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We consider the family of rational functions ψw =
∏
(xwi − xwi+1)

−1 indexed by words with no repetition. We

study the combinatorics of the sums ΨP of the functions ψw when w describes the linear extensions of a given poset

P . In particular, we point out the connexions between some transformations on posets and elementary operations on

the fraction ΨP . We prove that the denominator of ΨP has a closed expression in terms of the Hasse diagram of P ,

and we compute its numerator in some special cases. We show that the computation of ΨP can be reduced to the

case of bipartite posets. Finally, we compute the numerators associated to some special bipartite graphs as Schubert

polynomials.
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1 Introduction

For each word w without repetition, we define the rational function

ψw :=
1

(xw1
− xw2

).(xw2
− xw3

) · · · (xwn−1
− xwn

)

where w1 . . . wn are the letters of w. Permutations are special words with no repetition, and summing

these functions on intervals of the permutohedron (i.e., for the weak order) gives remarkable properties.

For example, we will show that, when a permutation σ avoids some patterns, the sum over the initial

interval [Id, σ] can be simplified to a product
∏

(xi − xj)
−1 where the product runs over the edges (i, j)

of a particular tree.

These patterns are known to characterise some families of Schubert varieties. Schubert varieties are

indexed by permutations, and the varieties which are non-singular are those whose indexing permutation

does not contain the pattern 2143 nor 1324. In (2), Cortez has described geometrical properties of Schubert

varieties for permutations avoiding 1324 and 2143 (i). This was further clarified by Woo and Yong in (6),

(i) A permutation σ avoids the pattern 1324 if there exist no integers 1 ≤ i1 < i2 < i3 < i4 ≤ n satisfying σi1 < σi3 < σi2 <

σi4 . A permutation σ contains the pattern 2143 if for some indices 1 ≤ i1 < i2 < i3 < i4 ≤ n we have σi2 ≤ σi1 ≤ σi4 ≤

σi3 with the further restriction that there is no i1 ≤ j ≤ i4 such that σi1 ≤ σj ≤ σi4 .

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/
http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/dm15:2ind.html


14 Adrien Boussicault

and Butler and Bousquet-Mélou in (1). They used the fact that an initial interval [Id, σ] is the set of linear

extensions of a partially ordered set whose Hasse diagram is a tree when σ avoids 1324 and 2143.

Surprisingly, the same patterns occur in the study of the sum

ΨP :=
∑

w∈L(P )

ψw,

where L(P ) is the set of linear extensions of P . In fact, our work is closely connected to a study of Greene

(3) on rational identities related to the Murnaghan–Nakayama formula for Sn (type A). Greene gave in

(3) a closed expression for the ΨP of a planar poset P . He showed the equality

ΨP =

{

0 if P is a disconnected graph,
∏

a,b∈P (xa − xb)
µP (a,b) if P is a connected graph,

where µ(x, y) is the Möbius function of the poset P . In the case of a permutation avoiding the pat-

terns 1324 and 2143, the poset is planar, and the Möbius function takes only values 0 or −1. Therefore

(Corollary 4.1) the numerator of ΨP equals 1 if and only if the Hasse diagram of P is acyclic.

The aim of this paper consists in pointing out the connexions between some operations on posets and

rational identities involving the ΨP . To study the rational functions ΨP , we introduce some operations on

posets in Section 2, and describe in Section 3 the identities on the rational functions that these operations

induce. Finally, we give some explicit examples in Section 4: acyclic posets, 1-cycle posets and λ-

complete posets (related to Schubert polynomials ).

2 Operations on partially ordered sets

We will see that the knowledge of the Hasse diagram of P gives some properties of the function ΨP . In

this section we study four operations on posets (considered as graphs): collapse, operation of sorting a

subset, contraction and suppression of extremal elements.

2.1 Basic definitions

We recall that a partially ordered set (poset) P = (A,≤) is a setA endowed with a reflexive, antisymmet-

ric and transitive binary relation. For simplicity, when there is no ambiguity, we will use a ∈ P instead of

a ∈ A.

A total order T is a linear extension of a poset P if, whenever a ≤ b in P there holds a ≤ b in T . We

denote by L(P ) the set of linear extensions of P .

Classically, the covering relation is the minimal(ii) relation whose transitive closure is ≤. This relation

will be denoted by �. The Hasse diagram of P , denoted by H(P ), is the oriented graph of the covering

relation of P , drawn in such a way that if a ≤ b, then b is drawn to the right of a (iii). The Hasse diagram

displays the minimal set of relations generating P by transitivity.

The set of the inner vertices of P , that is, those being neither minimal nor maximal for ≤, will be

denoted by In(P ). Its complementary set is called the boundary of P : Bound(P ) := P \ In(P )

(ii) as a subset of P × P .
(iii) Usually, Hasse diagrams are drawn from bottom to top, but this representation takes more space and is less natural for our

purposes.
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2.2 Permutations and posets

Consider the symmetric group Sn endowed with the weak order.

The weak order (also called right permutohedron order) is the order on permutations obtained by defin-

ing the successors of a permutation σ as the permutations σ.si if this permutation has more inversions

than σ, where si = (i, i+ 1) exchanges the numbers at places i and i+ 1 of σ.

For any pair (σ, τ) of permutations, one constructs the interval [σ, τ ] as the set of permutations greater

than or equal to σ and lower than or equal to τ .

For example, the interval [123456, 132564] in S6 contains exactly the permutations

[123456, 132564] = {132564, 123564, 132546, 123546, 132456, 123456}.

Proposition 2.1 Let σ be a permutation. There exists a poset Pσ such that L(Pσ) = [Id, σ]. Moroever,

the Hasse diagram of Pσ is obtained applying Algorithm 1.

Proof: Let ≤σ be the binary relation on {1, . . . , n} defined by:

i ≤σ j if and only if i ≤ j and σi ≤ σj .

The binary relation ≤σ is a partial order on {1, . . . , n}. Indeed, reflexivity, transitivity and antisymme-

try of >σ are deduced from reflexivity, transitivity and antisymmetry of ≤.

Let Pσ be the poset defined by:

Pσ = ({1, . . . , n},≤σ).

The interval [Id, σ] is the set of permutations obtained from σ by permuting recursively all consecutive

decreasing pairs of letters of σ. It is well known that [id, σ] is exactly the set

[Id, σ] = {τ ∈ Sn| if i ≤ j and σ−1
i ≤ σ−1

j then τ−1
i ≤ τ−1

j }

which is, by definition, the set of linear extensions of Pσ .

The Hasse diagram of such a poset is built by using Algorithm 1. Indeed, the first ten steps draw each

vertices of the graph satisfying that if i < j and σi < σj then σi is draw to the right of σj . Step 11 draws

the edges of the Hasse diagram. ✷

Example 2.2 Figure 1 shows an execution of Algorithm 1.

1

2 3 4

5

6

7

8

9

Fig. 1: Hasse diagram of P215736498
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Algorithm 1 construction of Pσ

Let σ be a permutation and i the index of the current letter.

1: i← |σ|
2: Write σi.

3: while i > 0 do

4: if σi−1 > σi then

5: write σi−1 in the same column as σi
6: else

7: write σi−1 to the left of σi
8: end if

9: i← i− 1.

10: end while

11: Draw an edge between each pair (σi, σj) satisfying

a) σi < σj ,

b) σj is to the right of σi,

c) there is no vertex σk such that σi < σk < σj and k is to the left of j and to the right of i.

12: The graph obtained is the Hasse diagram of the poset Pσ .

1

2

3

40

Fig. 2: 0 is a free vertex and (0, 1) is a non-inner edge

2.3 Collapses

Hasse diagrams can be viewed as non-oriented graphs. We will use notations and definitions given in

(9). In his book (9), Giblin defined a free vertex as a vertex belonging to exactly one edge. An edge with

no free vertex is an inner edge.

Example 2.3 The poset P (see Figure 2) has only one free edge: 0. The only non-inner edge is (0, 1).

The action which consists in removing a non-inner edge together with one of its free vertices is an

elementary collapse.

A collapse is a sequence of elementary collapses. We will denote by Coll(G) the collapsed graph G,

that is the unique (up to relabeling) maximal subgraph of G without free vertices.

Example 2.4 Figure 3 shows the collapsed graph of Figure 2.
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1

2

3

40 Collapse
−−−−→ 1

2

3

4

Fig. 3: A collapse

2.4 Subposets and linear extensions

Let P = (A,≤) be a poset. Each subset A′ ⊂ A can be naturally endowed with the partial order induced

by P which is the projection on A′ of the order of P . Let us denote such a poset by P ′. Classically, we

will say that P ′ is a subposet of P whose support is A′. If w is a linear extension of P ′, the transitive

relation generated by ≤ and ≤w is a partial order on A and the corresponding poset will be denoted by

Pw.

Lemma 2.5 Let P = (A,≤) be a poset, A′ ⊂ A and P ′ = (A′,≤), we have

L(P ) =
⊔

w∈L(P ′)

L(Pw)

where
⊔

denotes the disjoint union.

Proof: Let us prove first that L(P ) =
⋃

w∈L(P ′) L(Pw). By definition of Pw one has the inclusion
⋃

w∈L(P ′) L(Pw) ⊂ L(P ). Conversely, each linear extension of P induces a total order on P ′. Hence,

L(P ) =
⋃

w∈L(P ′) L(Pw).

Furthermore, if w and w′ are two distinct extensions of P ′ then, obviously, L(Pw) ∩ L(Pw′) = ∅. ✷

Example 2.6 The linear extensions of the poset P (see Figure 4) can be partitioned in disjoint subsets

indexed by the linear extensions of the subposet P ′.

L(P ) = L(P456) ⊔ L(P465)

L(P456) = {123456, 213456, 124356, 214356}

L(P465) = {123465, 213465, 124365, 214365}

P =
1

2

3

4

5

6

P ′ =

4

5

6

Fig. 4: A poset P with a subposet P ′.
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2.5 Contractions

We describe in Proposition 2.10 an operation on posets called contraction. This operation is fundamental

since it allows to simplify posets by decreasing the number of edges. Before defining contraction, we

need to consider the Lemmas 2.7, 2.8 and 2.9.

We denote the negation of a binary relation ≤ by 6≤.

Lemma 2.7 Let≤1 and≤2 be two antisymmetric relations onA such that a ≤2 b implies b 6≤1a or b = a.

The binary relation a ≤3 b defined by a ≤1 b or a ≤2 b is antisymmetric.

Proof: Let a, b be two elements of A such that a ≤3 b and b ≤3 a. One needs to examine four cases.

i) if a ≤1 b and b ≤1 a then a = b because ≤1 is antisymmetric.

ii) if a ≤1 b and b ≤2 a then, by hypothesis, a ≤1 b and (a 6≤1 b or b = a) which implies b = a.

iii) The case a ≤2 b and b ≤1 a is similar with the previous statement.

iv) if a ≤2 b and b ≤2 a than a = b because ≤2 is antisymmetric.
✷

Let P = (A,≤) be a poset and c, d two elements of A satisfying c � d. We will denote by a ≤2 b the

relation defined by ((a ≤ c) or (a ≤ d)) and ((c ≤ b) or (d ≤ b)).

Lemma 2.8 The relation a ≤2 b is antisymmetric on A \ {d}.

Proof: By definition, a ≤2 b and b ≤2 a is equivalent to

(a ≤ c or a ≤ d) and (c ≤ a or d ≤ a) and (b ≤ c or b ≤ d) and (c ≤ b or d ≤ b).

Since c � d, we deduce that (a = c or a = d) and (b = c or b = d). Remarking that a 6= d and b 6= d, we

obtain a = b = c. ✷

Lemma 2.9 Let a, b be two elements of A \ {d}. Then a ≤2 b implies (b 6≤ a or a = b).

Proof: Let a, b be two elements ofA\{d} satisfying a ≤2 b. By definition of≤2 we have ((a ≤ c) or (a ≤
d)) and ((c ≤ b) or (d ≤ b)). Since c � d, the previous formula implies a ≤ b or (a ≤ d and c ≤ b). If

b ≤ a, we deduce that c ≤ b ≤ a ≤ d. Since c � d, a 6= d and b 6= d, we have a = b = c and we obtain

a ≤2 b⇒ (a ≤ b or a, b are not comparable)⇒ (b 6≤ a or a = b).

✷

We can now define the contraction.

Proposition 2.10 Let P = (A,≤) be a poset and c, d be two elements of A. If c � d, then the relation

≤d=c defined on A \ {d} by

a ≤d=c b⇔ (a ≤ b) or ((a ≤ c) or (a ≤ d)) and ((c ≤ b) or (d ≤ b))

is a partial order.
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Proof: The reflexivity and transitivity of≤d=c follow straightforwardly from the reflexivity and transitiv-

ity of ≤.

By Lemmas 2.7 and 2.8, the relation ≤2 is antisymmetric, and a ≤2 b implies b 6≤ a or a = b. We

deduce (cf. Lemma 2.9) that ≤d=c is antisymmetric. ✷

a c b

d

a c

d b

c b

a d

c

a d b















































































Contraction of (c,d)
−−−−−−−−−−→

a d=c b

Fig. 5: Contraction of the covering relation (c, d).

When c covers d, we denote by Pd=c = (A \ {d},≤d=c) the contraction of the edge (c, d).

Proposition 2.11 Let P be a poset and (c, d) be an edge in H(P ). Then w′cdw′′ is a linear extension of

P if and only if w′cw′′ is a linear extension of Pd=c.

Proof: We will denote by iz the position of z in the world w′cdw′′ and by jz the position of z in the word

w′cw′′.

Suppose that w′cdw′′ is a linear extension of P = (A,≤). Let a, b be two elements of A\{d} such that

a ≤Pd=c
b and a 6= b. By definition of ≤Pd=c

, we have (a ≤ b) or ((a ≤ c or a ≤ d) and (c ≤ b or d ≤
b)). Since w′cdw′′ is a linear extension, (a ≤ b) implies ia ≤ ib. But id = ic+1, a 6= d and c 6= d, hence

((a ≤ c or a ≤ d) and (c ≤ b or d ≤ b)) implies ia ≤ ic ≤ ib. Finally, in all the cases, if a ≤Pd=c
b then

ia ≤ ib and equivalently w′cw′′ ∈ L(Pd=c).
Conversely, suppose that w′cw′′ is a linear extension of Pd=c. Let a, b be two elements of A such that

a ≤ b and a 6= b. If a 6= d and b 6= d then a ≤ b implies a ≤Pd=c
b and ja ≤ jb. If a = d or b = d then

a ≤ d and d ≤ b which implies a ≤Pd=c
b and ja ≤ jb. Then in all the cases, a ≤ b implies ja ≤ jb.

Equivalently, w′cdw′′ is a linear extension of P . ✷

Example 2.12 The edge (4, 5) of the poset P (see Figure 6) can be contracted. The linear extensions of

P5=4 are

L(P5=4) = {1234, 2134},

and, the set obtained by removing all words of L(P ) with no factor 45 has the same size than L(P5=4).

{w′45w′′ ∈ L(P )} = {12345, 21345}
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P = 1

2

3

4
5 5=4

−−−−→ P5=4 = 1

2

3
5 = 4





y

Hasse diagram Hasse diagram





y

H(P ) = 1

2

3

4
5 5=4
−−−−→ H(P5=4) = 1

2

3
5 = 4

Fig. 6: The poset P and P5=4, their Hasse diagrams and their linear extensions.

2.6 Decontraction

In the previous section, we have described the operation of contraction. We will now show that all posets

can be obtained from bipartite posets. A poset is bipartite if it has only extremal elements.

Theorem 2.13 Each poset can be obtained from a bipartite poset by applying a succession of contrac-

tions.

Proof: Consider a poset P . We construct a new poset P by duplicating each vertex of In(P )

P = P ∪ {a | a ∈ In(P )}.

The poset P is endowed with the relation ≤′ defined by b ≤′ c if and only if one of the following

statements is true:

1. b = c,

2. c = a with a ∈ In(P ), b ∈ P and b � a,

3. b ∈ P , c ∈ Bound(P ) and b � c,

4. c = b with b ∈ In(P ).

The relation≤′ is reflexive because of the first rule of construction. By construction, each element of P

is either minimal or maximal. We obtain that≤′ is transitive and antisymmetric. Finally, when contracting

the edges {(a, a) | a ∈ In(P )}, the poset P is recovered. ✷

Let P be a poset. We will call the poset P obtained in the proof of Theorem 2.13 the decontraction of

P .

Example 2.14 The posets P ′ (see Figure 7) are obtained by decontraction of the poset P .

2.7 Suppression of extremal elements

Another way to simplify posets consists in removing extremal vertices. Proposition 2.15 shows that

linear extensions beginning with an extremal element c are equivalent to linear extensions of a new poset

obtained by removing c from P . We will see in Subsection 3.2 that this property admits an interpretation

in terms of rational functions.
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P ′ =
1

2

3

4

5

3

4

3=3
−−→

1

2

3

4

5

4

4=4
−−→ P = 1

2

3

4
5

Fig. 7: The poset P is the contraction of the bipartite poset P ′.

Proposition 2.15 Assume that c is a minimal (resp. maximal) vertex. Then, cw (resp. wc) is a linear

extension of P if and only if w is a linear extension of P \ {c}.

Proof: Suppose that cw is a linear extension of P and let a, b be two elements of P \ {c}. Hence, if

a ≤P\{c} b then a ≤P b which implies a ≤w b and w ∈ L(P \ ({c})).
Conversely, suppose that w is a linear extension of P \ {c}. Let a, b ∈ P be such that a ≤P b. If a 6= c

then, since c is minimal, we have b 6= c. This implies a ≤P\{c} b and a ≤w b. So we have a ≤cw b. If

a = c, then trivially a ≤cw b. We deduce that cw ∈ L(P ). ✷

Example 2.16 The vertex 4 of the poset P (see Figure 8) can be deleted. The linear extensions of P \ 4
are

L(P \ 4) = {123, 213},

and, the set obtained by setting all word of L(P ) having 4 in the last position has the same size than

L(P \ 4).
{w′4 ∈ L(P )} = {1234, 2134}

1

2

3

4
\4
−→ 1

2

3

Fig. 8: Suppression of the extremal element 4.

3 Operations on rational functions

In the previous section we have described some operations on posets. We will now see the connexions

with the rational functions ΨP .

3.1 Residues and contractions

In this subsection, we show that the fraction ΨPc=d
can be obtained from ΨP by applying a residue.

Theorem 3.1 Let c and d be two elements of a poset P . We have

lim
xd→xc

(xc − xd).ΨP =

{

ΨPd=c
if (c, d) is an edge of the Hasse diagram of P ,

0 otherwise.
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Proof: Taking the residue at xc = xd in ΨP , we get

lim
xd→xc

(xc − xd)ΨP = lim
xd→xc

∑

w∈L(P )

(xc − xd)ψw. (1)

If neither cd nor dc are factors of w, then (xc − xd) is a factor neither of Den(ψw) nor Num(ψw). It

follows that limxd→xc
(xc − xd)ψw = 0.

If either cd or dc are factors of w, then (xc− xd) is a factor of Den(ψw) with multiplicity 1. It follows

that the limxd→xc
(xc − xd)ψw converges.

We conclude that sum and limit can be permuted in Equation (1) to obtain

lim
xd→xc

(xc − xd)ΨP =
∑

lim
xd→xc

(xc − xd)ψw, (2)

where the sum runs over the linear extensions w of P having cd and dc as factor (when considered as a

word).

We need to consider three cases:

1) If c and d are not comparable. Obviously, the word w′cdw′′ is a linear extension of P if and only if

w′dcw′′ is also a linear extension of P . Hence, by considering the pairs ψw′cdw′′ and ψw′dcw′′ in (2),

we obtain

lim
xd→xc

(xc − xd)ΨP =
∑

w′cdw′′∈L(P )

lim
xd→xc

(xc − xd)[ψw′cdw′′ + ψw′dcw′′ ]. (3)

Setting f(xc, xd) = (xc − xd)ψw′cdw′′ , one has f(xd, xc) = −(xc − xd)ψw′dcw′′ . Hence,

lim
xd→xc

(xc − xd)[ψw′cdw′′ + ψw′dcw′′ ] = lim
xd→xc

(f(xc, xd)− f(xd, xc)) = 0. (4)

Finally, by using Equations (3) and (4), we deduce that limxc→xd
(xc − xd)ΨP = 0.

2) If c and d are comparable but c 6� d and d 6� c. Assuming that c ≤ d (the other case being similar),

there is at least one element a such that c ≤ a ≤ d. Then L(P ) contains no word having neither cd

nor dc as a factor and the residue limxd→xc
(xc − xd)ΨP equals 0.

3) If c � d (the case d � c is similar), one has

lim
xd→xc

(xc − xd)ΨP =
∑

lim
xd→xc

(xc − xd)Ψw,

where the sum runs over the linear extensions w of P satisfying w = w′cdw′′. From Proposition 2.11,

one has

lim
xd→xc

(xc − xd)ΨP =
∑

w′cw′′∈L(Pd=c)

lim
xd→xc

(xc − xd)Ψw′cdw′′ .

A straightforward computation gives limxd→xc
(xc − xd)Ψw′cdw′′ = Ψw′cw′′ . The result follows. ✷

Theorem 3.1 and Proposition 2.13 show that the knowledge of the fraction ΨP for each bipartite poset

is sufficient to compute any ΨP by applying a sequence of residues. In fact, we can construct other

algorithms like the decontraction to obtain bipartite posets with such properties. However, we will show

that the decontraction implies a stronger result (Proposition 3.10, Section 3.4).
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3.2 Limits and suppression of extremal elements

The deletion of a vertex admits also an interpretation in terms of rational functions.

Theorem 3.2 Let c be an element of a poset P ,

lim
xc→+∞

(xc ·ΨP ) =







−ΨP\c if c is maximal,

ΨP\c if c is minimal,

0 otherwise.

Proof: We have

lim
xc→+∞

(xc ·ΨP ) = lim
xc→+∞

∑

w∈L(P )

(xc ·Ψw).

We split the sum into two parts, the first one being the sum over all the words beginning or finishing by c

lim
xc→+∞

(xc ·ΨP ) = lim
xc→+∞







∑

w∈L(P )

w=cw′ or w=w′c

(xc ·Ψw) +
∑

w∈L(P ),w=w′cw′′

and w′,w′′ are non-trivial

(xc ·Ψw)






. (5)

If c is the first or the last letter in w, then the degree of xc in ψw is−1 and limxc→+∞(xcψw) = ±ψw′ . If

c is not in the first and last position in w, then the degree of xc in ψw is −2 and limxc→+∞(xcψw) = 0.

We deduce that limit and sums in Equation (5) can be interchanged to obtain

lim
xc→+∞

(xc ·ΨP ) =
∑

w∈L(P )

w=cw′ or w=w′c

lim
xc→+∞

(xc ·Ψw).

We get

lim
xc→+∞

(xc ·ΨP ) =
∑

w∈L(P )

w=cw′ or w=w′c

Ψw′ .

By Proposition 2.15, we have

lim
xc→+∞

(xc ·ΨP ) = ±ΨP\{c}.

✷

3.3 Connectivity and vanishing conditions

In this subsection, we investigate the interpretation of connectivity in terms of rational functions. In

particular, Corollary 3.6 shows that ΨP = 0 if and only if P is disconnected.

Definition 3.3 (Greene (3)) A poset P is planar if its Hasse diagram may be ordered-embedded in R×R

without edge crossings, even when extra maximal and minimal elements are added.

Example 3.4 Following the definition of Greene (3), Figures 9 and 10 are examples of non-planar and

planar posets, respectively.



24 Adrien Boussicault

1
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4 1
2

3

4

Addition of 0 and ∞





y





y
Addition of 0 and ∞

1

2

3

4
0 1

1
2

3

4

0 1

Fig. 9: The poset P2143 is not planar.

1

2

3

4 Addition of
−−−−−−→
0 and ∞

1

2

3

40 ∞

Fig. 10: The poset P1324 is planar.

Theorem 3.5 (Greene (3)) Let P be a planar poset, then

ΨP =











0 if P is not connected,
∏

a,b∈P

a<b

(xa − xb)
µP (a,b) if P is connected. ,

where µP denotes the Möbius function of P .

As a consequence, one has:

Corollary 3.6 Let P be a poset, the Hasse diagram of P is connected if and only if ΨP 6= 0.

Proof: Suppose first that P is connected and ΨP = 0. Since contractions preserve the connectivity of

a poset, we contract successively the edges of P until we obtain a new poset with only two elements

c ≤ d. Using Theorem 3.1, we get Ψc−d from ΨP by applying a succession of residues. It follows that

Ψc−d = 0. This is in contradiction with the direct computation Ψc−d = 1
xc−xd

. Hence, ΨP 6= 0.

Conversely, we consider the case of a disconnected poset P . Let C1 and C2 be two disconnect compo-

nents of P . Applying Lemma 2.5, one gets:

L(P ) =
⊔

w1∈L(C1),w2∈L(C2)

L((Pw1
)w2

).
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The disjoint union interpreted as a sum, when stated in terms of rational function, gives

ΨP =
∑

w1∈L(C1),w2∈L(C2)

Ψ(Pw1 )w2
.

Since each poset (Pw1)w2 is planar and disconnected, Greene’s theorem (Theorem 3.5) gives ΨP = 0. ✷

3.4 Reduced fractions and Hasse diagrams

In this subsection, we present two main results on ΨP . We characterise the denominator of the reduced

fraction ΨP with the help of the Hasse diagram of P , and we give an interpretation of the degree of the

numerator of ΨP in terms of cycles.

We call cycles (resp. cyclomatic number) of a poset P , the cycles (resp. cyclomatic number) of the

Hasse diagram of P . We recall that the cyclomatic number of a graph G is the minimal number of edges

we have to remove from G to obtain a graph without cycle (see e.g. (8) or (9)).

We denote by Den(ΨP ) the denominator of the reduced fraction ΨP and by Num(ΨP ) its numerator.

Corollary 3.7 Let P be a connected poset, then:

Den(ΨP ) =
∏

c≺d

(xc − xd).

Proof: Theorem 3.1 implies that
∏

c≺d(xc−xd) is a factor of Den(ΨP ). Since contractions preserve the

connectivity (Corollary 3.6), we deduce that Den(ΨP ) is exactly
∏

c≺d(xc − xd). ✷

This result shows that the Hasse diagram is a relevant notion in our context. Moreover, the following

corollary confirms the special status of the Hasse diagram and in particular of its cycles.

Corollary 3.8 Let P be a connected poset, the degree of Num(ΨP ) is equal to the cyclomatic number

of the Hasse diagram of P .

Proof: Let P be a connected poset with n elements. Let m be the number of edges in H(P ) and o its

cyclomatic number. By Corollary 3.7, we deduce that the degree of the numerator of the reduced fraction

is at most equal to m− n+ 1 that is, from the Euler formula, (see e.g. (8) or (9)), the cyclomatic number

of H(P ). The polynomial Num(P ) being homogeneous, it equals either zero or its degree is o. Since P

is connected, Corollary 3.6 finishes the proof. ✷

Example 3.9 The cyclomatic number of the Hasse diagram of P132546 (see Figure 11) is 3. So the degree

of its numerator equals 3.

Num(ΨP132546
) = x1 · x2 · x3 − x1 · x2 · x6 − x2 · x3 · x4 − x1 · x3 · x6 − x1 · x4 · x5 − x2 · x3 · x5 +

x1 · x4 · x6 + x2 · x3 · x6 + x2 · x4 · x5 + x1 · x5 · x6 + x3 · x4 · x5 − x4 · x5 · x6

Den(ΨP132546) = (x1−x3) · (x1−x2) · (x5−x6) · (x4−x6) · (x3−x5) · (x2−x5) · (x3−x4) · (x2−x4)
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1

2

3

4

5

6

Fig. 11: Numerator and denominator of the reduced fraction ΨP132546 .

From Theorem 3.1 and Theorem 2.13, we know that any rational function of a poset P can be calculated

from the bipartite poset P by applying a sequence of residues. In fact, due to the construction of P , the

following proposition gives a stronger result.

Proposition 3.10 Let P be a poset and P its decontraction, then any sequence of limits setting xa to xa
for all elements a ∈ In(P ) send Num(ΨP ) to Num(ΨP ), i.e.,

Num(ΨP ) = lim
xa→xa
a∈In(P )

Num(ΨP )

Proof: By construction of P (see Theorem 2.13), we can apply to P any sequence of contractions of

edges (a, a) where a is an element of In(P ). The poset obtained is exactly P and by Theorem 3.1, we

have:

ΨP = lim
xa→xa
a∈In(P )

∏

a∈In(P )

(xa − xa) ·ΨP .

From Corollary 3.7, we have

ΨP = lim
xa→xa
a∈In(P )

Num(ΨP ) ·
∏

a∈In(P )

(xa − xa)

∏

(a,b)∈H(P )

(xa − xb)
. (6)

By construction of P ,

(

H(P ) \ {(a, a)|a ∈ In(P )}
)∣

∣

a=a
= H(P

∣

∣

a=a
) = H(P ). (7)

Consequently,

∏

a∈In(P )

(xa − xa) ·Num(ΨP )

∏

(a,b)∈H(P )

(xa − xb)
=

Num(ΨP )
∏

(a,b)∈H(P )\{(a,b)|a∈In(P )}

(xa − xb)
. (8)

Substituting Equations (7) and (8) in Equation (6), we obtain

ΨP =

lim
xa→xa
a∈In(P )

Num(ΨP )

∏

(a,b)∈H(P )

(xa − xb)
.
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Moreover, using Corollary 3.7, we conclude

Num(ΨP ) = lim
xa→xa
a∈In(P )

Num(ΨP ).

✷

Example 3.11 The rational functions Ψ
P21435

and ΨP21435 (see Figure 12) have the following numerators

and denominators:

Num(Ψ
P21435

) = x5 · x3 − x1 · x4 − x2 · x3 − x2 · x4 − x3 · x3 − x3 · x4 − x4 · x3 − x4 · x4 − x1 · x3 +

x5 · x4 + x2
3
+ x2

4
+ x3 · x4 + x1 · x2 + x1 · x3 + x1 · x4 + x2 · x3 − x1 · x5 + x2 · x4 − x2 · x5

Num(ΨP21435) = x1 · x2 + x3 · x5 + x4 · x5 − x1 · x5 − x2 · x5 − x3 · x4

P21435 =
1

2

3

4

5

3

4

P21435

∣

∣

3=3,4=4
= P21435 = 1

2

3

4
5

Fig. 12: We obtain the fraction ΨP21435 from Ψ
P21435

.

3.5 Collapses and factorisations

In general, when a is an extremal element of P , the knowledge of ΨP\a is not sufficient to compute ΨP .

However, collapse is a special suppression which allows us to calculate ΨP from ΨP\a.

Proposition 3.12 Let a be an element of a connected poset P such that a is a free vertex in the Hasse

diagram of P . Let b be the unique vertex such that either b � a or a � b. Then we have

ΨP =

{

ΨP\{a} ·
1

xa−xb
if a is minimal,

ΨP\{a} ·
1

xb−xa
if a is maximal.

Proof: Let a be a free vertex in the Hasse diagram of P . We write the numerator of ΨP as a polynomial

in xa with coefficients in C[X \ xa]:

Num(ΨP ) =
∑

i

Cix
i
a.

Since a is a free vertex, a is either maximal or minimal in P . Theorem 3.2 shows that

lim
xa→+∞

(xa ·ΨP ) =

{

−ΨP\a if a is maximal,

ΨP\a if a is minimal,

which implies that C0 6= 0 and for all i ≥ 1, Ci = 0. Hence, Num(ΨP ) = C0 = Num(ΨP\{a}). ✷

As a straightforward consequence, we obtain the following result.
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Corollary 3.13 Num(ΨP ) = Num(ΨColl(P )), where, as before, Coll(P ) denotes the collapse of P .

4 Examples

In general we do not know how to compute ΨP . But, for some special cases, we can give a closed formula.

4.1 Acyclic posets

Proposition 4.1 The Hasse diagram H(P ) has no cycle if and only if Num(P ) = 1.

Proof: This result is a direct consequence of Greene’s theorem (Theorem 3.5) and Corollary 3.8. ✷

A permutation σ avoids the patterns 1324 if there exist no integers 1 ≤ i1 < i2 < i3 < i4 ≤ n

such that σi1 < σi3 < σi2 < σi4 . A permutation σ contains the pattern 2143 if for some indices

1 ≤ i1 < i2 < i3 < i4 ≤ n we have σi2 ≤ σi1 ≤ σi4 ≤ σi3 with the further restriction that there is no

i1 ≤ j ≤ i4 such that σi1 ≤ σj ≤ σi4 .

Butler and Bousquet-Mélou have shown in (1) that the Hasse diagram of a poset associated to a permu-

tation avoiding 1324 and 2143 has no cycle. As a consequence we have the following corollary.

Corollary 4.2 We have Num(ΨPσ
) = 1 if and only if σ avoids the patterns 1324 and 2143.

4.2 1-cycle posets

Proposition 4.3 Let P be a connected 1-cycle poset, then

Num(P ) =
∑

a∈min(Coll(P ))

xa −
∑

a∈max(Coll(P ))

xa.

Proof: Consider the poset P ′ = Coll(P ) obtained by the construction given in Theorem 2.13 applied to

Coll(P ).
Since P ′ is bipartite with only 1 cycle, by Corollary 3.8 we obtain Num(ΨP ′) =

∑

a βaxa, where

βa ∈ Z. Let a be a minimal element in P ′. Since P ′ \{a} is acyclic and connected, Num(ΨP ′\{a}) = 1.

Theorem 3.2 implies that βa = 1 if a is maximal and βy = −1 if a is minimal. So, we have:

Num(ΨP ′) =
∑

a∈min(P ′)

xa −
∑

a∈max(P ′)

xa.

By Proposition 3.10, we have:

Num(ΨP ) = lim
xa→xa

a∈In(P ′)

Num(ΨP ′).

Hence,

Num(ΨP ) =
∑

a∈min(Call(P ))

xa −
∑

a∈max(Call(P ))

xa +
∑

a∈In(Call(P ))

lim
xa→xa

a∈In(Call(P ))

(xa − xa)

=
∑

a∈max(Coll(P ))

xa −
∑

a∈max(Coll(P ))

xa.

✷
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Example 4.4 The numerator of the 1-cycle poset P in Figure 13 is

Num(ΨP ) = x1 + x2 − x4 − x7.

P =

1

2

3

4

5

6

7

8

9 10

Fig. 13: 1-cycle poset.

4.3 λ-complete posets and Schubert polynomials

We have seen in Subsection 3.1 that the bipartite posets are fundamental for the description of the functions

ΨP . In this section, we compute ΨP for special cases of bipartite posets.

Let λ be a partition (a weakly decreasing sequence of non-negative integers). We call a bipartite poset

with elements {a1, . . . , al(λ), b1, . . . , bλ1
} and relation≤λ a λ-complete poset, if the relation≤λ is defined

by ai ≤λ bj if and only if j ≤ λi. We will write Pλ for this poset.

For example, Figure 14 shows a 5433-complete poset.

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

Fig. 14: The 54331-complete poset.

Let f(a1, . . . , an) be a polynomial in the alphabet A = {a1, . . . , an}. The divided differences ∂i (see

(4)) is the operator defined by

f · ∂i =
f − fsi

xai
− xai+1

,

where fsi is the function f(a1, . . . , ai+1, ai, . . . , an).
We recall that the definition of Schubert polynomials as it can be found in (4).

Schubert polynomials Yv(A,B) are functions in the alphabets A = {a1, a2, . . .} and B = {b1, b2, . . .}
indexed by vectors v ∈ N

∞ having a finite number of non-zero components and defined recursively by:
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1. if v is weakly decreasing then,

Yv(A,B) :=

l(v)
∏

i=1

vi
∏

j=1

(xai
− xbj );

2. if there exists i ∈ N such that vi < vi+1 then,

Yv · ∂i := Yv·∂i
,

where v · ∂i = (v1, . . . , vi−1, vi+1, vi − 1, vi+2, . . .).

Proposition 4.5 Let λ = λ1 . . . λn be a partition with λn > 0. For any λ-complete poset Pλ, the

numerator of ΨPλ is the Schubert polynomial

Num(ΨPλ) = Y0,λ2−1,...,λn−1.

Proof: Let A and B be two alphabets, and let X be a subalphabet of A. Let λ be a partition and k

an integer with λk > 1 and λk+1 ≤ 1. Let (Ai)i∈[1,k−1] be the family of alphabets defined by Ai =
{ai, . . . , ak}. Let (βi)i∈[1,k−1] be the family of partitions defined by βi = [λi+1, λi+1, . . . , λk]. We will

a1

a2

a3

a4

b1

b2

b3

b4

Fig. 15: Poset Pβ1

for λ = 54331 (which implies β1 = 4433).

denote by Pλ(X) the λ-complete poset on X and B:

Pλ(X) := Pλ(X,B).

We will prove the following recursive formula:

Num(ΨPβi (Ai)) =
(

Yλi+1(ai) ·Num(ΨPβi+1 (Ai+1))
)

∂i (9)

We denote by P ′ the expression Pβi

(Ai). By Lemma 2.5, we sort ai and ai+1 to obtain

ΨP ′ = ΨP ′
aiai+1

+ΨP ′
ai+1ai

.

The Hasse diagram of P ′
aiai+1

is obtained from the Hasse diagram of P ′ by removing all the edges

having ai as vertex and adding the edge (ai, ai+1). In the same way, the Hasse diagram of P ′
ai+1,ai

can

be obtained by applying the transposition si on P ′
ai,ai+1

.
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a2

a3

a4

b1

b2

b3

b4

a1 a1

a3

a4

b1

b2

b3

b4

a2

Fig. 16: a1 and a2 are sorted in β1-complete poset, where λ = 54331 (which implies β1 = 4433).

The vertex ai (respectively ai+1) is free in P ′
aiai+1

(respectively P ′
ai+1ai

) and can be collapsed. By

Proposition 3.12 and Corollary 3.7 we obtain

ΨP ′ =
1

xai
− xai+1

· (Ψ
P[βi

2...βi
k
](Ai\{ai})

−Ψ
P[βi

2...βi
k
](Ai\{ai+1})

)). (10)

Observing

Yλi+1
(x) =

λi+1
∏

j=1

x− xbj ,

and using Corollary 3.7 in Equation 10, we obtain:

ΨP ′ =
1

xai
− xai+1

.
Yλi+1(ai).Num(Ψ

P[βi
2..βi

k
](A\{ai})

)− Yλi+1(ai+1).Num(Ψ
P[βi

2..βi
k
](A\{ai+1})

)
∏

c�d(xc − xd)
.

Hence,

Num(ΨPβi (Ai)) =
(

Yλi+1
(ai).Num(Ψ

P[βi
2...βi

k
](Ai+1)

)
)

∂i. (11)

If we collapse the poset P [βi
2...β

i
k](Ai+1), we obtain the poset Pβi+1

(Ai+1) and we can conclude that

Num(ΨPβi (Ai)) =
(

Yλi+1
(ai) ·Num(ΨPβi+1 (Ai+1))

)

∂i. (12)

From Equation (12) we obtain

Num(ΨPβ1 ) =
(

Yλ2(a1) · · ·Yλk−1
(ak−2)Num(ΨPλkλk ({ak−1,ak})

)
)

∂k−2 · · · ∂1.

Using Equation (11), we deduce that

Num(ΨPλkλk ({ak−1,ak})
) = Yλk

(ak−1)Num(ΨPλk ({ak})
).

Since Pλk({ak}) has no cycle, Num(ΨPλk ({ak})
) = 1 and

Num(ΨPβ1 ) = (Yλ2(a1) · · ·Yλk
(ak−1)) ∂k−1 · · · ∂1.

Finally, we obtain the result

Num(ΨPβ1 ) = Y0,λ2−1,...,λk−1.
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It is easy to see that Pλ = Coll(Pβ1

). We deduce that,

Num(ΨPλ) = Y0,λ2−1,...,λk−1 = Y0,λ2−1,...,λn−1.

✷
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