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Under what circumstances might every extension of a combinatorial structure contain more copies of another one than

the original did? This property, which we call prolificity, holds universally in some cases (e.g., finite linear orders)

and only trivially in others (e.g., permutations). Integer compositions, or equivalently layered permutations, provide

a middle ground. In that setting, there are prolific compositions for a given pattern if and only if that pattern begins

and ends with 1. For each pattern, there is an easily constructed automaton that recognises prolific compositions for

that pattern. Some instances where there is a unique minimal prolific composition for a pattern are classified.
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1 Introduction

In combinatorics we are often interested in the ways that one structure, a pattern, can occur inside another,

the text. There are many different ways to study the nature of occurrences. At the heart of the study of

permutation patterns is the notion of pattern avoidance, studying permutations which contain no occur-

rences of given pattern. Early papers in this area include Simion and Schmidt [11] and Stankova [12]. A

survey of the current state of research on classical permutation patterns can be found in Vatter [13]. Whilst

considering permutation patterns Bóna [2] and Fulmek [6] are amongst those who have considered texts

containing a prescribed number of occurrences. Bóna [3] also examined the case where some patterns

definitely occur, but other patterns are absent. Asymptotic statistics on occurrences of certain patterns as

well as the distribution of occurrences of patterns amongst texts of different lengths have been studied by

Janson [8] and Janson, Nakamura, and Zeilberger [9]. It is also possible to study the texts that permit the

highest number of occurrences, or the packing density as presented by Albert, Atkinson, Handley, Holton,

and Stromquist [1] and others. Kuszmaul [10] has attempted to find efficient algorithmic methods to count

the number of occurrences of a pattern in each member of a set of texts. Some of these problems have

also been studied in the context of words, with Burstein and Mansour [5] examining prescribed counts of

patterns and Burstein, Hästö, and Mansour [4] studying packing density of words under subword order.

Another approach we can take, and the one considered in this paper is to examine how the number of

occurrences of the pattern can change as we change the containing structure. If we add a new element

to the text then the number of occurrences of the pattern must either stay the same, or increase. We

will investigate the combinations of patterns and texts having the property that regardless of how a new

element is added to the text the number of occurrences of the pattern increases.
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For example, consider the case of finite linear orders. Since, up to isomorphism, there is only one such

structure of any given size, any k elements of a linear order on n elements, represents an occurrence of

the k element order so the number of occurrences is
(
n
k

)
and no matter how we add a new element the

number of k element suborders increases, provided that n ≥ k > 0, since

(
n+ 1

k

)

>

(
n

k

)

This gives rise to the following definition

Definition 1.1. A text τ , is prolific for a pattern π, or π-prolific, if every proper extension of τ contains

more occurrences of π than τ .

Observation. If τ is prolific for π and τ is contained in ν then ν is prolific for π since any extension of

ν contains extensions of τ and therefore also new occurrences of π. Thus, the set of texts defined by the

property of being prolific for π is upwards closed set with respect to containment order.

In contrast to finite linear orders, among the set of all permutations only the singleton permutation has

any prolific texts. This is because any non-singleton permutation, π, cannot end with both its maximum

and its minimum element. If π does not end with its maximum then extending any other permutation by

a new maximum element at its end creates no new copies of π. In the other case, extension by a new

minimum element has the same effect.

Linear orders (which could be thought of simply as monotone permutations) and the set of all permu-

tations lie at opposite ends of the scale in terms of what patterns have prolific texts and what those texts

are. Neither one allows for an interesting study of prolificity in general. To see whether this concept is

of interest at all we need to demonstrate the existence of a middle ground between these two extremes. It

turns out that integer compositions (or in terms of permutations, layered permutations) occupy part of that

middle ground.

2 Basic Definitions

Let n be a positive integer. A sequence of positive integers whose sum is n is called a composition of n.

We can display any composition graphically as a skyline diagram as shown in Figure 1. Denote by Cn all

the compositions of n and let C denote the set of all compositions.

Fig. 1: The skyline diagram of a composition

A composition of n can also be thought of as a partition of the set [n] = {1, . . . , n} whose parts form

intervals. For example, the composition with part sizes 2, 1 and 2 corresponds to partition of [5] into the

sets {1, 2}, {3}, and {4, 5}. The correspondence between the partition view and the skyline diagrams can

be seen in Figure 2. As the skyline diagram is more compact we will use this view throughout.
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1 2 3 4 5

(a) as a partition into intervals

1

2

3 4

5

(b) as a skyline diagram

Fig. 2: Different representations of a composition

Of course there is also a correspondence between compositions of n and layered permutations on n

elements. When a composition is written as a partition into intervals, by writing the elements of each in-

terval from largest to smallest, and writing the intervals in order we immediately obtain the corresponding

layered permutation, as shown in Example 2.1.

Example 2.1. The composition ({1, 2}, {3}, {4, 5}, {6, 7, 8, 9})maps to the layered permutation 213549876.

1

2

3 4

5

6

7

8

9

Although we do not make use of this correspondence in the following work it is part of the underlying

motivation: to determine what patterns have prolific texts, and what those texts are in various permutation

classes.

An element of a composition is a member of the underlying set and in the skyline diagram, each

individual square also represents an element of the underlying set. The size of a composition, v, is the

size of its underlying set and is denoted |v|; furthermore, a part of size x is a part in the composition where

the corresponding interval contains x integers.

Compositions can also be represented as words over N+ where each letter is the size of the corre-

sponding part in the composition. This is the most convenient representation in text so we will write

compositions in concatenative notation by just listing the sizes of their parts, the composition in Figure 1

is therefore written as 1324211. When we consider compositions as words denote partial words by greek

letters and individual parts by numerals or roman letters.

A new elements can be inserted into a composition by

1. increasing the size of some part by one, or

2. creating a new part of size one adjacent to some existing part

There are therefore, up to isomorphism, k + (k + 1) ways of inserting a new element into a composition

with k parts. Any composition obtained by inserting one or more elements into the composition p are

called the extensions of p.

Consider how to find an embedding, of one composition of n inside another composition of m. In the

context of partitions, we can say that an embedding is an strictly order-preserving injection from [n] to
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[m] such that two elements belong to the same part of the composition of n if and only if their images

belong to the same part of the composition of n. Figure 3 shows an embedding of the composition 122321
in the composition 13224211.

Fig. 3: An occurrence of 122321 in 13224211.

When we consider compositions as a sequence whose sum is n then a composition, u, with ℓ parts has

an embedding into a composition, v, with k parts if we can find a subset of ℓ parts of the composition v

such that each part of this subset is at least as large as the corresponding part in u. This is formalised in

the following definition.

Definition 2.2. Given two compositions u = u1u2 . . . uk and v = v1v2 . . . vn (where k ≤ n) let � be the

binary relation on the set of compositions such that u � v if there exists a set of k indices I = {i1, . . . , ik}
such that uℓ ≤ viℓ for all ℓ ∈ {1, . . . , k}.

An occurrence of a composition u with k parts in a composition v under the relation � is a way of

selecting k parts of v and then from each of those parts i choosing ui elements from those parts.

When looking for an occurrence of a composition u = u1u2 . . . uk inside a composition v we can

match the first part of u1 into the leftmost part of vi1 of v with size greater than u1, we can then match u2

into the left most sufficiently large part of v after vi1 and so on until we have seen an occurrence of u (or

run out of parts in v). This greedy approach allows us to check whether v contains u in time proportional

to the length of v in the worst case. The existence of a leftmost occurrence of u in v, or of a rightmost

occurrence, or similar considerations based around the greedy algorithm is a critical part of many of the

proofs below.

The support of an occurrence of u in v is the set of indices that correspond to the chosen parts, for

example, the support of the occurrence indicated in Figure 3 is {1, 2, 4, 5, 6, 8}.

Definition 2.3. Given a composition u with k parts, and a set of indices X ⊆ {1, . . . , k}, the subcompo-

sition of u at X , denoted uX is the composition formed by taking the parts of u at the indices selected by

X .

Given a composition u with k parts and a composition v with ℓ parts where k ≤ ℓ, the set of supports

of u in v, denoted supp(u, v), is the those X ∈
(
[ℓ]
k

)
such that u � vX .

Example 2.4. The supports of occurrences of u = 122321 in v = 13224211 can be found by noting that

the part of size 3 in u must occur in the part of size 4 in v. We can therefore take any 3 of the first 4 parts,

the part of size 4 and the part of size 2 that follows it as well as either of the last two parts. The set of

supports of u in v therefore has 8 elements.

Denote by Occ(u, v) the number of occurrences of u inside the compositions v. For this relation, each

part of size k in v that matches a part of size ℓ in u contributes a factor of
(
ℓ
k

)
to the number of occurrences.
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That is

OccL(u, v) =
∑

X∈([ℓ]k )

∏

j∈[k]

(
vXj

uj

)

(1)

Note that if the set of indices chosen is not in the set of supports then the that particular term of the sum

will be equal to 0.

If the union of the set of supports of occurrences of a composition u in a composition v is equal to the

set of all the indices of v then we say that v is covered by u.

The reverse of a composition u, rev(u), is the composition of |u| that has the same parts as u but the

order of the parts are reversed.

Remark. The number of occurrences of u in v is the same as the number of occurrences of rev(u) in

rev(v). In fact rev : C → C is an automorphism of the collection of compositions as an ordered set. This

symmetry will sometimes be implicitly used in our proofs.

Given a composition u with k parts and an index i in [k] the prefix of u up to i is the subcomposition of

u at I = {1, . . . , i− 1}. Similarly, the suffix of u after i is the subcomposition of u at I = {i+ 1, . . . , k}.

Note that neither of the prefix of u up to i or the suffix of u after i contain the ith part of the composition.

3 Prolific Compositions

Recalling the definition of being prolific in the context of compositions: a composition v of size n is

prolific for a composition u, or u-prolific, if for all proper extensions, v′ of v, the number of occurrences

of u in v′ is strictly greater than the number of occurrences of u in v. To determine whether v is u-prolific

it suffices to consider extensions, v′, of v with |v′| = |v|+1. Denote the set of all u-prolific compositions

as Pro(u).

Remark. A composition v is in Pro(u) if and only if rev(v) is in Pro(rev(u)).

Theorem 3.1. If u = u1u2 . . . uk, then Pro(u) is non-empty if and only if u1 = uk = 1

Proof: If u1 6= 1 and v is any composition then 1v contains no additional occurrences of u compared to v.

Similarly if uk 6= 1 then v1 contains no more occurrences of u than v does. So, in both cases Pro(u) = ∅.

Conversely, if u = 1α1 then v = 1αα1 is prolific. If a new element is inserted into v before the end

of the first α then it creates a new occurrence of u using the new element, the second α and the final part.

While if a new element is inserted into v after the end of the first α then it creates a new occurrence of u

using the first one, the first α, and the new element.

Lemma 3.2. If a composition v is u-prolific, then it must contain at least one occurrence of u.

Proof: Suppose there were a composition v that was u-prolific but did not contain an occurrence of u.

Since the last part of u must be of size 1 then increasing the size of the last part of v would not create any

occurrences of u, so therefore v could not have been u-prolific. Any u-prolific composition must therefore

contain at least one occurrence of u.

Remark. Since a u-prolific composition must have at least one occurrence of u then it must have at least

the same number of parts as u.
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In fact the following lemma extends strengthens the statement made in Lemma 3.2 considerably.

Theorem 3.3. If a composition v is u-prolific, then it must be covered by u.

Proof: Suppose there existed a composition v than belonged to Pro(u) but was not covered by copies of

u. Choose a part X of v, with size x, that does not occur in the support of any occurrence of u. Write v

as αxβ.

v = . . . . . .

X

. . .

α β

Consider the extension of v formed by inserting a new part of size one immediately after X . Since

v is u-prolific this must create a new occurrence of u. If the new part were to play the role of the first

part of u in the new occurrence then there would have existed a number of occurrences of u that used

the same parts as the new occurrence, but used an element of the part X instead of the new part, and X

would be covered. Therefore, the new part must play the role of the last part, or some internal part, of u.

Furthermore in the new occurrence of u must use the part X as otherwise any element of X could play

the role that the inserted element plays and X would be covered.

Now, suppose that the maximum prefix of u in αX were the same as that in α. Then whatever parts

of u that were used in the occurrence could have been found entirely in α, contradicting the observation

that X must be used. So the maximum prefix of u in αX is strictly longer than that in α. Hence when

greedily finding an occurrence of u in v the part X will be used and this contradicts with the assumption

that X was not covered.

Corollary. In order to discover whether a composition v is u-prolific we need only check that:

• v is covered by u, and

• for all factorisations of v = αxyβ with x, y > 1 there is an occurrence of u in αx1yβ that uses the

inserted 1.

Proof: If v is covered then increasing any part increases at least one term of the sum in Equation (1) and

therefore increases the number of occurrences. Inserting any new singleton parts adjacent to an existing

part of size 1 in v need not be considered since the new part can be substituted for the existing part in

any occurrence that used the existing part. Therefore it suffices to consider inserting new parts of size 1
between parts of size strictly greater than 1.

Now consider the problem of how to efficiently determine that v is prolific for u (assuming that u starts

and ends with 1). The following description will provide the basis for an automaton that recognises this

property. That is, the automaton will accept exactly those words over N that are u-prolific. Each letter of
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such a word corresponds to processing a part in a composition so the non-accepting states can be thought

of as encoding the conditions that must be satisfied by the remaining suffix of the word being processed

in order that it should be u-prolific. What are these suffix conditions?

First consider the condition that inserting a 1 after any prefix of v should create a new occurrence of

u. The prefix v1v2 . . . vi contains some maximal prefix α of u. Then there is a maximal β such that α1
contains the prefix β1 of u. This might be α1 itself, but if α is not followed immediately by a 1 in u then

β will be the maximal prefix of α that is followed by a 1 in u. Such a β will always exist (though it may

be empty) since u begins with a 1. Now write u = β1γ. The requirement that the new 1 after vi creates a

new occurrence of u is precisely the requirement that the remainder of v should contain an occurrence of

γ. This is the local suffix requirement at vi.

At the point where vi is being considered there was already some existing suffix requirement. If vi is

greater than or equal to the first character of that suffix then this requirement is reduced in length by one,

otherwise it stays the same. The final suffix requirement after considering vi is then the longer of the

previous (possibly modified) one, and the local suffix requirement at vi.

The initial suffix requirement (before we process any characters at all) is all of u. This ensures that, as

soon as the suffix requirement becomes empty we will have constructed a word containing an occurrence

of u. So, when the suffix requirement is non-empty we have either not found an occurrence of u or there

remain positions where inserting a 1 would not create a copy of u. To that point, the word we have

processed is certainly not u-prolific. But, as soon as the suffix requirement is empty these two conditions

are both satisfied and we will show below that all such v are u-prolific.

Example 3.4. Given the composition u = 1213221 and v = 15512443221we can associate the u-prefix,

u-suffix requirement pairs show in Table 1.

Tab. 1: Maximal prefixes and suffix requirement pairs for u = 1213221 and v = 15512443221

i vi u-prefix u-suffix

1 1 1 213221

2 5 12 13221

3 5 121 3221

4 1 121 3221

5 2 121 3221

6 4 1213 3221

7 4 12132 3221

8 3 121322 221

9 2 1213221 21

10 2 1213221 1

11 1 1213221 ε

The preceding discussion proves:

Theorem 3.5. Given a composition v and a composition u, v is u-prolific if and only if the suffix require-

ments for the last part of v are empty.

Proof: We have already argued that if the suffix requirement is non-empty then v is not u-prolific.
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Suppose that v finishes with an empty suffix requirement. Such a v contains occurrences of u and the

insertion of a 1 at any point creates new occurrences of u. It remains only to show that v is covered by u.

Let X be any part of v and write v = αXβ. We consider two cases: the maximal prefix of u in αX

is the same as that in α, or it is longer. Because the suffix condition is eventually empty we know that

there is a new occurrence of u in αX1β which necessarily uses the 1 and corresponds to a factorisation

u = γ1τ where γ occurs in αX .

In the first case, γ also occurs in α and so we could use any element of X in place of the 1, i.e., that

part is covered.

But in the second case we already know that X is covered. For the fact that the maximal prefix of u in

αX is longer than that in α implies that X will be part of the leftmost occurrence of u in v (and we know

such an occurrence exists).

Thus every part of v is covered and we can conclude that v is u-prolific.

As already foreshadowed, Theorem 3.5 allows the construction an automaton that recognises u-prolific

compositions. In this automaton the states are given by pairs (p, s), where p represents the length of the

prefix seen and s is the length of suffix requirement needed when inserting a new element after the current

partial composition. There exists a transition on an interval I = [a, b] between states (p, s) and (p′, s′)
if appending any value in the interval I to a word seen at (p, s) causes the prefix of u seen to become p′

symbols long and causes the length of the suffix requirement to become s′. If a state is unreachable we

omit it from the final automaton. Note that p′ = p or p+ 1 and s′ = s or s− 1.

Example 3.6. The automaton for recognising 1441-prolific compositions.

(0, 3) (1, 3) (2, 3) (3, 2)

(4, 2)

(4, 1) (4, 0)
[1,∞]

[1, 3]

[4,∞]

[1, 3]

[4,∞]

[1, 3]

[4,∞]

[4,∞]

[1, 3]

[1,∞]
[1,∞]

Observing that transitions in the automaton are caused by intervals whose endpoints are associated to

values in the composition leads us to the following definition.

Definition 3.7. For any composition u, an interval [a, b− 1] is critical if one of the following holds:

• a = 1 and b is the minimum value of a non-1 symbol in u,

• a and b are values of symbols in u and b is the least such value greater than a, or

• a is the maximum value in u, and b = ∞.

Example 3.8. The critical intervals of u = 373499 are

{[1, 2], [3, 3], [4, 6], [7, 8], [9,∞]}

In the automaton describing u-prolific permutations each transition is labeled by unions of critical

intervals. This suggests that there is a notion of standardisation relative to u.
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Definition 3.9. Given a composition, u, we can define the the u-standardisation of w as the function that

takes each part of w and maps it to the ordinal value of the critical interval u that contains the size of that

part.

Example 3.10. Suppose that u = 373499 then the u standardisation of w = 8(12)4663281 is

stu(w) = 453332141

Note that the u-standardisation of u is supported by the set [m], or [m+ 1] \ {1}, where m is the

number of distinct values of u, and the latter occurs if the symbol 1 does not occur in u. It is the unique

composition of this support such that the order relations between corresponding elements are the same as

in u. This order preservation property is similar to that of the notion of standardisation in permutations.

Theorem 3.11. For any composition u

w ∈ Pro(u) ⇐⇒ stu(w) ∈ Pro(stu(u))

Proof: If two different values belong to the same critical interval for u then they can be exchanged for

one another in any word v without changing the supports of any occurrences of u. In particular, they must

induce the same transition from any state of the automaton that recognises Pro(u). But even more, all that

matters is which critical interval they belong to in order from smallest to largest – so we can collapse each

critical interval (except the unbounded one) to a single value which is the corresponding value in stu(u).
That is, except for this relabelling, the two automata for Pro(u) and Pro(stu(u)) are identical from which

the result follows.

Example 3.12. Equivalence between the automaton for recognising 1441-prolific compositions, and that

recognising 1221-prolific compositions (1221 is the 1441-standardisation of 1441).

(0, 3) (1, 3) (2, 3) (3, 2)

(4, 2)

(4, 1) (4, 0)
[1,∞]

[1, 3]

[4,∞]

[1, 3]

[4,∞]

[1, 3]

[4,∞]

[4,∞]

[1, 3]

[1,∞]
[1,∞]

(0, 3) (1, 3) (2, 3) (3, 2)

(4, 2)

(4, 1) (4, 0)
[1,∞]

[1, 1]

[2,∞]

[1, 1]

[2,∞]

[1, 1]

[2,∞]

[2,∞]

[1, 1]

[1,∞]
[1,∞]
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4 Minimal Prolific Compositions

The set of u-prolific compositions is closed upwards so it makes sense to try to determine its minimal

elements. By a theorem of Higman [7], the partial order of compositions is a quasi-well order. Therefore

the set of minimal u-prolific permutations will always be finite. In this section we give a variety of results

about these compositions.

Theorem 4.1. If γ is a minimally prolific composition for u, then 1γ is minimally prolific for 1u.

Proof:

Consider the automaton that recognises prolific words for 1u. The initial suffix condition is 1u. Any

character now changes the suffix condition to u and extends the prefix seen. But then the remainder of the

automaton is exactly the automaton for recognising prolific words for u. So the minimum words accepted

by this automaton consist of the minimum possible character to trigger the first transition followed by a

minimal word of the u-prolific automaton, exactly as claimed.

Corollary. If u is a minimally prolific composition for v, then the composition 1 . . . 1
︸ ︷︷ ︸

n times

u is minimally

prolific for 1 . . . 1
︸ ︷︷ ︸

n times

v.

Lemma 4.2. Given a composition u, the unique minimal u-prolific composition is u itself if and only if u

has a part of size one between every pair of parts of size greater than one.

Proof: Under the given conditions on u in the Corollary to Theorem 3.3 the second condition is vacuous.

Since u is covered by itself and no smaller composition can be covered by copies of u the composition u

is minimally prolific for itself.

Suppose that u has a pair of parts with no one between them, then write u as αxyβ with x, y > 1 then

clearly αx1yβ contains no new copies of u.

If u is u-prolific then we call it a self-prolific composition.

Theorem 4.3. Given a composition of k+2 parts, u = 1e1e2 . . . ek−1ek1 such that for all i > 0, ei > 1.

There is a unique minimal u-prolific composition p given by:

p = 1e1e2 . . . ek−1 max(ek, e1) e2 . . . ek−1ek1

Proof: p is u-prolific.

The composition p is covered by u since the first (k + 1) parts form an occurrence of u with any other

part of p.

Adding a new part of size 1 anywhere before the (k + 1)st part creates a new occurrence of u with

the last (k + 1) parts, and adding a new part of size 1 anywhere after the (k + 1)st part creates a new

occurrence of u with the first (k + 1) parts. Therefore p is u-prolific.

No composition contained in p is u-prolific.

Without loss of generality (due to symmetry under reversal) we can consider reducing the size of one

of the first k + 1 parts.

We have two cases:
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Case 1 (ek ≥ e1). Consider inserting a new part of size 1 after the middle term. To the right of this

part there are only k parts so we cannot find an occurrence of u in which the new part plays the role of

the leftmost part of size 1. In order that we should have a new occurrence of u to the left of the new part

would require each such part to match into the corresponding part of u since there are exactly enough parts

available. But one of them is smaller than the corresponding part of u so this cannot happen. Therefore,

no new occurrence of u is created.

Case 2 (e1 > ek). If we have reduced any of the first k parts then we can insert a new part after the middle

term and the logic follows from the previous case. On the other hand if we reduce the middle part then

inserting a new part of size 1 before it does not create any new occurrences of u. The new part cannot

play the role of a rightmost one in any occurrence of u since there are only k parts preceding it. Also, it is

not possible to use the new part as a leftmost one since all the remaining parts would be required but the

first of them is now smaller than e1.

Taking both of these cases together tells us that no composition contained in p is u-prolific.

Any composition not containing p is not u-prolific.

Suppose there existed a composition v that did not contain p but was u-prolific. Write p as 1W1. Since

v avoids p, and occurrence matching can occur greedily, it is possible to concatenate additional parts to v

to produce a composition that contains 1W but does not contain p. That composition will still be u-prolific

since v was. So without loss of generality, we may assume that v contains 1W but not 1W1. Now v has

the form

v = v1v2 . . . vm

We can greedily match parts of 1W into v, the matching must finish at the part vm since v does not

contain 1W1,

v1 v2 . . . x . . . y . . . vm≥ ≥ ≥ ≥ ≥ ≥

1 e1 . . . ek−1 max(e1, ek) e2 . . . ek

(2)

Consider adding a new part of size 1 immediately before the part y above. This new part cannot be the

initial one in an occurrence of u as the first layer that the part e1 can match into is the part y, and then

matching greedily would continue as before and ends when the part ek has been matched into the part vm
– so no copy of u would be found.

If this new part were a right hand 1 in an occurrence of u then we must have seen a part of size ek
between the parts x and y. This means that ek < max(e1, ek). Therefore, if ek ≥ e1 then v is not

u-prolific with this part not creating any new occurrences of u.

In the case that ek < e1, consider putting a new part of size 1 immediately after x, this cannot be a right

hand 1 in an occurrence of u, as the prefix of u up to this part is 1, . . . , ek−1 . If it were a left hand 1 in an

occurrence of u then the part y is the first part that matches e1, and the greedy match continues as before

from this point, and no new occurrence of u will be found. So v is not u-prolific.

Lemma 4.4. If v = 1γ1 is a minimally prolific composition for u = 1β1 then for every part, vi, of v there

exists some insertion of an element into 1γ1 such that any new occurrence of u must use vi.

Proof: Otherwise every insertion of a 1 creates a new occurrence of u not using vi. But then the compo-

sition formed by deleting vi from v is already prolific, contradicting v’s minimality.
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Theorem 4.5. If 1α1 is self-prolific and 1γ1 is a minimally prolific composition for 1β1 then the compo-

sition v = 1α1γ1 is minimally prolific for u = 1α1β1.

Proof: The argument is essentially the same as that for Theorem 4.1. Because 1α1 is self-prolific the au-

tomaton for Pro(1α1) has loop transitions labelled by values less than the next element of 1α1 and proper

transitions to the next state on larger values. It is a single chain with no branches. But, in considering

the automaton for Pro(1α1β1) the same transitions apply only the suffix conditions have β1 appended.

Therefore the complete structure of the Pro(1α1β1) automaton is obtained from the Pro(1β1) automaton

by fusing its initial state (corresponding to an empty prefix) with the penultimate state of the Pro(1α1)
automaton (corresponding to a remaining suffix requirement of 1.)

In particular the minimal compositions accepted by this automaton are exactly 1α followed by a mini-

mal composition accepted by the Pro(1β1) automaton.

We have now seen that certain compositions u have unique minimal u-prolific compositions.

Now we consider methods for determining the minimal u-prolific compositions for compositions that

are not encompassed by the previous results.

An automaton, A, that accepts minimally prolific compositions (and possibly some others) for the

composition u is easily constructed from the automaton, D that accepts all u-prolific words. Consider

what happens if we were to follow a transition that loops in D, if we then reach an accepting state we

could find a smaller u-prolific composition by omitting the part introduced by this loop, therefore we can

redirect any transitions that label loops into a non-accepting sink state. Any interval causing a transition

can be replaced by the smallest value it contains, and any larger values can also be redirected to the sink

state since any composition obtained by using a larger value causing the same transition can be made

smaller by using the smaller value.

Example 4.6. The automaton for recognising minimal 1221-prolific compositions, as well as some other

1221-prolific compositions.

(0, 1) (1, 1) (2, 1) (3, 2)

(4, 2)

(4, 3) (4, 4)
1 2 2

1

2

2

1

After these modifications the automaton accepts fewer compositions but still accepts only u-prolific

compositions and still accepts all minimal u-prolific compositions. If there are no branches then in fact

we will have established that there is only one minimal u-prolific permutation. However, if there are

branches then Dijkstra’s algorithm can be applied to find a minimal weight path to the accepting state

– where the weight of a path is the sum of its labels. This path must represent a minimal u-prolific

composition, v. But now we can easily modify the automaton to accept only those words accepted by

the original one which do not contain v (simply by keeping track of what prefix of v has been found and

passing to a sink state if we contain v). If this modification still has accepting computations then we can

find a minimum weight word that it accepts which is another minimal u-prolific composition. Since we

know that the set of minimal u-prolific permutations is finite this procedure terminates with the complete

set.
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Application of this technique has allowed us to verify the theory presented in this section as well as find

some examples of interesting behaviour that leads to further questions and avenues for investigation. For

example, in the family of compositions having the structure

Mk = 122 1 . . .1
︸ ︷︷ ︸

k ones

221

there are k + 1 minimally prolific compositions for the composition Mk for all k from 0 to 8. This gives

rise to the following conjecture.

Conjecture 1. Given any integer r there exists a composition u such that the set of minimally u-prolific

compositions has exactly r elements.

5 Future

The concept of prolificity can be framed in another way. Consider any class of combinatorial objects that

carries a notion of embedding where each embedding of a structure A into a structure B is witnessed by

an injective map from A to B. Then, even if we do not want to count embeddings, it makes sense to say

that B is covered by A if the union of the ranges of such maps is B. Now we can say that B is A-prolific

if every structure containing B is covered by A. In compositions this definition is equivalent since we

obtained covering as a necessary condition (strictly speaking the counting definition would require only

that for a structure C containing B the union of the images of A should contain C \B).

Despite this natural framing it seems that this concept has not previously been investigated extensively.

We believe that the previous sections show that there are contexts in which it is of interest – at the very

least for integer compositions, where a number of open questions still remain. For instance, aside from

the two conjectures above we can ask: if u is a composition with k parts, then what is the maximum

possible size of the set of minimal u-prolific compositions? Note this question does have a finite answer

since we may assume that u is standardised and there are only finitely many standardised compositions

with k parts.

We can easily consider prolificity in other combinatorial structures, for instance graphs. If embedding

is taken to be as an induced subgraph, it is easy to see that there are no G-prolific graphs for any graph G

other than a single vertex. This is because a graph can be extended by adding a new vertex independent

of all others, and also by adding a new vertex adjacent to all others. For G having more than one vertex,

one of these extensions fails to contain new copies of G. However, it is easy to establish that, in the class

of graphs of bounded degree d, there exist graphs that are prolific for the graph that has three vertices and

one edge.

In general we believe that the use of automata in considering prolific structures, as we were able to

do for compositions, is a powerful tool. This suggests that further investigations should concentrate on

classes that allow the representation of structures as words over some alphabet.
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