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Upper k-tuple domination in graphs
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For a positive integer k, a k-tuple dominating set of a graph G is a subset S of V (G) such that |N [v] ∩ S| ≥ k for

every vertex v, where N [v] = {v}∪{u ∈ V (G):uv ∈ E(G)}. The upper k-tuple domination number of G, denoted

by Γ×k(G), is the maximum cardinality of a minimal k-tuple dominating set of G. In this paper we present an upper

bound on Γ×k(G) for r-regular graphs G with r ≥ k, and characterize extremal graphs achieving the upper bound.

We also establish an upper bound on Γ×2(G) for claw-free r-regular graphs. For the algorithmic aspect, we show

that the upper k-tuple domination problem is NP-complete for bipartite graphs and for chordal graphs.

Keywords: Upper k-tuple domination, r-regular graph, bipartite graph, split graph, chordal graph, NP-completeness.

1 Introduction

All graphs considered in this paper are finite, simple and undirected. In a graph G with vertex set V (G)
and edge set E(G), the open neighborhood of a vertex v is N(v) = {u ∈ V (G):uv ∈ E(G)} and the

closed neighborhood is N [v] = {v}∪N(v). The degree of v, denoted by d(v), is the cardinality of N(v).
Denote by δ(G) the minimum degree of a vertex in G. A graph is r-regular if d(v) = r for all v ∈ V . A

stable set (respectively, clique) of G is a subset S of V (G) in which every two vertices are not adjacent
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(respectively, are adjacent). For two disjoint subsets A and B of V (G), let e[A,B] denote the number of

edges between A and B.

For S ⊆ V (G), the subgraph induced by S is the graph G[S] with vertex set S and edge set {uv ∈
E(G):u, v ∈ S}. A bipartite graph is a graph whose vertex set can be partitioned into two sets such

that every two distinct vertices may be adjacent only if they are in different sets. A split graph is a graph

whose vertex set can be partitioned into a stable set and a clique. A chord of a cycle is an edge joining

two vertices on the cycle that are not adjacent on the cycle. A chordal graph is a graph in which every

cycle of length at least four has a chord. Split graphs are chordal. A graph G is called claw-free if it does

not contain the bipartite complete graph K1,3 as an induced subgraph.

For positive integer k, a k-tuple dominating set of G is a subset S of V (G) such that |N [v]∩S| ≥ k for

all v ∈ V (G). For a k-tuple dominating set S, any vertex in N [v] ∩ S is said to dominate v. Notice that a

graph has a k-tuple dominating set if and only if δ(G) ≥ k − 1. The k-tuple domination number γ×k(G)
of G is the minimum cardinality of a k-tuple dominating set of G, while the upper k-tuple domination

number Γ×k of G is the maximum cardinality of a minimal k-tuple dominating set. A Γ×k(G)-set of G
is a minimal k-tuple dominating set of G of cardinality Γ×k(G). An application of k-tuple domination

for fault tolerance networks is presented in [9, 12]. For more results on k-tuple domination, we refer

to [1, 2, 3, 4, 5, 13, 14, 15, 16, 17, 18, 19].

In this paper we first give an upper bound on Γ×k for r-regular graphs, and characterize the extremal

graphs achieving the upper bound. We also establish a sharp upper bound on Γ×2(G) for claw-free r-

regular graphs. Finally, we show that the upper k-tuple domination problem is NP-complete for bipartite

graphs and chordal graphs.

2 Upper k-tuple domination for r-regular graphs

This section establishes a sharp upper bound for upper k-tuple domination on r-regular graphs.

First, a k-tuple dominating set S is minimal if and only if every vertex in S is not avoidable, that is, it

has a closed neighbor that is dominated by exactly k vertices in S. Hence, we have the following property.

Lemma 1 In a graph G with δ(G) ≥ k − 1, a k-tuple dominating set S is minimal if and only if each

vertex in S has some closed neighbor u with |N [u] ∩ S| = k.

For integers r ≥ k ≥ 1, let Hr,k be the family of r-regular graphs H whose vertex set is the disjoint

union F1 ∪ F2 ∪ F3, where F1 induces an (r − 1)-regular graph of which each vertex has exactly one

neighbor in F2, F2 is a stable set of which each vertex has exactly k − 1 neighbors in F1 and exactly

r + 1− k neighbors in F3, and F3 is a stable set of which each vertex has exactly r neighbors in F2, see

Figure 1. Since (r+1− k)|F2| = e[F2, F3] = r|F3|, there is some integer m ≥ 1 such that |F2| = rm/g
and |F3| = (r+1−k)m/g, where g = gcd(r+1−k, r) = gcd(r, k−1). And then |F1| = (k−1)rm/g.

The total number of vertices in H is n = (kr + r + 1 − k)m/g. According to Lemma 1, F1 ∪ F2 is a

minimal k-upper dominating set of H and so Γ×k(H) ≥ krn
kr+r+1−k

.

Theorem 2 If G is a r-regular graph of order n with r ≥ k ≥ 2, then Γ×k(G) ≤ krn
kr+r+1−k

with equality

if and only if G ∈ Hr,k.

Proof: Let S be a Γ×k(G)-set of G and S′ = V (G) \ S. For k ≤ i ≤ r + 1, we define

Si = {u ∈ S : |N [u] ∩ S| = i} and S′

i = {u ∈ S′ : |N [u] ∩ S| = i} .
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Fig. 1: An r-regular graph H in Hr,k.

Notice that S′

r+1 = ∅ and S′

r is stable as every vertex of S′

r has neighbors only in S. Since every vertex

has at least k closed neighbors in S, it is the case that S =
⋃r+1

i=k Si and S′ =
⋃r

i=k S
′

i are disjoint unions.

Therefore, |S| =
∑r+1

i=k |Si| and |S′| =
∑r

i=k |S
′

i|.
According to Lemma 1, every vertex in Sr+1 has at least one neighbor in Sk, while every vertex in Sk

has at most k − 1 neighbors in Sr+1. Therefore,

|Sr+1| ≤ e[Sr+1, Sk] ≤ (k − 1)|Sk| (1)

or equivalently

|Sr+1| − (k − 1)|Sk| ≤ 0. (2)

By Lemma 1 again, every vertex in X =
⋃r+1

i=k+1 Si has at least one neighbor in Sk ∪S′

k and every vertex

in Sk (respectively, S′

k) has at most k − 1 (respectively, k) neighbors in X . Therefore,

r+1
∑

i=k+1

|Si| ≤ e[X,Sk] + e[X,S′

k] ≤ (k − 1)|Sk|+ k|S′

k| (3)

or equivalently
r+1
∑

i=k+1

|Si| − (k − 1)|Sk| ≤ k|S′

k|. (4)

We then use a double counting of e[S, S′] to get

r
∑

i=k

(r + 1− i)|Si| = e[S, S′] =

r
∑

i=k

i|S′

i|. (5)

Let p = min( r+1−k
k

, 1) and q = max( r+1−k
k

, 1)− 1. Then, p > 0, q ≥ 0 and q+1 ≥ r+1−k
k

= p+ q.

Consequently, (r + 1 − k) − (p + q)(k − 1) = p + q and q + r + 1 − i ≥ q + 1 ≥ p + q for

k + 1 ≤ i ≤ r, which gives (6). Adding p times (2), q times (4) and (5) gives the first inequality in (7).

And (q+1)k = max{r+1−k, k} ≤ r with equality only when r = k, which gives the second inequality

in (7).

(p+ q)|S| ≤ ((r + 1− k)− (p+ q)(k − 1))|Sk|+ (p+ q)|Sr+1|+
r

∑

i=k+1

(q + r + 1− i)|Si| (6)
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≤ (q + 1)k|S′

k|+
r

∑

i=k+1

i|S′

i| ≤ r|S′| = rn− r|S|. (7)

Hence, kr+r+1−k
k

|S| = (r + p+ q)|S| ≤ rn and so Γ×k(G) ≤ krn
kr+r+1−k

, which proves the first part of

the theorem.

Suppose Γ×k(G) = krn
kr+r+1−k

. By the proof above, the inequalities in (1), the inequalities in (3) when

q > 0, and the inequalities in (6) and (7) are equalities. The equality in (6) gives that S = Sk ∪ Sr+1

when p + q < q + 1 and S = Sk ∪ Sr+1 ∪ Sr when p + q ≥ q + 1, while the second equality in (7)

gives that S′ = S′

r which is stable. The first equality in (1) gives that every vertex in Sr+1 has exactly

one neighbor in Sk, while the second equality gives that every vertex in Sk has exactly k− 1 neighbors in

Sr+1 and so exactly r + 1− k neighbors in S′. We claim that p+ q ≥ q + 1 is impossible, for otherwise

p ≥ 1 implying r+1−k
k

≥ 1 and so r > k. Then by Lemma 1, every vertex in Sr is adjacent to some

vertex in S′

k = ∅ as S′ = S′

r, a contradiction. Hence, p + q < q + 1 and so S = Sk ∪ Sr+1. Letting

F1 = Sr+1, F2 = Sk and F3 = S′, we have that G is in Hr,k. On the other hand, any graph G in Hr,k

satisfies Γ×k(G) ≥ krn
kr+r+1−k

and so Γ×k(G) = krn
kr+r+1−k

. ✷

The extremal graphs in Hr,k for Theorem 2 contain claws. For claw-free r-regular graphs, the upper

bound in Theorem 2 for upper 2-tuple domination can be improved.

Theorem 3 If G is a claw-free r-regular graph of order n with r ≥ 3, then Γ×2(G) ≤ 2n
3 .

Proof: Let S, S′, Si and S′

i be defined as in the proof of Theorem 2 with k = 2. For 2 ≤ i ≤ r + 1, we

further write

S2,i = {u ∈ S2: |N(u) ∩ Si| = 1} and Si,2 = {u ∈ Si: |N(u) ∩ S2| ≥ 1}.

Then |S2| =
∑r+1

i=2 |S2,i|. By the definition of S2,i and Si,2, for 3 ≤ i ≤ r + 1,

|Si,2| ≤ e[Si,2, S2,i] = |S2,i|. (8)

By Lemma 1, Sr+1,2 = Sr+1 and so

|Sr+1| ≤ |S2,r+1| ≤ |S2|. (9)

We then consider e[S′

r, S]. Since S′

r is stable and G is claw-free, every vertex in S has at most 2 neighbors

in S′

r. First, every vertex u ∈ S2,r+1 has no neighbor in S′

r. Otherwise, if such a neighbor v exists, then u
has another neighbor w in S′ and a neighbor x in Sr+1. Since x has only neighbors in S, it is not adjacent

to v nor to w. Also, v is not adjacent to w since it has only neighbors in S. Hence a claw occurs at u, a

contradiction. Second, for 3 ≤ i ≤ r, every vertex u ∈ Si \ Si,2 has no neighbor in S2 and hence, by

Lemma 1, it has a neighbor in S′

2. Thus, if u is in Sr (i = r), then this neighbor in S′

2 is the only neighbor

of u in S′, and so u has no neighbor in S′

r. Else, if 3 ≤ i ≤ r − 1, then u has at most one neighbor in

S′

r, or it would be the center of a claw. Finally, by definition, every vertex in Sr+1 has no neighbor in S′

r.

These give the first inequality in (10), while (8) and (9) give the second inequality in (10).

r|S′

r| = e[S′

r, S] ≤
r

∑

i=2

2|S2,i|+
r

∑

i=3

|Si,2|+
r−1
∑

i=3

|Si| ≤ 3|S2| − 3|Sr+1|+
r−1
∑

i=3

|Si|. (10)
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Formula (5) with k = 2 gives
r

∑

i=2

(r + 1− i)|Si| =
r

∑

i=2

i|S′

i|. (11)

Formula (3) with k = 2 gives
r+1
∑

i=3

|Si| ≤ |S2|+ 2|S′

2|. (12)

Adding r−3
r

·(9), 1
r
·(10), (11) and r−3

2 ·(12) gives

r−1
2 (|S2|+ |Sr|+ |Sr+1|) +

r−1
∑

i=3

( 3r−1
2 − i− 1

r
)|Si| ≤ (r − 1)(|S′

2|+ |S′

r|) +
r−1
∑

i=3

i|S′

i| (13)

The left side is bounded below by r−1
2 |S|, the right above by (r − 1)|S′|. Thus we get |S| ≤ 2|S′| and

finally, Γ×2(G) ≤ 2n
3 . ✷

3 Complexity results

The upper domination problem was shown to be NP-complete by Cheston, Fricke, Hedetniemi and Ja-

cobs [6]. However, Cockayne, Favaron, Payan and Thomason [7] proved that Γ(G) = β0(G) for any bi-

partite graph G, and so Γ(G) can be computed for bipartite graphs in polynomial time. It was also shown

by Jacobson and Peters [11] that Γ(G) = β0(G) for any chordal graph G, and so Γ(G) can be computed

for chordal graphs in polynomial time. Besides, Hare, Hedetniemi, Laskar, Peters and Wimer [10] also

established a polynomial algorithm for determining Γ(G) on generalized series-parallel graphs.

On the other hand, we shall prove that the k-tuple domination problem, with k ≥ 2 fixed, is NP-

complete for bipartite graphs and for chordal graphs. The proofs are separated into the cases of k = 2 and

of k ≥ 3. We consider the decision problem version as follows.

Upper k-tuple domination problem (UkTD)

Instance: A graph G = (V,E) and a positive integer s ≤ |V |.

Question: Does G have a minimal upper k-dominating set of cardinality at least s?

To show that U2TD is NP-complete, we will make use of the well-known NP-complete problem 3-

SAT [8].

One-in-three 3SAT (OneIn3SAT)

Instance: A set U = {u1, . . . , un} of n variables and a collection C = {c1, . . . , cm} of m clauses over

U such that each clause c ∈ C has |c| = 3 and no clause contains a negated variable.

Question: Is there a truth assignment A :U → {true, false} for U such that each clause in C has exactly

one true literal?
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Theorem 4 The upper 2-tuple domination problem is NP-complete even restricted on bipartite graphs or

on split graphs, and hence also on chordal graphs.

Proof. Obviously, U2TD is in NP. We shall show the NP-completeness of U2TD for bipartite graphs by

reducing OneIn3SAT to it in polynomial time. Let U = {u1, u2, . . . , un} and C = {c1, c2, . . . , cm} be an

instance I of OneIn3SAT. We transform I to the instance (GI , s) of U2TD in which s = 3n+m and GI

is the bipartite graph formed as follows.

Corresponding to each variable ui we associate a cycle Ci = uixiyiziui. Corresponding to each 3-

element clause cj we associate a vertex named wj . Joining the vertex ui to the vertex wj if and only if

the literal ui belongs to the clause cj . According to the above construction, it is easy to see that GI is

a bipartite graph and the construction is accomplished in polynomial time. The graph GI associate with

(u1 ∨ u2 ∨ u3) ∧ (u2 ∨ u3 ∨ u4) is shown in Figure 2.
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Fig. 2: The graph GI for (u1 ∨ u2 ∨ u3) ∧ (u2 ∨ u3 ∨ u4).

We next show that I has a satisfying truth assignment if and only if GI has a minimal upper 2-tuple

dominating set of cardinality at least s = 3n+m.

Suppose first I has a satisfying truth assignment A . A minimal upper 2-tuple dominating set S of GI

of cardinality s is constructed as follows. Let wj belong to S for all 1 ≤ j ≤ m. For each 1 ≤ i ≤ n, if

A (ui) = {true}, then let ui, xi and zi be in S; otherwise, let xi, yi and zi be in S. Clearly, |N [v]∩S| ≥ 2
for each vertex v ∈ V (GI) and S satisfies the conditions of Lemma 1, and so S is a minimal upper 2-tuple

dominating set of GI with cardinality s = 3n+m.

On the other hand, assume that S is a minimal upper 2-tuple dominating set of GI with cardinality

at least s = 3n + m. It follows from Lemma 1 that |S ∩ V (Ci)| ≤ 3 for 1 ≤ i ≤ n. Further,

|S∩{w1, w2, . . . , wm}| ≤ m and so |S| ≤ 3n+m. Notice that |S| ≥ 3n+m by the assumption. Hence,

|S∩V (Ci)| = 3 for 1 ≤ i ≤ n and {w1, w2, . . . , wm} ⊆ S. Let {uj1 , uj2 , uj3} be the open neighborhood

of wj in GI for 1 ≤ j ≤ m. Since S is a minimal upper 2-tuple dominating set, |S ∩{uj1 , uj2 , uj3}| ≥ 1.

We claim that |S ∩ {uj1 , uj2 , uj3}| = 1. Otherwise, |S ∩ {uj1 , uj2 , uj3}| ≥ 2. Then the degree of wj in

GI [S] is more than 1. However, wj does not satisfy the conditions of Lemma 1 because |S ∩ V (Ci)| = 3
for 1 ≤ i ≤ n, a contradiction. Let A :U → {true, false} be defined by A (ui) = {true} if ui ∈ S and

A (ui) = {false} if ui /∈ S. By the construction of GI , we have each clause cj of I contains only one

variable ui belonging to S. So A is a satisfying truth assignment for I . Consequently, I has a satisfying

truth assignment if and only if GI has a minimal upper 2-tuple dominating set of cardinality at least

s = 3n+m. This completes the proof for bipartite graphs.
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To deal with split graphs, we add edges to make {u1, y1, u2, y2, . . . , un, yn} a clique. The same ar-

guments hold, and show the NP-completeness of the upper 2-tuple domination problem for split graphs.

✷

Theorem 5 For any fixed integer k ≥ 3, the k-tuple domination problem is NP-complete for bipartite

graphs and for chordal graphs.

Proof: For any bipartite graph G on n vertices, consider the bipartite graph G′ obtained by the following

process. For each vertex v of G, we add a copy of Kk−1,k−1, denoted Gv with bipartition denoted

(Xv, Yv). Then we link by an edge the vertex v to k − 2 vertices in Xv . The widget added to each vertex

v is drawn in Figure 3. ✬

✫

✩

✪
G rv ❛❛❛❛

✦✦
✦✦

Xv

r★★★★✪
✪
✪
✪✪

...

r
❝
❝
❝❝

✦✦
✦✦

r
❡
❡
❡
❡❡

❛❛❛❛

Yv

r...
rr

Kk−1,k−1

Fig. 3: The widget Gv added to each vertex v in G.

We claim that G has a minimal upper 2-tuple dominating set of size at least s if and only if G′ has a

minimal upper k-tuple dominating set of size at least s+ 2(k − 1)n.

Clearly, if S is a minimal upper 2-dominating set of G with size at least s, then S∪
(
⋃

v∈V (G)(Xv∪Yv)
)

is a minimal upper k-tuple dominating set of G′ with size at least s+ 2(k − 1)n.

On the other hand, suppose S′ is a minimal upper k-tuple dominating set of G′ with size at least

s+ 2(k − 1)n. Since every vertex in Yv is of degree k − 1, S′ necessarily includes
⋃

v∈V (G)(Xv ∪ Yv).

Let S = S′ \
(
⋃

v∈V (Xv ∪ Yv)
)

. Every vertex v in V (G) is dominated precisely k − 2 times by vertices

from S′ \ S. Therefore, v is dominated by at least two vertices in S and so S is a 2-tuple dominating set

of G. By Lemma 1, v is dominated by some u ∈ V (G′) with NG′ [u] = k. This vertex u must be in V (G)
and NG[u] = 2. By Lemma 1 again, S is a minimal upper 2-tuple dominating set of G with size at least

s.

The NP-completeness of the upper k-tuple domination problem for bipartite graphs then follows from

the NP-completeness of the upper 2-tuple domination problem for bipartite graphs.

To deal with the chordal case, we start with a chordal graph G and for each v ∈ V (G) we add to

Gv edges joining any pair of vertices in Xv , forming a clique. The same arguments hold, and show the

NP-completeness of the upper k-tuple domination problem for chordal graphs as a consequence of the

NP-completeness of the upper 2-tuple domination problem for chordal graphs. ✷
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