this case, we say p is at distance n from o.
Let Gi∗ be the set of all g ∈ Gi such that there exist o ∈ Oi and x, y ∈ P i with Πi

1(g, x),Πi
2(g, y) and

x and y are on paths with origin o. In this case, if x is at distance n from o, and y at distance m, we say g
has coordinates (n,m).

Constraints 2 and 3 ensure that if p is on a path with origin o and a path with origin o′, then o = o′.
They also ensure that the distance of p from o is unique. This, together with constraint 4, ensures that the
coordinates of a grid point are unique.

Definition 3.4 Let θ∗ : G0
∗ → [t] be defined by θ∗(g) = i if and only if g has coordinates (n,m) and

θ(n,m) = i.

We are now ready to state our joint embedding procedure. Let A,B ∈ GT . Let C0 be the disjoint
union A tB. We construct an extension C of C0 by adding edges of the form (g, t) when the following
conditions are met.

1. (g, t) ∈ A×B ∪B ×A

2. g ∈ G0

3. g has coordinates (n,m) for some n,m ∈ N

4. There is h ∈ G1 with coordinates (n,m) such that τθ∗(g)(h, t)

Remark 3.5 This procedure may add many more tiling-relations than would be required to satisfy the
constraints. For example, we tile any grid point with coordinates, even if preceding grid points are missing
that block propagation from the origin, and we may tile using tiles from incomplete tilesets.

We now wish to show that C ∈ GT by showing it satisfies each constraint.
As constraint 1 only involves unary predicates, and these remain unchanged by taking the disjoint union

and adding edges, it remains satisfied in C.
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Lemma 3.6 C satisfies constraints 2–6.

Proof: For all these constraints, the forbidden configuration is connected, and thus they are satisfied in C0.
However, our procedure then only adds edges from G0 to T 1-vertices, which by constraint 1 are not of any
other type. As none of the forbidden configurations involve both G0 and T 1-vertices, such edges cannot
cause them to be violated, and so they continue to be satisfied in C. 2

For the remaining constraints, the outline of the argument is the same. We consider a forbidden
configuration in C, and show that it must have arisen from adding edges to a particular configuration in C0.
We then argue that our procedure would have added edges to the C0-configuration so as to avoid creating
the forbidden configuration in C.

Lemma 3.7 C satisfies constraint 7.

Proof: Again, our constraint is connected, and so satisfied in C0. Fix a violation of 7, say of the horizontal
rule, with vertices as in the constraint description. As we only add edges from G0-vertices to T 1-vertices,
we must have added either the edge (g, th,i) or (g′, th′,j). However, if we have only added one such edge,
the configuration without that edge would be connected and would have been present in C0, and so be
entirely contained in one factor. This is a contradiction, as we only add edges between points in distinct
factors. Thus our procedure must have added both these edges.

Thus th,i is a tile of type θ∗(g) and th′,j is a tile of type θ∗(g′), and by constraints 5 and 6 these types
are unique. Suppose g has coordinates (n,m); as g′ is a horizontal successor of g, it must have coordinates
(n+ 1,m). But then th,i is of type θ(n,m) and th,j is of type θ(n+ 1,m), so they cannot violate 7. 2

Lemma 3.8 C satisfies constraint 8.

Proof: Let X = { g, c, d, o } , Y = { g′, c′, d′, o′, t′1, . . . , t′t }, and suppose X ∪ Y witnesses a violation of
constraint 8, with o ∈ O0, g ∈ G0 with x and y-projections equal to o, and c and d the requisite coding
vertices; let g′, c′, d′, o′ be a corresponding configuration using 1-superscripted predicates, and let ti ∈ T 1

for 1 ≤ i ≤ t with g′Et′1E . . . Et
′
t.

As X and Y are each connected and neither contains both a g0-point and a T 1-point, they must each lie
in a single factor, and these factors must be distinct. Thus in C0, g and g′ both have coordinates (0, 0) and
g′ has a full tileset, so our procedure adds an edge from g to t′θ(0,0), and so the constraint is satisfied in C.
2

Lemma 3.9 C satisfies constraint 9.

Proof: Consider a violation of constraint 9, with labels as in the constraint description (including suitable
path and coding vertices). Since the constraint is connected, it must have been satisfied in C0, and so the
edge from g to t must have been added by our procedure afterward. As in Lemma 3.8, the violation then
splits into two connected components in C0, one in each factor; one component contains g, g′, and their
associated path and coding vertices while the other contains h, h′, and their associated tilesets and path and
coding vertices.

As our procedure added an edge from g to t, g and h must have had coordinates in C0. Thus g′ and h′

also have coordinates in C0. As h′ has a full tileset in C0, our procedure adds an edge from g′ to a tile in
this tileset, which satisfies the constraint. 2
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4 Moving to the language of graphs
Given a finitely-constrained hereditary class GT in the language with unary predicates, we wish to produce
a finitely-constrained hereditary graph class that has the JEP if and only if GT does. For this, we need
some means of interpreting the unary predicates in the pure graph language. Our plan is to associate the ith

unary predicate to some graph Gi, and to represent “v is in the ith predicate” by freely joining a copy of
Gi over v. In order for this coding to be unambiguous, the graphs we choose must form an antichain under
embeddings.

We remark that we do not actually require an infinite antichain in the following definition, merely one
with as many graphs as we have unary predicates. For our argument, the minimum size will be 13.

Definition 4.1 We now fix an infinite collection of 2-connected graphs with basepoints (Gi, ai)i∈N, such
that {Gi }i∈N is an antichain under embeddability, and such that there is no automorphism of any Gi
moving the basepoint.

Definition 4.2 Given a graph G, a block of G is a maximal 2-connected component. Every graph has a
unique decomposition into blocks.

Definition 4.3 Let Ck be the class of finite graphs with k unary predicates, which we will refer to as colors
{ 1, . . . , k }. Let C∗k ⊂ Ck be the subclass in which the colors partition the vertices, and in which any
(colored) copy of the Gi are forbidden.

Definition 4.4 Define ∧ : C∗k → { graphs } as follows: for each vertex of the graph, if it has color i, freely
attach a copy of Gi over it at the basepoint, i.e. for each v ∈ G with color i, take the disjoint union
G t (Gi, ai), and then identify v with ai. These copies of Gi will be called attached copies.

The image of A ∈ C∗k will be denoted by Â. We will also let Ĝ = { Ĝ | G ∈ G }.

Lemma 4.5 Let G ∈ C∗k . Any copy of Gi in Ĝ is an attached copy.

Proof: As Gi is 2-connected, any copy must be contained in a single block of Ĝ. As the copies of Gi are
freely attached, the blocks of Ĝ are those of G as well as the attached Gj for various j. Thus, any copy of
Gi must be contained in one of the attached Gj . As {Gi } is an antichain, it must be one of the attached
copies of Gi. 2

Definition 4.6 Let ∨ : { graphs } → Ck be given by taking a graph, and for each copy of Gi free over its
basepoint, retaining the basepoint and giving it color i, and forgetting the remaining vertices.

Lemma 4.7 For any G ∈ Ck, ∨(Ĝ) ∼= G. In particular, ∧ is injective.

Proof: This is immediate from Lemma 4.5. 2

Lemma 4.8 A graph is in the image of ∧ if and only if it satisfies the following properties.

1. For each i, every copy of Gi is free over its basepoint.

2. If v is the basepoint of a copy H1 of Gi and H2 of Gj , then H1 = H2.

3. Every vertex is, for some i, part of a copy of Gi.
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Remark 4.9 (2) implicitly uses that {Gi } is an antichain.

Proof: Suppose we start with G ∈ C∗k . Then Ĝ is produced by making each vertex the basepoint of a copy
of Gi, for the appropriate i. Thus (3) is satisfied. Conditions (1) and (2) are satisfied by Lemma 4.5.

Now suppose we are given a graph G of this form. By conditions (1) and (2), the vertex set of ∨(G)
consists of the basepoints of copies of Gi, each given color i, and with edges between them induced by G.
Then, using condition (3), we have G = ∨̂(G). 2

Lemma 4.10 ∧ preserves embeddings, i.e. there exists an embedding A ↪→ B if and only if there exists an
embedding Â ↪→ B̂

Proof: The forward direction is clear.
For the other direction, suppose Â ↪→ B̂. Then for each copy of Gi ⊂ Â, the basepoint must be mapped

to such a basepoint in B̂. By Lemma 4.8, each of these basepoints in B̂ has a free copy of Gi over it, and
so can be identified with a vertex in ∨(B̂). Furthermore, it will receive the same color as the corresponding
point in ∨(Â). Finally, ∨ preserves the induced graph on the points it retains, so ∨(Â) ↪→ ∨(B̂), and so by
Lemma 4.7 we are finished. 2

As ∧ preserves embeddings, the class GT in the language with unary predicates will have the JEP if and
only if its image under ∧ does. However, this image is not a hereditary graph class, and it is not clear that
its downward closure will be finitely-constrained. So our goal now is to find some finitely-constrained
hereditary graph class such that every member can be completed to an element in the image of GT under ∧,
which must satisfy the conditions of Lemma 4.8.

The following constraints are meant to enforce conditions (1) and (2) of Lemma 4.8.

Definition 4.11 LetH1 be the set of graphs consisting of, for each i, a copy of Gi and an additional vertex
adjacent to a point that is not the basepoint of Gi.

LetH2 be the set of graphs consisting of a copy of Gi and Gj freely joined over their basepoints, for
each i, j, allowing i = j.

Definition 4.12 Given a set G of graphs, we define ¬G to be the corresponding hereditary graph class
forbidding the graphs in G.

Keeping in mind condition (3) of Lemma 4.8, the plan for our completion algorithm is to freely attach a
copy of Gi for some i over every vertex that is not already in some copy of one of the {Gi }. However,
randomly assigning colors may produce a forbidden structure. Thus, we make sure we have a “dummy”
color available, which is not in any non-trivial constraint, and only use its associated Gi for our completion.

Lemma 4.13 Let G ⊂ Ck, such that ¬G ⊂ C∗k . Further suppose that the only graphs in G containing a
k-colored vertex are multicolored single vertices and colored copies of the {Gi }.

Then every graph in ¬(Ĝ ∪ H1 ∪H2) embeds into one in ¬̂G.

Proof: Let G ∈ ¬(Ĝ ∪ H1 ∪H2). Since G ∈ ¬H1, it satisfies (1) from Lemma 4.8. Since G contains all
multicolored single vertices, then since G ∈ ¬(Ĝ ∪ H2), it also satisfies (2) from Lemma 4.8.
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For every vertex v for which there is no i such that v is in copy of Gi free over its basepoint, we freely
attach to v a copy of Gk, identifying v with the basepoint. Call the resulting graph G+, and note it satisfies
(3) from Lemma 4.8.

Using the 2-connectedness of the {Gi } as in Lemma 4.5, G+ still satisfies (1) and (2) from Lemma 4.8.
We claim it is also still in ¬Ĝ, as we have only added copies of Gk. Suppose Ĥ ∈ Ĝ embeds into G+.

Then H ∈ G embeds into ∨(G+).
As G+ satisfies (2) from Lemma 4.8, H cannot be a multicolored vertex. As G+ ∈ ¬H1, H cannot be a

colored copy of any of the {Gi }. Thus H does not contain any k-colored vertices.
Consider the subgraph A ⊂ G+ induced by all vertices which are not the basepoint of a freely-attached

copy of Gk. Then H must embed into ∨(A). But then Ĥ embeds into A and thus into G. 2

Lemma 4.14 Let G ⊂ Ck, such that ¬G ⊂ C∗k . Further suppose that the only graphs in G containing a
k-colored vertex are multicolored single vertices and colored copies of the {Gi }. Then ¬(Ĝ ∪ H1 ∪H2)
has the JEP if and only if ¬G has the JEP.

Proof: Suppose ¬G has the JEP. Let A,B ∈ ¬(Ĝ ∪ H1 ∪ H2). Extend them to A+, B+ ∈ ¬̂G. Then,
there is some C ∈ ¬G embedding ∨(A+),∨(B+). Thus Ĉ embeds A+, B+, and so A,B as well.

Now suppose ¬(Ĝ ∪ H1 ∪H2) has the JEP. Let A,B ∈ ¬G. Then there is some C ∈ ¬(Ĝ ∪ H1 ∪H2)

embedding Â, B̂. Extend C to C+ ∈ ¬̂G. Then ∨(C+) embeds A,B. 2

In order to finally prove our main theorem, we must choose a suitable set { (Gi, ai) }. The graphs must
be 2-connected, form an antichain under embedding, and have no automorphism moving the basepoint.
Finally, in order to have GT ⊂ C∗k , no colored version of them may embed into our canonical models
A∗, B∗, and they must not be produced by our joint embedding process for the graphs with unary predicates.
We ensure these last two points by having every edge be contained in a triangle.

Notation 4.15 Let Wn be the wheel graph on n + 1 vertices, i.e. an n-cycle with an additional vertex
adjacent to all others.

We let Gi = W2i+5. The basepoint of Gi will be the unique point of degree greater than 3.

The following fact for all wheel graphs is easy. Our restriction to Wn for n ≥ 7 and odd is only for
continuity with the next section.

Fact 4.16 The wheel graphs {Wn } are 2-connected, have every edge contained in a triangle, and form
an antichain under embedding. Furthermore, there is no automorphism moving our choice of basepoint.

Theorem 4.17 There is no algorithm that, given a finite set of forbidden induced subgraphs, decides
whether the corresponding hereditary graph class has the JEP.

Proof: By Proposition 3.2, it is undecidable whether GT has the JEP, as T varies. We may modify
GT to G∗T by introducing an extra color and forbidding all uncolored vertices. We also add constraints
forbidding {Gi }, as well as constraints forbidding an edge between any two grid vertices. Because our
joint embedding procedure only adds edges from grid vertices to tile vertices, it will not add edges between
grid vertices, and so respects this constraint.

Note that our canonical models contain no triangles (as the coding vertices break up edges), and thus no
copies of the {Gi }, and they also satisfy the new constraints forbidding edges between grid vertices. Our
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joint embedding procedure only adds edges from grid vertices to tile vertices, and edges are only added
to one tile vertex in a given set of tiles. By constraints 5-6, there are no edges between tile vertices in
distinct tile sets, so our joint embedding procedure will produce no triangles. For any i, every edge of Gi is
contained in a triangle, so no copies of Gi will be produced.

We may thus apply Lemma 4.14 to G∗T to produce a family of finitely-constrained hereditary graph
classes for which the JEP is undecidable as T varies. 2

5 The joint homomorphism property
A class of structures has the joint homomorphism property (JHP) if, given any two structures in the class,
there is a third that admits homomorphisms from both. This notion naturally arises in infinite-domain
constraint satisfaction problems. For example, the constraint satisfaction problem for a theory can be
realized as the constraint satisfaction problem for a particular model if and only if the models of the theory
have the JHP Bodirsky (2012). The following question was posed by Bodirsky in January 2018 (personal
communication).

Question 1 Is there an algorithm that, given a finite set of forbidden induced subgraphs, decides whether
the corresponding hereditary graph class has the JHP?

In this section, our main result is a negative answer to this question, obtained by modifying our
construction for the JEP.

Theorem 5.1 There is no algorithm that, given a finite set of forbidden induced subgraphs, decides
whether the corresponding hereditary graph class has the JHP.

Theorem 5.1 will be proven by modifying our proof of Theorem 4.17. The reader should be familiar
with the brief sketch of the proof of Theorem 4.17 appearing in the introduction and the discussion at the
beginning of Section 4 about removing the unary predicates; relevant results and definitions will be recalled
or referenced as needed.

Unlike the JEP, the JHP is sensitive to changing between quantifier-free interdefinable languages. For
example, we get the following as a corollary to Theorem 4.17, but will later have to work much more
without the non-edge relation present.

Proposition 5.2 Work in a language with relations for edges and non-edges. Then there is no algorithm
that, given a finite set of forbidden induced subgraphs, decides whether the corresponding hereditary graph
class has the JHP.

Proof: Our goal is to alter the forbidden structures so that any homomorphism is actually an embedding.
Suppose we are given a finite set Cred of forbidden induced subgraphs in the language with just the edge

relation. Let C be the set of graphs, in the enriched language, with the non-edge relation added between any
non-adjacent points. Let C+ be the union of C with the graphs on two points in which either both relations
or neither relation is present, ensuring the relations act as edges and non-edges. Then we claim ¬Cred has
the JEP if and only if ¬C+ has the JHP.

First, note that a homomorphism between two structures in ¬C+ must be an embedding. Second, we
may define embedding-preserving maps between ¬Cred and ¬C+ as follows. Given a graph A ∈ ¬Cred,
let A+ ∈ ¬C+ be the structure obtained by adding the non-edge relation between non-adjacent vertices.
Given A ∈ ¬C+, let Ared ∈ ¬Cred be the graph obtained by forgetting the non-edge relation. 2
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Definition 5.3 We will say a homomorphism is proper if it is not an isomorphism.

Recall that Wn is a wheel graph, as in Notation 4.15.

Fact 5.4 Every proper homomorphic image of W5 contains a copy of K4.

As in Proposition 5.2, the plan for proving Theorem 5.1 will be to modify our graphs so that any C
witnessing the JHP also witnesses the JEP, at least in our canonical models. In Proposition 5.2, we did this
by adding the non-edge relation between any two non-adjacent vertices to make our structures clique-like.
Here we do the following.

1. Forbid K4.

2. In our canonical models, over any two non-adjacent basepoints of copies (Gi1 , ai1) and (Gi2 , ai2)
(the graphs we are using to code unary predicates, see Definition 4.1) freely join a copy of W5, while
keeping the vertices non-adjacent (i.e., first take the disjoint union with a copy of W5, then identify
two non-adjacent points of the new copy of W5 with ai1 and ai2 ).

The procedure above ensures that homomorphisms cannot identify the basepoints of the (Gi, ai) in our
new canonical models, nor add edges between them, as this would create a copy of K4. Thus the copies
of W5 act similarly to the non-edge relation in Proposition 5.2. The constraint set H1 from Definition
4.11 ensures that we cannot add an edge, nor make any identification, between a non-basepoint and any
point outside the copy of Gi it lies in. Thus the only possible issue is if the homomorphisms of our new
canonical models fail to be embeddings within a single copy of some antichain element Gi.

This last possibility will be removed by forbidding all proper homomorphic images of each Gi that we
use from our antichain. However, these forbidden homomorphic images of Gi might embed into Gi, or
some other Gj , but our choice of {Gi } will prevent this.

Lemma 5.5 The wheel graphs, {Wi } form an antichain under homomorphism. Also, for i odd, Wi is a
core, i.e. any endomorphism is an automorphism.

Proof: The fact the odd wheels are cores is standard, e.g. see Example 2.23 of Hahn and Tardif.
Suppose φ is a homomorphism from Wi to Wj . By Fact 4.16, we already know φ cannot be an

embedding, so it must either identify points or add edges. In either case, φ(Wi) will have at least two
vertices of degree greater than 3. But Wj has only one vertex of degree greater than 3. 2

Lemma 5.6 Any homomorphic image of Wi is 2-connected.

Proof: Now let φ : Wi → H be a homomorphism. Suppose H becomes disconnected upon removing a
vertex v. Then Wi becomes disconnected upon removing the preimage of v. Let c ∈ Wi be the vertex
connected to all others. If c 6∈ φ−1(v), then Wi is still connected after removing φ−1(v). If c ∈ φ−1(v),
then no other point is in φ−1(v), so again Wi remains connected after its removal. 2

Notation 5.7 As in the previous section, we let Gi = W2i+5. The basepoint ai of Gi will be the unique
point of degree greater than 3.

Definition 5.8 Given a graph G, we construct an augmented copy of G, denoted G+, as follows. First,
we start with a copy of G. Then over every non-adjacent pair of vertices, we freely join a copy of W5,
identifying that pair of vertices with a pair of non-adjacent vertices in W5.
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We will use A+, B+ to denote the augmented copies of our canonical models A∗, B∗, where the new
vertices we have added are marked with a new unary predicate C5. Note that A+, B+ contain A∗, B∗ as
induced subgraphs.

Lemma 5.9 A+, B+ contain no homomorphic images, including embeddings, of any of the {Gi }, nor
any copies of K4.

Proof: As neither A∗ nor B∗ contain triangles, the only triangles in A+, B+ are in the copies of W5 we
have added. Thus there are no copies of K4. Now suppose there is some φ : Gi → H , with H embedding
in A+ or B+. An edge (u, v) of H will be old if Gi contains an edge between some element of φ−1(u)
and some element of φ−1(v), and otherwise the edge will be new.

Let H ′ be the graph H with all new edges removed. Then every edge of H ′ is contained in a triangle,
and so must be contained in some copy of W5, and so the same is true for the vertices of H . Since H
cannot be contained in a single copy of W5, as the {Wi } form an antichain under homomorphism, it must
be contained in the union of multiple copies of W5, say W 1, . . . ,Wn. Since H contains a vertex adjacent
to all others, all the W i must intersect at a single point, and so are otherwise pairwise disjoint. But H ′ is
2-connected, and no subgraph of W 1 ∪ · · · ∪Wn such that every edge connects two points in the same
W i will be, unless contained within a single W i. 2

We now shift from the language with unary predicates to the pure graph language. Given the choice of
(Gi, ai) to encode unary predicates, for any choice of tiling problem T we get a hereditary graph classHT ,
which has the JEP if and only if T has a solution. We wish to add extra constraints to this graph class. In
particular we wish to forbid K4 and proper homomorphic images of the {Gi }, for i ≤ 14. (We choose
i = 14 because our original construction in a language with unary predicates used 12 unary predicates. We
have added another predicate C5 in this section, and require a “dummy” predicate for the translation to the
pure graph language.) We will call the resulting hereditary graph classH+

T .

Notation 5.10 Recall the function ∧ from Definition 4.4. As before, we will use Ĝ to denote ∧(G).

Lemma 5.11 Let Â+, B̂+ be the canonical models in the pure graph language, obtained by applying the
function ∧ to A+, B+. Then Â+, B̂+ do not contain copies of K4 or any proper homomorphic images of
the {Gi }, and so are inH+

T .

Proof: As K4 and any homomorphic images of the {Gi } are 2-connected, if one of them is contained in
Â+ or B̂+ then it must be contained in a single block. We know they are not contained in any of the copies
of {Gi } attached by ∧ as the {Gi } are cores and form an antichain under homomorphisms, so they must
have been present in A+, B+. But by Lemma 5.9, we know this is not the case. 2

As we already knowHT has the JEP when T has a solution, to check thatH+
T has the JEP, it suffices to

check that our joint embedding procedure forHT does not create any new copies of K4 or homomorphic
images of {Gi }.

Recall the two steps of our joint embedding procedure in the pure graph language. First, for every vertex
v such that there is no i such that v is in a copy of Gi free over its basepoint, we attach a copy of Gk freely
over v, which gets identified with the basepoint, where Gk represents a unary predicate specially reserved
for this completion process (in our case, k = 14). We may then interpret the resulting graph in the language
with unary predicates, and in the next step we add edges as we would have done there.



The undecidability of joint embedding and joint homomorphism for hereditary graph classes 15

Lemma 5.12 Let T be a tiling problem with a solution, and suppose A,B ∈ H+
T . Then applying our joint

embedding procedure to A,B creates no homomorphic images of any of the {Gi }i≤14 except for copies
of G14, nor any copies of K4, and so produces a graph inH+

T .

Proof: In the first step of our joint embedding procedure, we add copies of G14 freely over various vertices.
AsK4 and homomorphic images of the {Gi } are 2-connected, any new copies of these graphs must appear
in the attached copies of G14. First, K4 does not embed into G14. Then, as G14 is a core and the {Gi }
form an antichain under homomorphisms, the only homomorphic image of any of the {Gi } embedding in
G14 is G14 itself.

Let A′ and B′ be the graphs obtained from A and B as a result of this first step. As the graphs {Gi }
and K4 are connected, no copies of K4 or the {Gi } are created by passing to the disjoint union A′ tB′.
We now continue on to the second step of our joint embedding procedure, in which edges between the
factors are added to A′ tB′. The key point in this step is that no edge we add is contained in a triangle.
This immediately rules out creating any copies of K4.

Now suppose our joint embedding procedure creates some graph H , a homomorphic image of one of the
{Gi }. Let φ : Gi → H be a homomorphism. We divide the edges of H into two classes. An edge (u, v)
of H will be old if Gi contains an edge between some element of φ−1(u) and some element of φ−1(v),
and otherwise the edge will be new.

First, note that as all the edges of Gi are contained in a triangle, the same is true for all the old edges of
H . Thus our joint embedding procedure cannot add any old edges.

Let H ′ be the graph H with all the new edges removed. Then H ′ must be contained in the disjoint union
A′ tB′. As H ′ is connected, it must be contained in one of the factors. As our joint embedding procedure
does not add edges within a factor, we have H ′ = H , and so H was already present in one of the factors. 2

Theorem 5.13 There is no algorithm that, given a finite set of forbidden induced subgraphs, decides
whether the corresponding hereditary graph class has the JHP.

In particular, given a tiling problem T ,H+
T has the JHP if and only if T has a solution.

Proof: First, suppose T has a solution. Then by Lemma 5.12,H+
T has the JEP, and thus the JHP.

Now suppose H+
T has the JHP. Then there is some C ∈ H+

T that Â+, B̂+ both have homomorphisms
into. We now wish to argue any homomorphism of Â+ into C must be an embedding, and similarly for
B̂+.

Consider taking a homomorphism of Â+ whose image must be inH+
T . We cannot identify or add edges

between any two basepoints of any of the {Gi }, as they are either already adjacent or have a copy of W5

freely joined over them, so the identification or new edge would create a copy of K4. We cannot identify
any non-basepoint of a copy of one of the {Gi } with any point outside of that copy of Gi as that would
create an edge incident to the non-basepoint, forbidden byH1 (Definition 4.11), unless we identified the
entire copy of Gi with another copy of Gi; however the latter is forbidden as the basepoints cannot be
identified. We also cannot add an edge to a non-basepoint from outside the copy of Gi it is in. Finally, we
cannot add edges or identify points within a given copy of one of the {Gi }, since all proper homomorphic
images of the {Gi } are forbidden.

Thus Â+, B̂+ actually embed in C, and as in Section 3.6 this must encode a solution to T . 2
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6 Questions
Closely related to Theorem 4.17 is the JEP for monotone graph classes, i.e. those specified by forbidden
(non-induced) subgraphs.

Question 2 (Cherlin et al. (1999), after Example 6) Is there an algorithm that, given finite set of for-
bidden subgraphs, decides whether the corresponding monotone graph class has the joint embedding
property?

When forbidding non-induced subgraphs, the constraints cannot force a joint embedding procedure to
add edges between factors. Thus, when attempting to adapt the proof of Theorem 4.17, the only option for
tiling a grid point is through identifying points in different factors. This is a violent act that forces various
uniqueness restrictions on the construction.

In addition to the interest due to the required change in approach, Question 2 arises in the program for
deciding whether a monotone graph class admits a countable universal graph, as laid out in Cherlin et al.
(1999). Since the JEP is necessary for the existence of such a countable universal graph, it would seem
to be a preliminary consideration. In Cherlin et al. (1999), the additional complication of considering
Question 2 is intentionally avoided by assuming the forbidden subgraphs to be connected, so disjoint union
serves as a joint embedding procedure. But if the answer to Question 2 is positive, it would be natural to
take a broader view of the decision problem for universality by allowing arbitrary forbidden subgraphs.

As mentioned earlier, the following problem of Ruškuc was the motivation for this paper.

Question 3 Is there an algorithm that, given finite set of forbidden permutations, decides whether the
corresponding permutation class has the joint embedding property?

The main difficulty in working with permutation classes seems to be the transitivity of the orders. When
performing joint embedding, once we decide how to relate a single point in each factor to each other, many
other such relations are forced by transitivity. This is in contrast to the induced subgraph case, where
adding an edge between factors only forces us to add another edge if there is a conflict with one of the
forbidden subgraphs, which we have complete control over choosing.

A partial step towards Question 3 would be to consider the JEP for permutation graphs. Given a
permutation, this is the corresponding graph with the same vertex set and with edges defined by xEy if
and only if the two orders disagree between x and y.

Question 4 Is there an algorithm that, given finite set of forbidden permutations, decides whether the
corresponding hereditary permutation graph class has the joint embedding property?

In Gallai (1967), Gallai characterized permutation graphs in terms of an infinite family of forbidden
induced subgraphs. (The characterization is more easily available in de Ridder et al..) Thus, one could
approach Question 4 by attempting to modify the proof of Theorem 4.17 to avoid the graphs on Gallai’s
list.
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