Upper k-tuple domination in graphs

Gerard Jennhwa Chang12† Paul Dorbec‡ Hye Kyung Kim§ André Raspaud‡ Haichao Wang¶ Weiliang Zhao∥

1 Department of Mathematics, National Taiwan University, Taipei, Taiwan
2 Taida Institute for Mathematical Sciences, National Taiwan University, Taipei, Taiwan
3 National Center for Theoretical Sciences, Taipei Office, Taiwan
4 LaBRI UMR CNRS 5800, Univ. Bordeaux, Talence, France
5 Department of Mathematics Education, Catholic University of Daegu, Kyongsan, Republic of Korea
6 Department of Mathematics, Shanghai University of Electric Power, Shanghai, China
7 Zhejiang Industry Polytechnic College, Shaoxing, China

received 22nd February 2012, accepted 26th November 2012.

For a positive integer k, a k-tuple dominating set of a graph G is a subset S of $V(G)$ such that $|N[v] \cap S| \geq k$ for every vertex v, where $N[v] = \{v\} \cup \{u \in V(G) : uv \in E(G)\}$. The upper k-tuple domination number of G, denoted by $\Gamma_{\times k}(G)$, is the maximum cardinality of a minimal k-tuple dominating set of G. In this paper we present an upper bound on $\Gamma_{\times k}(G)$ for r-regular graphs G with $r \geq k$, and characterize extremal graphs achieving the upper bound. We also establish an upper bound on $\Gamma_{\times 2}(G)$ for claw-free r-regular graphs. For the algorithmic aspect, we show that the upper k-tuple domination problem is NP-complete for bipartite graphs and for chordal graphs.

Keywords: Upper k-tuple domination, r-regular graph, bipartite graph, split graph, chordal graph, NP-completeness.

1 Introduction

All graphs considered in this paper are finite, simple and undirected. In a graph G with vertex set $V(G)$ and edge set $E(G)$, the open neighborhood of a vertex v is $N(v) = \{u \in V(G) : uv \in E(G)\}$ and the closed neighborhood is $N[v] = \{v\} \cup N(v)$. The degree of v, denoted by $d(v)$, is the cardinality of $N(v)$. Denote by $\delta(G)$ the minimum degree of a vertex in G. A graph is r-regular if $d(v) = r$ for all $v \in V$. A stable set (respectively, clique) of G is a subset S of $V(G)$ in which every two vertices are not adjacent to each other.

†Email: gjchang@math.ntu.edu.tw. Supported in part by the National Science Council under grant NSC99-2923-M-002-007-MY3.
‡Supported in part by Agence Nationale de la Recherche under grant ANR-09-blan-0373-01.
§E-mail: hkkim@cu.ac.kr. Supported in part by the Basic Science Research Program, the National Research Foundation of Korea, the Ministry of Education, Science and Technology (2011-0025989).
¶Email: whchao2000@163.com. Supported in part by the Foundation for distinguished Young Teachers, Shanghai Education Committee (No. sdl10023) and the Research Foundation of Shanghai University of Electric Power (No. K-2010-32).
∥Email: zwl@shu.edu.cn.

1365–8050 © 2012 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
(respectively, are adjacent). For two disjoint subsets A and B of $V(G)$, let $e[A, B]$ denote the number of edges between A and B.

For $S \subseteq V(G)$, the subgraph induced by S is the graph $G[S]$ with vertex set S and edge set $\{uv \in E(G) : u, v \in S\}$. A bipartite graph is a graph whose vertex set can be partitioned into two sets such that every two distinct vertices may be adjacent only if they are in different sets. A split graph is a graph whose vertex set can be partitioned into a stable set and a clique. A chord of a cycle is an edge joining two vertices on the cycle that are not adjacent on the cycle. A chordal graph is a graph in which every cycle of length at least four has a chord. Split graphs are chordal. A graph G is called claw-free if it does not contain the bipartite complete graph $K_{1,3}$ as an induced subgraph.

For positive integer k, a k-tuple dominating set of G is a subset S of $V(G)$ such that $|N[v] \cap S| \geq k$ for all $v \in V(G)$. For a k-tuple dominating set S, any vertex in $N[v] \cap S$ is said to dominate v. Notice that a graph has a k-tuple dominating set if and only if $\delta(G) \geq k - 1$. The k-tuple domination number $\gamma_{k \times k}(G)$ of G is the minimum cardinality of a k-tuple dominating set of G, while the upper k-tuple domination number $\Gamma_{k \times k}$ of G is the maximum cardinality of a minimal k-tuple dominating set. A $\Gamma_{k \times k}(G)$-set of G is a minimal k-tuple dominating set of G of cardinality $\Gamma_{k \times k}(G)$. An application of k-tuple domination for fault tolerance networks is presented in [9, 12]. For more results on k-tuple domination, we refer to [13, 14, 15, 16, 17, 18, 19].

In this paper, we first give an upper bound on $\Gamma_{k \times k}$ for r-regular graphs, and characterize the extremal graphs achieving the upper bound. We also establish a sharp upper bound on $\Gamma_{k \times 2}(G)$ for claw-free r-regular graphs. Finally, we show that the upper k-tuple domination problem is NP-complete for bipartite graphs and chordal graphs.

2 Upper k-tuple domination for r-regular graphs

This section establishes a sharp upper bound for upper k-tuple domination on r-regular graphs.

First, a k-tuple dominating set S is minimal if and only if every vertex in S is not avoidable, that is, it has a closed neighbor that is dominated by exactly k vertices in S. Hence, we have the following property.

Lemma 1 In a graph G with $\delta(G) \geq k - 1$, a k-tuple dominating set S is minimal if and only if each vertex in S has some closed neighbor u with $|N[u] \cap S| = k$.

For integers $r \geq k \geq 1$, let $\mathcal{H}_{r,k}$ be the family of r-regular graphs H whose vertex set is the disjoint union $F_1 \cup F_2 \cup F_3$, where F_1 induces an $(r - 1)$-regular graph of which each vertex has exactly one neighbor in F_2, F_2 is a stable set of which each vertex has exactly $k - 1$ neighbors in F_1, and exactly $r + 1 - k$ neighbors in F_3, and F_3 is a stable set of which each vertex has exactly r neighbors in F_2, see Figure 1. Since $(r + 1 - k)|F_2| = e[F_2, F_3] = r|F_3|$, there is some integer $m \geq 1$ such that $|F_2| = rm/g$ and $|F_3| = (r + 1 - k)m/g$, where $g = gcd(r + 1 - k, r) = gcd(r, k - 1)$. And then $|F_1| = (k - 1)rm/g$. The total number of vertices in H is $n = (kr + r + 1 - k)m/g$. According to Lemma 1, $F_1 \cup F_2$ is a minimal k-upper dominating set of H and so $\Gamma_{k \times k}(H) \geq \frac{krn}{kr + r + 1 - k}$.

Theorem 2 If G is a r-regular graph of order n with $r \geq k \geq 2$, then $\Gamma_{k \times k}(G) \leq \frac{krn}{kr + r + 1 - k}$ with equality if and only if $G \in \mathcal{H}_{r,k}$.

Proof: Let S be a $\Gamma_{k \times k}(G)$-set of G and $S' = V(G) \setminus S$. For $k \leq i \leq r + 1$, we define

$$S_i = \{u \in S : |N[u] \cap S| = i\} \quad \text{and} \quad S_i' = \{u \in S' : |N[u] \cap S| = i\}.$$
Notice that $S_{r+1}' = \emptyset$ and S_r' is stable as every vertex of S_r' has neighbors only in S. Since every vertex has at least k closed neighbors in S, it is the case that $S = \bigcup_{i=k}^{r+1} S_i$ and $S' = \bigcup_{i=k}^{r} S_i'$ are disjoint unions. Therefore, $|S| = \sum_{i=k}^{r+1} |S_i|$ and $|S'| = \sum_{i=k}^{r} |S_i'|$.

According to Lemma 1, every vertex in S_{r+1} has at least one neighbor in S_k, while every vertex in S_k has at most $k - 1$ neighbors in S_{r+1}. Therefore,

$$|S_{r+1}| ≤ e[S_{r+1}, S_k] ≤ (k - 1)|S_k|$$ \hspace{1cm} (1)

or equivalently

$$|S_{r+1}| - (k - 1)|S_k| ≤ 0.$$ \hspace{1cm} (2)

By Lemma 1 again, every vertex in $X = \bigcup_{i=k+1}^{r+1} S_i$ has at least one neighbor in $S_k \cup S_r'$ and every vertex in S_k (respectively, S_k') has at most $k - 1$ (respectively, k) neighbors in X. Therefore,

$$\sum_{i=k+1}^{r+1} |S_i| ≤ e[X, S_k] + e[X, S_{r}'] ≤ (k - 1)|S_k| + k|S_r'|$$ \hspace{1cm} (3)

or equivalently

$$\sum_{i=k+1}^{r+1} |S_i| - (k - 1)|S_k| ≤ k|S_r'|.$$ \hspace{1cm} (4)

We then use a double counting of $e[S, S']$ to get

$$\sum_{i=k}^{r} (r + 1 - i)|S_i| = e[S, S'] = \sum_{i=k}^{r} i|S_i'|.$$ \hspace{1cm} (5)

Let $p = \min\left(\frac{r+1-k}{k}, 1\right)$ and $q = \max\left(\frac{r+1-k}{k}, 1\right) - 1$. Then, $p > 0$, $q ≥ 0$ and $q + 1 ≥ \frac{r+1-k}{k} = p + q$. Consequently, $(r + 1 - k) - (p + q)(k - 1) = p + q$ and $q + r + 1 - i ≥ q + 1 ≥ p + q$ for $k + 1 ≤ i ≤ r$, which gives (6). Adding p times (2), q times (4) and (5) gives the first inequality in (7).

And $(q+1)k = \max\{r+1-k, k\} ≤ r$ with equality only when $r = k$, which gives the second inequality in (7).

$$(p + q)|S| ≤ ((r + 1 - k) - (p + q)(k - 1))|S_k| + (p + q)|S_{r+1}| + \sum_{i=k+1}^{r} (q + r + 1 - i)|S_i|$$ \hspace{1cm} (6)
By Lemma 1, it has a neighbor in S in the theorem. These give the first inequality in (10), while (8) and (9) give the second inequality in (10).

Lemma 1, it has a neighbor in S. Then $|S| = (r + p + q)|S| \leq rn$ and so $\Gamma_{xk}(G) \leq \frac{kn}{k r + r + 1 - k}$, which proves the first part of the theorem.

Suppose $\Gamma_{xk}(G) = \frac{kn}{k r + r + 1 - k}$. By the proof above, the inequalities in (11), the inequalities in (8) when $q > 0$, and the inequalities in (6) and (7) are equalities. The equality in (5) gives that $S = S_k \cup S_{r+1}$ when $p + q < q + 1$ and $S = S_k \cup S_{r+1} \cup S_r$ when $p + q \geq q + 1$, while the second equality in (7) gives that $S' = S'_r$ which is stable. The first equality in (11) gives that every vertex in S_{r+1} has exactly one neighbor in S_k, while the second equality gives that every vertex in S_k has exactly $k - 1$ neighbors in S_{r+1} and so exactly $r + 1 - k$ neighbors in S'. We claim that $p + q \geq q + 1$ is impossible, for otherwise $p \geq 1$ implying $\frac{r + 1 - k}{k} \geq 1$ and so $r > k$. Then by Lemma 1, every vertex in S_r is adjacent to some vertex in $S_k \setminus \emptyset$ as $S' = S'_r$, a contradiction. Hence, $p + q < q + 1$ and so $S = S_k \cup S_{r+1}$. Letting $F_1 = S_{r+1}$, $F_2 = S_k$ and $F_3 = S_r$, we have that G is in $H_{r,k}$. On the other hand, any graph G in $H_{r,k}$ satisfies $\Gamma_{xk}(G) \geq \frac{kn}{k r + r + 1 - k}$ and so $\Gamma_{xk}(G) = \frac{kn}{k r + r + 1 - k}$.

The extremal graphs in $H_{r,k}$ for Theorem 2 contain claws. For claw-free r-regular graphs, the upper bound in Theorem 2 for upper 2-tuple domination can be improved.

Theorem 3 If G is a claw-free r-regular graph of order n with $r \geq 3$, then $\Gamma_{x2}(G) \leq \frac{2n}{r}$.

Proof: Let S, S', S_i and S'_i be defined as in the proof of Theorem 2 with $k = 2$. For $2 \leq i \leq r + 1$, we further write

$$S_{2,i} = \{u \in S_2 : |N(u) \cap S_i| = 1\} \quad \text{and} \quad S_{1,2} = \{u \in S_1 : |N(u) \cap S_2| \geq 1\}.$$

Then $|S_2| = \sum_{i=2}^{r+1} |S_{2,i}|$. By the definition of $S_{2,i}$ and $S_{1,2}$, for $3 \leq i \leq r + 1$,

$$|S_{1,2}| \leq e(S_{1,2}, S_{2,i}) = |S_{2,i}|.$$

(8)

By Lemma 1, $S_{r+1,2} = S_{r+1}$ and so

$$|S_{r+1}| \leq |S_{2,r+1}| \leq |S_2|.$$

(9)

We then consider $e(S'_r, S)$. Since S'_r is stable and G is claw-free, every vertex in S has at most 2 neighbors in S'_r. First, every vertex $u \in S_{2,r+1}$ has no neighbor in S'_r. Otherwise, if such a neighbor v exists, then u has another neighbor w in S' and a neighbor x in S_{r+1}. Since x has only neighbors in S_r, it is not adjacent to v nor to w. Also, v is not adjacent to w since it has only neighbors in S. Hence a claw occurs at u, a contradiction. Second, for $3 \leq i \leq r$, every vertex $u \in S_i \setminus S_{i,2}$ has no neighbor in S_2 and hence, by Lemma 1, it has a neighbor in S'_r. Thus, if u is in $S_r \setminus S_{i,2}$, it has at least one neighbor in S'_r, or it would be the center of a claw. Finally, by definition, every vertex in S_{r+1} has no neighbor in S'_r. These give the first inequality in (10), while (8) and (9) give the second inequality in (10).

$$r|S'_r| = e(S'_r, S) \leq \sum_{i=2}^{r} 2|S_{2,i}| + \sum_{i=3}^{r}|S_{1,2}| + \sum_{i=3}^{r-1}|S_i| \leq 3|S_2| - 3|S_{r+1}| + \sum_{i=3}^{r-1}|S_i|.$$

(10)
Upper k-tuple domination in graphs

Formula (5) with \(k = 2 \) gives
\[
\sum_{i=2}^{r} (r + 1 - i)|S_i| = \sum_{i=2}^{r} i|S'_i|.
\] (11)

Formula (3) with \(k = 2 \) gives
\[
\sum_{i=3}^{r+1} |S_i| \leq |S_2| + 2|S'_2|.
\] (12)

Adding \(\frac{r-3}{2} (9), \; \frac{1}{2} (10), \; (11) \) and \(\frac{r-3}{2} (12) \) gives
\[
\frac{r-1}{2}(|S_2| + |S_r| + |S_{r+1}|) + \sum_{i=3}^{r-1} \left(\frac{3r-1}{2} - i - \frac{1}{2} \right)|S_i| \leq (r - 1)(|S'_2| + |S'_r|) + \sum_{i=3}^{r-1} i|S'_i|
\] (13)

The left side is bounded below by \(\frac{r-1}{2} |S| \), the right above by \((r - 1)|S'| \). Thus we get \(|S| \leq 2|S'| \) and finally, \(\Gamma_{\times 2}(G) \leq \frac{2n}{3} \).

3 Complexity results

The upper domination problem was shown to be NP-complete by Cheston, Fricke, Hedetniemi and Jacobs [6]. However, Cockayne, Favaron, Payan and Thomason [7] proved that \(\Gamma(G) = \beta_0(G) \) for any bipartite graph \(G \), and so \(\Gamma(G) \) can be computed for bipartite graphs in polynomial time. It was also shown by Jacobson and Peters [11] that \(\Gamma(G) = \beta_0(G) \) for any chordal graph \(G \), and so \(\Gamma(G) \) can be computed for chordal graphs in polynomial time. Besides, Hare, Hedetniemi, Laskar, Peters and Wimer [10] also established a polynomial algorithm for determining \(\Gamma(G) \) on generalized series-parallel graphs.

On the other hand, we shall prove that the \(k \)-tuple domination problem, with \(k \geq 2 \) fixed, is NP-complete for bipartite graphs and for chordal graphs. The proofs are separated into the cases of \(k = 2 \) and of \(k \geq 3 \). We consider the decision problem version as follows.

Upper \(k \)-tuple domination problem (U\(k \)TD)

Instance: A graph \(G = (V, E) \) and a positive integer \(s \leq |V| \).

Question: Does \(G \) have a minimal upper \(k \)-dominating set of cardinality at least \(s \)?

To show that U2TD is NP-complete, we will make use of the well-known NP-complete problem 3-SAT [8].

One-in-three 3SAT (OneIn3SAT)

Instance: A set \(U = \{ u_1, \ldots, u_n \} \) of \(n \) variables and a collection \(\mathcal{C} = \{ c_1, \ldots, c_m \} \) of \(m \) clauses over \(U \) such that each clause \(c \in \mathcal{C} \) has \(|c| = 3 \) and no clause contains a negated variable.

Question: Is there a truth assignment \(\mathcal{A}: U \rightarrow \{ \text{true}, \text{false} \} \) for \(U \) such that each clause in \(\mathcal{C} \) has exactly one true literal?
Theorem 4 The upper 2-tuple domination problem is NP-complete even restricted on bipartite graphs or on split graphs, and hence also on chordal graphs.

Proof. Obviously, U2TD is in NP. We shall show the NP-completeness of U2TD for bipartite graphs by reducing OneIn3SAT to it in polynomial time. Let $U = \{u_1, u_2, \ldots, u_n\}$ and $C = \{c_1, c_2, \ldots, c_m\}$ be an instance of OneIn3SAT. We transform I to the instance (G_I, s) of U2TD in which $s = 3n + m$ and G_I is the bipartite graph formed as follows.

Corresponding to each variable u_i we associate a cycle $C_i = u_i, x_i, y_i, z_i, u_i$. Corresponding to each 3-element clause c_j we associate a vertex named w_j. Joining the vertex u_i to the vertex w_j if and only if the literal u_i belongs to the clause c_j. According to the above construction, it is easy to see that G_I is a bipartite graph and the construction is accomplished in polynomial time. The graph G_I associate with $(u_1 \lor u_2 \lor u_3) \land (u_2 \lor u_3 \lor u_4)$ is shown in Figure 2.

![Figure 2: The graph G_I for $(u_1 \lor u_2 \lor u_3) \land (u_2 \lor u_3 \lor u_4)$.](image)

We next show that I has a satisfying truth assignment if and only if G_I has a minimal upper 2-tuple dominating set of cardinality at least $s = 3n + m$.

Suppose first I has a satisfying truth assignment \mathcal{A}. A minimal upper 2-tuple dominating set S of G_I of cardinality s is constructed as follows. Let w_j belong to S for all $1 \leq j \leq m$. For each $1 \leq i \leq n$, if $\mathcal{A}(u_i) = \{\text{true}\}$, then let u_i, x_i and z_i be in S; otherwise, let x_i, y_i and z_i be in S. Clearly, $|N[v] \cap S| \geq 2$ for each vertex $v \in V(G_I)$ and S satisfies the conditions of Lemma 1 and so S is a minimal upper 2-tuple dominating set of G_I with cardinality $s = 3n + m$.

On the other hand, assume that S is a minimal upper 2-tuple dominating set of G_I with cardinality at least $s = 3n + m$. It follows from Lemma 1 that $|S \cap V(C_i)| \leq 3$ for $1 \leq i \leq n$. Further, $|S \cap \{w_1, w_2, \ldots, w_m\}| \leq m$ and so $|S| \leq 3n + m$. Notice that $|S| \geq 3n + m$ by the assumption. Hence, $|S \cap V(C_i)| = 3$ for $1 \leq i \leq n$ and $\{w_1, w_2, \ldots, w_m\} \subseteq S$. Let $\{u_{j_1}, u_{j_2}, u_{j_3}\}$ be the open neighborhood of w_j in G_I for $1 \leq j \leq m$. Since S is a minimal upper 2-tuple dominating set, $|S \cap \{u_{j_1}, u_{j_2}, u_{j_3}\}| \geq 1$. We claim that $|S \cap \{u_{j_1}, u_{j_2}, u_{j_3}\}| = 1$. Otherwise, $|S \cap \{u_{j_1}, u_{j_2}, u_{j_3}\}| \geq 2$. Then the degree of w_j in $G_I[S]$ is more than 1. However, w_j does not satisfy the conditions of Lemma 1 because $|S \cap V(C_i)| = 3$ for $1 \leq i \leq n$, a contradiction. Let $\mathcal{A}: U \rightarrow \{\text{true}, \text{false}\}$ be defined by $\mathcal{A}(u_i) = \{\text{true}\}$ if $u_i \in S$ and $\mathcal{A}(u_i) = \{\text{false}\}$ if $u_i \notin S$. By the construction of G_I, we have each clause c_j of I contains only one variable u_i belonging to S. So \mathcal{A} is a satisfying truth assignment for I. Consequently, I has a satisfying truth assignment if and only if G_I has a minimal upper 2-tuple dominating set of cardinality at least $s = 3n + m$. This completes the proof for bipartite graphs.
To deal with split graphs, we add edges to make \(\{u_1, y_1, u_2, y_2, \ldots, u_n, y_n\}\) a clique. The same arguments hold, and show the NP-completeness of the upper 2-tuple domination problem for split graphs.

Theorem 5 For any fixed integer \(k \geq 3\), the \(k\)-tuple domination problem is NP-complete for bipartite graphs and for chordal graphs.

Proof: For any bipartite graph \(G\) on \(n\) vertices, consider the bipartite graph \(G'\) obtained by the following process. For each vertex \(v\) of \(G\), we add a copy of \(K_{k-1,k-1}\), denoted \(G_v\) with bipartition denoted \((X_v, Y_v)\). Then we link by an edge the vertex \(v\) to \(k-2\) vertices in \(X_v\). The widget added to each vertex \(v\) is drawn in Figure 3.

The NP-completeness of the upper \(k\)-tuple domination problem for bipartite graphs then follows from the NP-completeness of the upper 2-tuple domination problem for bipartite graphs.

To deal with the chordal case, we start with a chordal graph \(G\) and for each \(v \in V(G)\) we add to \(G_v\) edges joining any pair of vertices in \(X_v\), forming a clique. The same arguments hold, and show the NP-completeness of the upper \(k\)-tuple domination problem for chordal graphs as a consequence of the NP-completeness of the upper 2-tuple domination problem for chordal graphs.

\[\square\]
References

