Upper k-tuple domination in graphs

Gerard Jennhwa Chang ${ }^{123}$ André Raspaud ${ }^{4 \ddagger}$ Haichao Wang ${ }^{\ddagger} \|$ Weiliang Zhao ${ }^{7}$

${ }^{1}$ Department of Mathematics, National Taiwan University, Taipei, Taiwan
${ }^{2}$ Taida Institute for Mathematical Sciences, National Taiwan University, Taipei, Taiwan
${ }^{3}$ National Center for Theoretical Sciences, Taipei Office, Taiwan
${ }^{4}$ LaBRI UMR CNRS 5800, Univ. Bordeaux, Talence, France
${ }^{5}$ Department of Mathematics Education, Catholic University of Daegu, Kyongsan, Republic of Korea
${ }^{6}$ Department of Mathematics, Shanghai University of Electric Power, Shanghai, China
${ }^{7}$ Zhejiang Industry Polytechnic College, Shaoxing, China
received 22 ${ }^{\text {nd }}$ February 2012, accepted $26^{\text {th }}$ November 2012.

For a positive integer k, a k-tuple dominating set of a graph G is a subset S of $V(G)$ such that $|N[v] \cap S| \geq k$ for every vertex v, where $N[v]=\{v\} \cup\{u \in V(G): u v \in E(G)\}$. The upper k-tuple domination number of G, denoted by $\Gamma_{\times k}(G)$, is the maximum cardinality of a minimal k-tuple dominating set of G. In this paper we present an upper bound on $\Gamma_{\times k}(G)$ for r-regular graphs G with $r \geq k$, and characterize extremal graphs achieving the upper bound. We also establish an upper bound on $\Gamma_{\times 2}(G)$ for claw-free r-regular graphs. For the algorithmic aspect, we show that the upper k-tuple domination problem is NP-complete for bipartite graphs and for chordal graphs.

Keywords: Upper k-tuple domination, r-regular graph, bipartite graph, split graph, chordal graph, NP-completeness.

1 Introduction

All graphs considered in this paper are finite, simple and undirected. In a graph G with vertex set $V(G)$ and edge set $E(G)$, the open neighborhood of a vertex v is $N(v)=\{u \in V(G): u v \in E(G)\}$ and the closed neighborhood is $N[v]=\{v\} \cup N(v)$. The degree of v, denoted by $d(v)$, is the cardinality of $N(v)$. Denote by $\delta(G)$ the minimum degree of a vertex in G. A graph is r-regular if $d(v)=r$ for all $v \in V$. A stable set (respectively, clique) of G is a subset S of $V(G)$ in which every two vertices are not adjacent

[^0](respectively, are adjacent). For two disjoint subsets A and B of $V(G)$, let $e[A, B]$ denote the number of edges between A and B.
For $S \subseteq V(G)$, the subgraph induced by S is the graph $G[S]$ with vertex set S and edge set $\{u v \in$ $E(G): u, v \in S\}$. A bipartite graph is a graph whose vertex set can be partitioned into two sets such that every two distinct vertices may be adjacent only if they are in different sets. A split graph is a graph whose vertex set can be partitioned into a stable set and a clique. A chord of a cycle is an edge joining two vertices on the cycle that are not adjacent on the cycle. A chordal graph is a graph in which every cycle of length at least four has a chord. Split graphs are chordal. A graph G is called claw-free if it does not contain the bipartite complete graph $K_{1,3}$ as an induced subgraph.
For positive integer k, a k-tuple dominating set of G is a subset S of $V(G)$ such that $|N[v] \cap S| \geq k$ for all $v \in V(G)$. For a k-tuple dominating set S, any vertex in $N[v] \cap S$ is said to dominate v. Notice that a graph has a k-tuple dominating set if and only if $\delta(G) \geq k-1$. The k-tuple domination number $\gamma_{\times k}(G)$ of G is the minimum cardinality of a k-tuple dominating set of G, while the upper k-tuple domination number $\Gamma_{\times k}$ of G is the maximum cardinality of a minimal k-tuple dominating set. A $\Gamma_{\times k}(G)$-set of G is a minimal k-tuple dominating set of G of cardinality $\Gamma_{\times k}(G)$. An application of k-tuple domination for fault tolerance networks is presented in [9, 12]. For more results on k-tuple domination, we refer to [1, 2, 3, , 4, 5, ,13, 14, 15, 16, 17, 18, 19].
In this paper we first give an upper bound on $\Gamma_{\times k}$ for r-regular graphs, and characterize the extremal graphs achieving the upper bound. We also establish a sharp upper bound on $\Gamma_{\times 2}(G)$ for claw-free r regular graphs. Finally, we show that the upper k-tuple domination problem is NP-complete for bipartite graphs and chordal graphs.

2 Upper \boldsymbol{k}-tuple domination for \boldsymbol{r}-regular graphs

This section establishes a sharp upper bound for upper k-tuple domination on r-regular graphs.
First, a k-tuple dominating set S is minimal if and only if every vertex in S is not avoidable, that is, it has a closed neighbor that is dominated by exactly k vertices in S. Hence, we have the following property.
Lemma 1 In a graph G with $\delta(G) \geq k-1$, a k-tuple dominating set S is minimal if and only if each vertex in S has some closed neighbor u with $|N[u] \cap S|=k$.
For integers $r \geq k \geq 1$, let $\mathcal{H}_{r, k}$ be the family of r-regular graphs H whose vertex set is the disjoint union $F_{1} \cup F_{2} \cup F_{3}$, where F_{1} induces an ($r-1$)-regular graph of which each vertex has exactly one neighbor in F_{2}, F_{2} is a stable set of which each vertex has exactly $k-1$ neighbors in F_{1} and exactly $r+1-k$ neighbors in F_{3}, and F_{3} is a stable set of which each vertex has exactly r neighbors in F_{2}, see Figure 1. Since $(r+1-k)\left|F_{2}\right|=e\left[F_{2}, F_{3}\right]=r\left|F_{3}\right|$, there is some integer $m \geq 1$ such that $\left|F_{2}\right|=r m / g$ and $\left|F_{3}\right|=(r+1-k) m / g$, where $g=\operatorname{gcd}(r+1-k, r)=\operatorname{gcd}(r, k-1)$. And then $\left|F_{1}\right|=(k-1) r m / g$. The total number of vertices in H is $n=(k r+r+1-k) m / g$. According to Lemma 1, $F_{1} \cup F_{2}$ is a minimal k-upper dominating set of H and so $\Gamma_{\times k}(H) \geq \frac{k r n}{k r+r+1-k}$.
Theorem 2 If G is a r-regular graph of order n with $r \geq k \geq 2$, then $\Gamma_{\times k}(G) \leq \frac{k r n}{k r+r+1-k}$ with equality if and only if $G \in \mathcal{H}_{r, k}$.

Proof: Let S be a $\Gamma_{\times k}(G)$-set of G and $S^{\prime}=V(G) \backslash S$. For $k \leq i \leq r+1$, we define

$$
S_{i}=\{u \in S:|N[u] \cap S|=i\} \quad \text { and } \quad S_{i}^{\prime}=\left\{u \in S^{\prime}:|N[u] \cap S|=i\right\} .
$$

Fig. 1: An r-regular graph H in $\mathcal{H}_{r, k}$.
Notice that $S_{r+1}^{\prime}=\emptyset$ and S_{r}^{\prime} is stable as every vertex of S_{r}^{\prime} has neighbors only in S. Since every vertex has at least k closed neighbors in S, it is the case that $S=\bigcup_{i=k}^{r+1} S_{i}$ and $S^{\prime}=\bigcup_{i=k}^{r} S_{i}^{\prime}$ are disjoint unions. Therefore, $|S|=\sum_{i=k}^{r+1}\left|S_{i}\right|$ and $\left|S^{\prime}\right|=\sum_{i=k}^{r}\left|S_{i}^{\prime}\right|$.

According to Lemma 1, every vertex in S_{r+1} has at least one neighbor in S_{k}, while every vertex in S_{k} has at most $k-1$ neighbors in S_{r+1}. Therefore,

$$
\begin{equation*}
\left|S_{r+1}\right| \leq e\left[S_{r+1}, S_{k}\right] \leq(k-1)\left|S_{k}\right| \tag{1}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\left|S_{r+1}\right|-(k-1)\left|S_{k}\right| \leq 0 \tag{2}
\end{equation*}
$$

By Lemma 1 again, every vertex in $X=\bigcup_{i=k+1}^{r+1} S_{i}$ has at least one neighbor in $S_{k} \cup S_{k}^{\prime}$ and every vertex in S_{k} (respectively, S_{k}^{\prime}) has at most $k-1$ (respectively, k) neighbors in X. Therefore,

$$
\begin{equation*}
\sum_{i=k+1}^{r+1}\left|S_{i}\right| \leq e\left[X, S_{k}\right]+e\left[X, S_{k}^{\prime}\right] \leq(k-1)\left|S_{k}\right|+k\left|S_{k}^{\prime}\right| \tag{3}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\sum_{i=k+1}^{r+1}\left|S_{i}\right|-(k-1)\left|S_{k}\right| \leq k\left|S_{k}^{\prime}\right| \tag{4}
\end{equation*}
$$

We then use a double counting of $e\left[S, S^{\prime}\right]$ to get

$$
\begin{equation*}
\sum_{i=k}^{r}(r+1-i)\left|S_{i}\right|=e\left[S, S^{\prime}\right]=\sum_{i=k}^{r} i\left|S_{i}^{\prime}\right| \tag{5}
\end{equation*}
$$

Let $p=\min \left(\frac{r+1-k}{k}, 1\right)$ and $q=\max \left(\frac{r+1-k}{k}, 1\right)-1$. Then, $p>0, q \geq 0$ and $q+1 \geq \frac{r+1-k}{k}=p+q$. Consequently, $(r+1-k)-(p+q)(k-1)=p+q$ and $q+r+1-i \geq q+1 \geq p+q$ for $k+1 \leq i \leq r$, which gives (6). Adding p times (2), q times (4) and (5) gives the first inequality in (7). And $(q+1) k=\max \{r+1-k, k\} \leq r$ with equality only when $r=k$, which gives the second inequality in (7).

$$
\begin{equation*}
(p+q)|S| \leq((r+1-k)-(p+q)(k-1))\left|S_{k}\right|+(p+q)\left|S_{r+1}\right|+\sum_{i=k+1}^{r}(q+r+1-i)\left|S_{i}\right| \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\leq(q+1) k\left|S_{k}^{\prime}\right|+\sum_{i=k+1}^{r} i\left|S_{i}^{\prime}\right| \leq r\left|S^{\prime}\right|=r n-r|S| \tag{7}
\end{equation*}
$$

Hence, $\frac{k r+r+1-k}{k}|S|=(r+p+q)|S| \leq r n$ and so $\Gamma_{\times k}(G) \leq \frac{k r n}{k r+r+1-k}$, which proves the first part of the theorem.

Suppose $\Gamma_{\times k}(G)=\frac{k r n}{k r+r+1-k}$. By the proof above, the inequalities in 11, the inequalities in 3 when $q>0$, and the inequalities in (6) and (7) are equalities. The equality in (6) gives that $S=S_{k} \cup S_{r+1}$ when $p+q<q+1$ and $S=S_{k} \cup S_{r+1} \cup S_{r}$ when $p+q \geq q+1$, while the second equality in (7) gives that $S^{\prime}=S_{r}^{\prime}$ which is stable. The first equality in 11 gives that every vertex in S_{r+1} has exactly one neighbor in S_{k}, while the second equality gives that every vertex in S_{k} has exactly $k-1$ neighbors in S_{r+1} and so exactly $r+1-k$ neighbors in S^{\prime}. We claim that $p+q \geq q+1$ is impossible, for otherwise $p \geq 1$ implying $\frac{r+1-k}{k} \geq 1$ and so $r>k$. Then by Lemma 1 , every vertex in S_{r} is adjacent to some vertex in $S_{k}^{\prime}=\emptyset$ as $S^{\prime}=S_{r}^{\prime}$, a contradiction. Hence, $p+q<q+1$ and so $S=S_{k} \cup S_{r+1}$. Letting $F_{1}=S_{r+1}, F_{2}=S_{k}$ and $F_{3}=S^{\prime}$, we have that G is in $\mathcal{H}_{r, k}$. On the other hand, any graph G in $\mathcal{H}_{r, k}$ satisfies $\Gamma_{\times k}(G) \geq \frac{k r n}{k r+r+1-k}$ and so $\Gamma_{\times k}(G)=\frac{k r n}{k r+r+1-k}$.

The extremal graphs in $\mathcal{H}_{r, k}$ for Theorem 2 contain claws. For claw-free r-regular graphs, the upper bound in Theorem 2 for upper 2-tuple domination can be improved.
Theorem 3 If G is a claw-free r-regular graph of order n with $r \geq 3$, then $\Gamma_{\times 2}(G) \leq \frac{2 n}{3}$.
Proof: Let S, S^{\prime}, S_{i} and S_{i}^{\prime} be defined as in the proof of Theorem 2 with $k=2$. For $2 \leq i \leq r+1$, we further write

$$
S_{2, i}=\left\{u \in S_{2}:\left|N(u) \cap S_{i}\right|=1\right\} \quad \text { and } \quad S_{i, 2}=\left\{u \in S_{i}:\left|N(u) \cap S_{2}\right| \geq 1\right\}
$$

Then $\left|S_{2}\right|=\sum_{i=2}^{r+1}\left|S_{2, i}\right|$. By the definition of $S_{2, i}$ and $S_{i, 2}$, for $3 \leq i \leq r+1$,

$$
\begin{equation*}
\left|S_{i, 2}\right| \leq e\left[S_{i, 2}, S_{2, i}\right]=\left|S_{2, i}\right| \tag{8}
\end{equation*}
$$

By Lemma 1, $S_{r+1,2}=S_{r+1}$ and so

$$
\begin{equation*}
\left|S_{r+1}\right| \leq\left|S_{2, r+1}\right| \leq\left|S_{2}\right| \tag{9}
\end{equation*}
$$

We then consider $e\left[S_{r}^{\prime}, S\right]$. Since S_{r}^{\prime} is stable and G is claw-free, every vertex in S has at most 2 neighbors in S_{r}^{\prime}. First, every vertex $u \in S_{2, r+1}$ has no neighbor in S_{r}^{\prime}. Otherwise, if such a neighbor v exists, then u has another neighbor w in S^{\prime} and a neighbor x in S_{r+1}. Since x has only neighbors in S, it is not adjacent to v nor to w. Also, v is not adjacent to w since it has only neighbors in S. Hence a claw occurs at u, a contradiction. Second, for $3 \leq i \leq r$, every vertex $u \in S_{i} \backslash S_{i, 2}$ has no neighbor in S_{2} and hence, by Lemma1 it has a neighbor in S_{2}^{\prime}. Thus, if u is in $S_{r}(i=r)$, then this neighbor in S_{2}^{\prime} is the only neighbor of u in S^{\prime}, and so u has no neighbor in S_{r}^{\prime}. Else, if $3 \leq i \leq r-1$, then u has at most one neighbor in S_{r}^{\prime}, or it would be the center of a claw. Finally, by definition, every vertex in S_{r+1} has no neighbor in S_{r}^{\prime}. These give the first inequality in (10), while (8) and (9) give the second inequality in (10).

$$
\begin{equation*}
r\left|S_{r}^{\prime}\right|=e\left[S_{r}^{\prime}, S\right] \leq \sum_{i=2}^{r} 2\left|S_{2, i}\right|+\sum_{i=3}^{r}\left|S_{i, 2}\right|+\sum_{i=3}^{r-1}\left|S_{i}\right| \leq 3\left|S_{2}\right|-3\left|S_{r+1}\right|+\sum_{i=3}^{r-1}\left|S_{i}\right| \tag{10}
\end{equation*}
$$

Formula (5) with $k=2$ gives

$$
\begin{equation*}
\sum_{i=2}^{r}(r+1-i)\left|S_{i}\right|=\sum_{i=2}^{r} i\left|S_{i}^{\prime}\right| \tag{11}
\end{equation*}
$$

Formula (3) with $k=2$ gives

$$
\begin{equation*}
\sum_{i=3}^{r+1}\left|S_{i}\right| \leq\left|S_{2}\right|+2\left|S_{2}^{\prime}\right| \tag{12}
\end{equation*}
$$

Adding $\frac{r-3}{r} \cdot$ 9, $\frac{1}{r} \cdot 10,111$ and $\frac{r-3}{2} \cdot 12$ gives

$$
\begin{equation*}
\frac{r-1}{2}\left(\left|S_{2}\right|+\left|S_{r}\right|+\left|S_{r+1}\right|\right)+\sum_{i=3}^{r-1}\left(\frac{3 r-1}{2}-i-\frac{1}{r}\right)\left|S_{i}\right| \leq(r-1)\left(\left|S_{2}^{\prime}\right|+\left|S_{r}^{\prime}\right|\right)+\sum_{i=3}^{r-1} i\left|S_{i}^{\prime}\right| \tag{13}
\end{equation*}
$$

The left side is bounded below by $\frac{r-1}{2}|S|$, the right above by $(r-1)\left|S^{\prime}\right|$. Thus we get $|S| \leq 2\left|S^{\prime}\right|$ and finally, $\Gamma_{\times 2}(G) \leq \frac{2 n}{3}$.

3 Complexity results

The upper domination problem was shown to be NP-complete by Cheston, Fricke, Hedetniemi and Jacobs [6]. However, Cockayne, Favaron, Payan and Thomason [7] proved that $\Gamma(G)=\beta_{0}(G)$ for any bipartite graph G, and so $\Gamma(G)$ can be computed for bipartite graphs in polynomial time. It was also shown by Jacobson and Peters [11] that $\Gamma(G)=\beta_{0}(G)$ for any chordal graph G, and so $\Gamma(G)$ can be computed for chordal graphs in polynomial time. Besides, Hare, Hedetniemi, Laskar, Peters and Wimer [10] also established a polynomial algorithm for determining $\Gamma(G)$ on generalized series-parallel graphs.

On the other hand, we shall prove that the k-tuple domination problem, with $k \geq 2$ fixed, is NPcomplete for bipartite graphs and for chordal graphs. The proofs are separated into the cases of $k=2$ and of $k \geq 3$. We consider the decision problem version as follows.

Upper \boldsymbol{k}-tuple domination problem (UkTD)

Instance: A graph $G=(V, E)$ and a positive integer $s \leq|V|$.
Question: Does G have a minimal upper k-dominating set of cardinality at least s ?

To show that U2TD is NP-complete, we will make use of the well-known NP-complete problem 3SAT [8].

One-in-three 3SAT (OneIn3SAT)

Instance: A set $U=\left\{u_{1}, \ldots, u_{n}\right\}$ of n variables and a collection $\mathcal{C}=\left\{c_{1}, \ldots, c_{m}\right\}$ of m clauses over U such that each clause $c \in \mathcal{C}$ has $|c|=3$ and no clause contains a negated variable.
Question: Is there a truth assignment $\mathscr{A}: U \rightarrow\{$ true, false $\}$ for U such that each clause in \mathcal{C} has exactly one true literal?

Theorem 4 The upper 2-tuple domination problem is NP-complete even restricted on bipartite graphs or on split graphs, and hence also on chordal graphs.

Proof. Obviously, U2TD is in NP. We shall show the NP-completeness of U2TD for bipartite graphs by reducing OneIn3SAT to it in polynomial time. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $\mathcal{C}=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ be an instance I of OneIn3SAT. We transform I to the instance $\left(G_{I}, s\right)$ of U2TD in which $s=3 n+m$ and G_{I} is the bipartite graph formed as follows.

Corresponding to each variable u_{i} we associate a cycle $C_{i}=u_{i} x_{i} y_{i} z_{i} u_{i}$. Corresponding to each 3element clause c_{j} we associate a vertex named w_{j}. Joining the vertex u_{i} to the vertex w_{j} if and only if the literal u_{i} belongs to the clause c_{j}. According to the above construction, it is easy to see that G_{I} is a bipartite graph and the construction is accomplished in polynomial time. The graph G_{I} associate with $\left(u_{1} \vee u_{2} \vee u_{3}\right) \wedge\left(u_{2} \vee u_{3} \vee u_{4}\right)$ is shown in Figure 2.

We next show that I has a satisfying truth assignment if and only if G_{I} has a minimal upper 2-tuple dominating set of cardinality at least $s=3 n+m$.

Suppose first I has a satisfying truth assignment \mathscr{A}. A minimal upper 2-tuple dominating set S of G_{I} of cardinality s is constructed as follows. Let w_{j} belong to S for all $1 \leq j \leq m$. For each $1 \leq i \leq n$, if $\mathscr{A}\left(u_{i}\right)=\{$ true $\}$, then let u_{i}, x_{i} and z_{i} be in S; otherwise, let x_{i}, y_{i} and z_{i} be in S. Clearly, $|N[v] \cap S| \geq 2$ for each vertex $v \in V\left(G_{I}\right)$ and S satisfies the conditions of Lemma 1 and so S is a minimal upper 2-tuple dominating set of G_{I} with cardinality $s=3 n+m$.

On the other hand, assume that S is a minimal upper 2-tuple dominating set of G_{I} with cardinality at least $s=3 n+m$. It follows from Lemma 1 that $\left|S \cap V\left(C_{i}\right)\right| \leq 3$ for $1 \leq i \leq n$. Further, $\left|S \cap\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}\right| \leq m$ and so $|S| \leq 3 n+m$. Notice that $|S| \geq 3 n+m$ by the assumption. Hence, $\left|S \cap V\left(C_{i}\right)\right|=3$ for $1 \leq i \leq n$ and $\left\{w_{1}, w_{2}, \ldots, w_{m}\right\} \subseteq S$. Let $\left\{u_{j_{1}}, u_{j_{2}}, u_{j_{3}}\right\}$ be the open neighborhood of w_{j} in G_{I} for $1 \leq j \leq m$. Since S is a minimal upper 2-tuple dominating set, $\left|S \cap\left\{u_{j_{1}}, u_{j_{2}}, u_{j_{3}}\right\}\right| \geq 1$. We claim that $\left|S \cap\left\{u_{j_{1}}, u_{j_{2}}, u_{j_{3}}\right\}\right|=1$. Otherwise, $\left|S \cap\left\{u_{j_{1}}, u_{j_{2}}, u_{j_{3}}\right\}\right| \geq 2$. Then the degree of w_{j} in $G_{I}[S]$ is more than 1 . However, w_{j} does not satisfy the conditions of Lemma 1 because $\left|S \cap V\left(C_{i}\right)\right|=3$ for $1 \leq i \leq n$, a contradiction. Let $\mathscr{A}: U \rightarrow\{$ true, false $\}$ be defined by $\mathscr{A}\left(u_{i}\right)=\{$ true $\}$ if $u_{i} \in S$ and $\mathscr{A}\left(u_{i}\right)=\{$ false $\}$ if $u_{i} \notin S$. By the construction of G_{I}, we have each clause c_{j} of I contains only one variable u_{i} belonging to S. So \mathscr{A} is a satisfying truth assignment for I. Consequently, I has a satisfying truth assignment if and only if G_{I} has a minimal upper 2-tuple dominating set of cardinality at least $s=3 n+m$. This completes the proof for bipartite graphs.

To deal with split graphs, we add edges to make $\left\{u_{1}, y_{1}, u_{2}, y_{2}, \ldots, u_{n}, y_{n}\right\}$ a clique. The same arguments hold, and show the NP-completeness of the upper 2-tuple domination problem for split graphs.

Theorem 5 For any fixed integer $k \geq 3$, the k-tuple domination problem is NP-complete for bipartite graphs and for chordal graphs.

Proof: For any bipartite graph G on n vertices, consider the bipartite graph G^{\prime} obtained by the following process. For each vertex v of G, we add a copy of $K_{k-1, k-1}$, denoted G_{v} with bipartition denoted $\left(X_{v}, Y_{v}\right)$. Then we link by an edge the vertex v to $k-2$ vertices in X_{v}. The widget added to each vertex v is drawn in Figure 3

Fig. 3: The widget G_{v} added to each vertex v in G.
We claim that G has a minimal upper 2-tuple dominating set of size at least s if and only if G^{\prime} has a minimal upper k-tuple dominating set of size at least $s+2(k-1) n$.

Clearly, if S is a minimal upper 2-dominating set of G with size at least s, then $S \cup\left(\bigcup_{v \in V(G)}\left(X_{v} \cup Y_{v}\right)\right)$ is a minimal upper k-tuple dominating set of G^{\prime} with size at least $s+2(k-1) n$.

On the other hand, suppose S^{\prime} is a minimal upper k-tuple dominating set of G^{\prime} with size at least $s+2(k-1) n$. Since every vertex in Y_{v} is of degree $k-1, S^{\prime}$ necessarily includes $\bigcup_{v \in V(G)}\left(X_{v} \cup Y_{v}\right)$. Let $S=S^{\prime} \backslash\left(\bigcup_{v \in V}\left(X_{v} \cup Y_{v}\right)\right)$. Every vertex v in $V(G)$ is dominated precisely $k-2$ times by vertices from $S^{\prime} \backslash S$. Therefore, v is dominated by at least two vertices in S and so S is a 2-tuple dominating set of G. By Lemma 1 , v is dominated by some $u \in V\left(G^{\prime}\right)$ with $N_{G^{\prime}}[u]=k$. This vertex u must be in $V(G)$ and $N_{G}[u]=2$. By Lemma 1 again, S is a minimal upper 2-tuple dominating set of G with size at least s.

The NP-completeness of the upper k-tuple domination problem for bipartite graphs then follows from the NP-completeness of the upper 2-tuple domination problem for bipartite graphs.

To deal with the chordal case, we start with a chordal graph G and for each $v \in V(G)$ we add to G_{v} edges joining any pair of vertices in X_{v}, forming a clique. The same arguments hold, and show the NP-completeness of the upper k-tuple domination problem for chordal graphs as a consequence of the NP-completeness of the upper 2-tuple domination problem for chordal graphs.

References

[1] T. Araki, On the k-tuple domination of de Bruijn and Kautz digraphs, Inform. Process. Lett. 104 (2007), 86-90.
[2] M. Blidia, M. Chellali and T. W. Haynes, Independent and double domination in trees, Utilitas Math. 70 (2006), 159-173.
[3] M. Blidia, M. Chellali and T. W. Haynes, Characterizations of trees with equal paired and double domination numbers, Discrete Math. 306 (2006), 1840-1845.
[4] G. J. Chang, The upper bound on k-tuple domination numbers of graphs, Euro. J. Combin. 29 (2008), 1333-1336.
[5] M. Chellali and T. W. Haynes, On paired and double domination in graphs, Utilitas Math. 67 (2005), 161-171.
[6] G. A. Cheston, G. Fricke, S. T. Hedetniemi and D. P. Jacobs, On the computational complexity of upper fractional domination, Discrete Appl. Math. 27 (1990), 195-207.
[7] E. J. Cockayne, O. Favaron, C. Payan and A. G. Thomason, Contributions to the theory of domination, independence and irredundance in graphs, Discrete Math. 33 (1981), 249-258.
[8] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NPCompleteness, W. H. Freeman and Company, 1979.
[9] F. Harary and T. W. Haynes, Double domination in graphs, Ars Combin. 55 (2000), 201-213.
[10] E. O. Hare, S. T. Hedetniemi, R. C. Laskar, K. Peters and T. Wimer, Linear-time computability of combinatorial problems on generalized-series-parallel graphs, In D. S. Johnson et al., editors, Discrete Algorithms and Complexity, pages 437-457, 1987, Academic Press, New York.
[11] M. S. Jacobson and K. Peters, Chordal graphs and upper irredundance, upper domination and independence, Discrete Math. 86 (1990), 59-69.
[12] R. Klasing and C. Laforest, Hardness results and approximation algorithms of k-tuple domination in graphs, Inform. Process. Lett. 89 (2004), 75-83.
[13] C.-S. Liao and G. J. Chang, Algorithmic aspects of k-tuple domination in graphs, Taiwanese J. Math. 6 (2002), 415-420.
[14] C.-S. Liao and G. J. Chang, k-tuple domination in graphs, Inform. Process. Lett. 87 (2003), 45-50.
[15] D. Rautenbach and L. Volkmann, New bounds on the k-domination number and the k-tuple domination number, Appl. Math. Lett. 20 (2007), 98-102.
[16] E. F. Shan, C. Y. Dang and L. Y. Kang, A note on Nordhaus-Gaddum inequalities for domination, Discrete Appl. Math. 136 (2004), 83-85.
[17] B. Wang and K. N. Xiang, On k-tuple domination of random graphs, Appl. Math. Lett. 22 (2009), 1513-1517.
[18] G. J. Xu, L. Y. Kang, E. F. Shan and H. Yan, Proof of a conjecture on k-tuple domination in graphs, Appl. Math. Lett. 21 (2008), 287-290.
[19] V. Zverovich, The k-tuple domination number revisited, Appl. Math. Lett. 21 (2008), 1005-1011.

[^0]: ${ }^{\dagger}$ Email: gjchang@math.ntu.edu.tw. Supported in part by the National Science Council under grant NSC99-2923-M-002-007-MY3.
 \ddagger Supported in part by Agence Nationale de la Recherche under grant ANR-09-blan-0373-01.
 §E-mail: hkkim@cu.ac.kr. Supported in part by the Basic Science Research Program, the National Research Foundation of Korea, the Ministry of Education, Science and Technology (2011-0025989).
 ${ }^{\top}$ Email: whchao2000@163.com. Supported in part by the Foundation for distinguished Young Teachers, Shanghai Education Committee (No. sdl10023) and the Research Foundation of Shanghai University of Electric Power (No. K-2010-32).

 IEmail: zwl@shu.edu.cn.

