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The paper presents a condition necessarily satisfied by (tiling system) recognizable two-dimensional languages. The

new recognizability condition is compared with all the other ones known in the literature (namely three conditions),

once they are put in a uniform setting: they are stated as bounds on the growth of some complexity functions de-

fined for two-dimensional languages. The gaps between such functions are analyzed and examples are shown that

asymptotically separate them. Finally the new recognizability condition is shown to be the strongest one, while the re-

maining ones are its particular cases. The problem of deciding whether a two-dimensional language is recognizable is

here related to the one of estimating the minimal size of finite automata recognizing a sequence of (one-dimensional)

string languages.
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1 Introduction

Picture languages are a generalization of string languages to two dimensions: a picture is a two-dimensional

array of elements from a finite alphabet. The increasing interest for pattern recognition and image pro-

cessing has motivated the research on two-dimensional languages, and especially tile-based models. The

aim is to generalize or extend the well-founded theory of formal languages. Since the sixties, the problem

has been approached from different points of view: finite automata, grammars, logics and regular expres-

sions have been proposed. Among the various defined classes of languages, probably the most successful

one, as far as theoretical aspects are concerned, is the class of tiling system recognizable languages (rec-

ognizable languages, for short), also known as REC (see [12, 13]). A two-dimensional language is said to

be recognizable when it is the alphabetic projection of a local language defined in terms of a finite set of

2× 2 pictures, the allowed tiles; the recognition is given by a so-called tiling system.
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Since its introduction, family REC has been intensively studied (see e.g. [13, 4, 9, 1]). The definition in

terms of tiling systems turns out to be robust in comparison with the other models in the literature: REC

has a characterization in terms of monadic second-order logic formulas [13, 15]; it has a counterpart as

machine model in the two-dimensional on-line tessellation acceptor [19] and in other models of automata

as proposed in [2, 7, 20]. Tiling systems can be also simulated by domino systems [19], Wang systems

[10] and grammars [9].

Despite a wide literature on two-dimensional languages, the problem of establishing whether a language

is recognizable or not still deserves to be investigated. There do not exist, in the literature, feasible

characterizations of REC based on the structure of the language itself, that could be handily used for this

goal. In formal language theory, the problem of deciding whether a given language is regular, can be

solved considering some congruence classes and the Myhill-Nerode Theorem. Then, a very useful tool to

disprove that a language is regular is given by the Pumping Lemma [17]. The Pumping Lemma gives a

condition necessarily satisfied by any regular language. The problem seems much more complex in two

dimensions. Recall that the runs of a Turing machine form a recognizable two-dimensional language (cf.

[13]) so that one cannot expect simple periodicity results.

The paper continues the research of conditions necessarily satisfied by recognizable languages, princi-

pally as tools to disprove recognizability of languages. Recently, some steps in this direction were done

in [3, 14, 5, 1]. The idea is to bring the problem from two dimensions to one dimension, and then rely

on results of the more consolidate theory of string languages. More specifically, a first step was done in

[21], where O. Matz isolated a technique for showing that a language is not recognizable. It consists of

considering, for any recognizable picture language L and integer m, the subset L(m), of all pictures in L
of fixed height m, as a string language over the alphabet of the columns. Hence a picture language can

be considered as the sequence of such string languages, when m grows. Then if L ∈ REC it is possible

to associate to any tiling system recognizing L a family {Am}, where each Am is an automaton accept-

ing L(m) with 2O(m) states. Using some known lower bound on the size of an automaton, he proved a

condition satisfied by the languages in REC.

In [3] a further step forward was done: Matz’s technique was for the first time used together with

some bound on the Hankel matrices of the string languages L(m). The combination of these two ideas

(Matz’s technique and Hankel matrices) has allowed to obtain necessary conditions for the belonging of a

language to REC and to other meaningful sub-classes of REC [1]. In [14], some of these conditions have

been put in a uniform framework, by introducing some complexity functions (the “row”, “permutation”

and “rank” complexity functions) of a picture language and studying their asymptotic growth. Note that

other necessary conditions for recognizabilty have been proved in [11, 5] for a specific class of unary

picture languages.

The paper states a new condition that is necessarily satisfied by any recognizable language. The con-

dition is in fact a bound on the growth of a new complexity function here defined for two-dimensional

languages. Following the approach in [14], Theorem 4.1 collects all necessary conditions for recogniz-

ability given in the past years (as far as we know) (referred to as conditions 1, 2 and 3), together with

the new one (referred to as condition 4), and puts them in a uniform setting useful to compare them. The

properties are given as bounds on the complexity functions RL(m), PL(m), FL(m) and CL(m). Then the

four conditions, namely the four complexity functions, are compared each other. Examples show the gaps

existing on the growth of the complexity functions. Finally the results show that the condition introduced

in this paper is the strongest one: all the other ones are particular cases. Moreover Section 5 shows exam-

ples in which it is possible to disprove recognizability by applying condition 4 and not by using the other
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ones. The computation of the three functions PL(m), FL(m) and CL(m) is algorithmically possible (cf.

[16]), but, in general, not easy. So that it is important to take into account all the complexity functions,

since the computation, in some cases, could be easier for one function rather than another.

Finding characterizations of two-dimensional recognizable languages seems to be difficult since it is

related to hard questions concerning computational complexity. Unfortunately, none of these necessary

conditions is also sufficient. Counter-examples for conditions 1-3 are given in [5]; Proposition 5.1 shows

a counter-example for condition 4.

The paper is organized as follows. After giving the basic definitions and results on two-dimensional

languages in Section 2, in Section 3 the new necessary condition is presented. The comparison of the new

condition with the other ones is given in Section 4 and some of its applications are given in Section 5. At

last in Section 6 some conclusions and open problems are stated.

A preliminary version of this paper can be found in [6].

2 Preliminaries

In this section some definitions about two-dimensional recognizable languages are recalled. More details

can be mainly found in [13].

A two-dimensional string (or a picture) over a finite alphabet Σ is a two-dimensional rectangular array

of elements of Σ. The set of all pictures over Σ is denoted by Σ∗∗ and a two-dimensional language over

Σ is a subset of Σ∗∗.

Given a picture p ∈ Σ∗∗, let p(i,j) denote the symbol in p with coordinates (i, j), |p|r the number of

rows and |p|c the number of columns of p; the pair (|p|r, |p|c) is the size of p. Note that when a one-letter

alphabet is concerned, a picture p is totally defined by its size (m,n), and it will be simply referred to as

p = (m,n). Remark that the set Σ∗∗ includes also all the empty pictures, i.e. all pictures of size (m, 0)
or (0, n) for all m,n ≥ 0, denoted by λm,0 and λ0,n respectively. The set of all pictures over Σ of size

(m,n) is denoted by Σm,n, while Σm,∗ (Σ∗,n, resp.) is the set of all pictures over Σ with m rows (with n
columns, resp.). In order to identify the symbols on the boundary of a given picture, for any picture p of

size (m,n), we consider the bordered picture p̂ of size (m + 2, n + 2) obtained by surrounding p with a

special boundary symbol # 6∈ Σ.

A tile is a picture of size (2, 2) and B2,2(p) is the set of all sub-blocks of size (2, 2) of a picture p.

Given an alphabet Γ, a two-dimensional language L ⊆ Γ∗∗ is local if there exists a set Θ of tiles over

Γ ∪ {#} such that L = L(Θ), where L(Θ) is defined as L(Θ) = {p ∈ Γ∗∗|B2,2(p̂) ⊆ Θ}.

A tiling system is a quadruple (Σ,Γ,Θ, π) where Σ and Γ are finite alphabets, Θ is a finite set of tiles

over Γ∪{#} and π : Γ → Σ is a projection. A two-dimensional language L ⊆ Σ∗∗ is tiling recognizable

if there exists a tiling system (Σ,Γ,Θ, π) such that L = π(L(Θ)) (extending π in the usual way). For any

p ∈ L, a local picture p′ ∈ L(Θ), such that p = π(p′), is called a pre-image of p. The family of all tiling

recognizable picture languages is called REC.

Given two pictures p and q, the column concatenation of p and q (denoted by p ❡q) and the row concate-

nation of p and q (denoted by p ❡q) are partial operations, defined only if |p|r = |q|r and if |p|c = |q|c,

respectively, and are given by:
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p ❡q = p q p ❡q =

p

q

These definitions of picture concatenations can be extended to define two-dimensional language con-

catenations. Furthermore the column closure of L (denoted by L∗ ❡) and the row closure of L (denoted by

L∗ ❡) are defined by iterating the concatenation operations: L∗ ❡ =
⋃

i L
i ❡

and L∗ ❡ =
⋃

i L
i ❡

where L0 ❡
= {λm,0 | m ≥ 0}, Ln ❡

= L(n−1) ❡ ❡L and L0 ❡
= {λ0,m | m ≥ 0}, Ln ❡

=

L(n−1) ❡ ❡L. REC family is closed under row and column concatenation and their closures, under union,

intersection and under rotation, but not under complementation (see [13] for all the proofs).

Example 2.1 Consider the language L of square pictures over a one-letter alphabet, say Σ = {a}, that

is non-empty pictures with same number of rows as columns. L is not a local language, but it belongs to

REC. Indeed it can be obtained as projection of the local language of squares over the alphabet {0, 1} in

which all the symbols in the main diagonal are 1, whereas the remaining positions carry symbol 0. Below

it is given a picture p ∈ L together with its pre-image p′. The reader can infer the set of all tiles by taking

all possible sub-pictures of size (2, 2) of the bordered pictures p̂′ and p̂′′ where p′′ = a .

p =

a a a a
a a a a
a a a a
a a a a

p′ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Example 2.2 Consider the language over a one-letter alphabet Lmult = {(m, km) | m ≥ 0, k ≥ 0}

and remark that Lmult = L∗ ❡, where L is the language of square pictures in Example 2.1. Since L ∈
REC and REC is closed under the column closure, Lmult ∈ REC. Indeed a tiling system T for Lmult

can be obtained following the construction of a tiling system for the column star of a language in [13].

Consider two disjoint copies of the local language for L and force them to alternate: one copy is used to

recognize squares in odd positions (thanks to the subscript “o” that stands for “odd”) and the other copy

for squares in even positions (thanks to the subscript “e” that stands for “even”) .

For example, pictures p1 = (4, 8) and p2 = (4, 12) of Lmult have pre-images, respectively, p′1 and p′2
given below. The reader can infer the set of all tiles in T by taking all possible sub-pictures of size (2, 2)

of the bordered pictures p̂′1 and p̂′2.

p′1 =

1o 0o 0o 0o 1e 0e 0e 0e
0o 1o 0o 0o 0e 1e 0e 0e
0o 0o 1o 0o 0e 0e 1e 0e
0o 0o 0o 1o 0e 0e 0e 1e
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p′2 =

1o 0o 0o 0o 1e 0e 0e 0e 1o 0o 0o 0o
0o 1o 0o 0o 0e 1e 0e 0e 0o 1o 0o 0o
0o 0o 1o 0o 0e 0e 1e 0e 0o 0o 1o 0o
0o 0o 0o 1o 0e 0e 0e 1e 0o 0o 0o 1o

Consider now the language Lmult. Also Lmult ∈ REC: a tiling system can be obtained redefining in T
its tiles for the bottom-right and the top-right corners.

Example 2.3 Let Σ = {a, b} and consider the language L2col = {p ∈ Σ∗,2 | there exist 1 ≤ i1 ≤ i2 ≤
|p|r such that p(i1,1) = p(i2,2) = b, p(i,1) = a for every i 6= i1 and p(i,2) = a for every i 6= i2}. Roughly,

L2col is the language of pictures p with two columns such that there is only one symbol b in each column

and the entry that carries the symbol b in the second column of p is not higher than the one in the first

column (see below).

Language L2col ∈ REC. Indeed it can be obtained as the projection of the local language of two-

columns pictures over the alphabet {U1, U2, D1, D2, B1, B2} such that: in the first column (second col-

umn, resp.) there is only one occurrence of the symbol B1 (B2, resp.), whereas all the positions above it

carry symbol U1 (U2, resp.) and all the positions below it carry symbol D1 (D2, resp.). The projection π
is defined by: π(U1) = π(U2) = π(D1) = π(D2) = a and π(B1) = π(B2) = b. Below the example of a

picture p ∈ L2col together with its pre-image p′ is given.

p =

a a
b a
a a
a b
a a

p′ =

U1 U2

B1 U2

D1 U2

D1 B2

D1 D2

3 A new recognizability condition

The present section shows a condition, namely a bound on the growth of a complexity function, that is

necessarily satisfied by any recognizable two-dimensional language. The condition is a useful tool to

disprove the recognizability of a two-dimensional language.

The problem of the existence of a tiling system recognizing a given two-dimensional language, is here

afforded by investigating the sequence of its subsets of pictures of fixed height, that in turn, can be viewed

as string languages on growing alphabets. More precisely, as in [21], let L ⊆ Σ∗∗ be a picture language

and for any m ≥ 1, consider the subset L(m) ⊆ L containing all pictures in L with exactly m rows.

The language L(m) can be viewed as a string language over the alphabet of the columns of height m.

Using this reduction from two dimensions to one dimension, O. Matz stated the following recognizability

condition for picture languages.

Lemma 3.1 [21] If L is in REC then it is possible to associate to any tiling system recognizing L a family

{Am}, where each Am is an automaton accepting L(m) with 2O(m) states.
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This result is the starting point for the new necessary condition for the recognizability. The condition

is formulated in terms of the Hankel matrix of a language. Let us recall some terminology. The infinite

boolean Hankel matrix associated to any string language S ⊆ Σ∗, is MS = ‖aαβ‖α∈Σ∗,β∈Σ∗ where

aαβ = 1 if and only if αβ ∈ S (see [18]). Observe that, when S ⊆ Σ∗ is a regular language, the

number of different rows of MS is finite and equal to the number of different columns. Moreover this

number coincides with the number of classes of the Myhill-Nerode equivalence relation ≡S for S: given

x, y ∈ Σ∗, x ≡S y if and only if (for any z ∈ Σ∗, xz ∈ S if and only if yz ∈ S).

The sub-matrix of an Hankel matrix MS specified by a pair of languages (U, V ), with U, V ⊆ Σ∗, is

the matrix obtained by intersecting all rows and all columns of MS that are indexed by the strings in U
and V , respectively. The size of a finite matrix with m rows and n columns is denoted (m,n), or simply

m, if it is a square matrix.

Remark that, if L is a picture language in REC, then L(m) is a regular language for any m (see Lemma

3.1), and, therefore, the Hankel matrix ML(m) has a finite number of different rows and columns. In

the following examples, for a Hankel matrix M with a finite number of different rows and columns, the

sub-matrix indexed by the distinct rows and the distinct columns (in some order) will be referred to as the

“finite part” of M .

Example 3.1 Consider again the language Lmult = {(m, km) | m ≥ 0, k ≥ 0} defined in Example 2.2

and, for any m ≥ 2, the Hankel matrix M = MLmult(m). M can be obtained as a juxtaposition, both

along the rows and along the columns, of the following block M ′, where λ = λm,0 and v = (m, 1). Then

M ′ is the finite part of M .

v v2 · · · vm−2 vm−1 vm

λ 0 0 · · · 0 0 1

v 0 0 · · · 0 1 0

v2 0 0 · · · 1 0 0
...

...
...

...
...

...
...

vm−2 0 1 · · · 0 0 0

vm−1 1 0 · · · 0 0 0

.

Let us now introduce a complexity function of picture languages, based on the notion of cover of

a boolean matrix. This complexity function will be used to obtain a necessary condition for a picture

language to be in REC. A boolean matrix is a 1-monochromatic matrix if all its entries are 1.

Definition 3.1 Let A = ‖aij‖ be a boolean matrix and S = {A1, . . . , Ak} be a set of 1-monochromatic

sub-matrices of A where, for any t = 1, . . . , k, At is specified by the pair of languages (Ut, Vt). S is

a cover for A if, for any pair (i, j) such that aij = 1, there exists an integer t, 1 ≤ t ≤ k, such that

(i, j) ∈ Ut × Vt.

Definition 3.2 Let L be a picture language. The covering complexity function CL(m), defined from IN
to IN ∪ {∞}, gives the cardinality of a minimal cover for ML(m).

Theorem 3.1 Let L ⊆ Σ∗∗. If L ∈ REC then CL(m) is 2O(m).
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Proof: If L is in REC then, from Lemma 3.1, it is possible to associate to any tiling system recognizing

L a family {Am}, where, for some constant c, each Am is an automaton accepting L(m) with a number

of states that is at most cm. For any m, consider the NFA Am = (Qm, q0m, Fm, δm) over the alphabet

Σm,1. For any q ∈ Qm consider the sets Xq and Yq of strings over Σm,1, defined as follows: Xq = {x ∈
(Σm,1)∗ : q ∈ δ∗m(q0m, x)} and Yq = {y ∈ (Σm,1)∗ : δ∗m(q, y) ∩ Fm 6= ∅}.

Let ML(m) be the Hankel matrix of the language L(m) and denote Mq its sub-matrix specified by the

pair of languages (Xq, Yq). Mq is a 1-monochromatic sub-matrix of ML(m) since xy ∈ L(m) for all

x ∈ Xq and y ∈ Yq . Moreover Sm = {Mq : q ∈ Qm} is a cover of ML(m). Indeed, if an entry of ML(m),

indexed by a pair (x, y), carries a symbol 1, then x y ∈ L(m) and then there exists at least a state q ∈ Qm

such that q ∈ δ∗m(q0m, x) and δ∗m(q, y) ∩ Fm 6= ∅. Therefore x ∈ Xq and y ∈ Yq and the entry indexed by

(x, y) belongs to Mq .

Since CL(m) is the cardinality of a minimal cover for ML(m), we have CL(m) ≤ |Sm| ≤ |Qm|. But

|Qm| ≤ cm and the result follows. ✷

Remark: Theorem 3.1 (as well as next Prop. 4.1) with its proof can be viewed as the picture counterpart

of a result given in [16] in the graph setting. Indeed, one can prove that, for any L ⊆ Σ∗∗, there exists a

strict relation between the Hankel matrix of L(m) and the bipartite graph associated to the string language

L(m) as defined in [16]. In particular, one can prove that CL(m) is equal to the bipartite dimension of

the graph of L(m). ✷

Example 3.2 Consider the language L = Lmult ∈ REC as defined in Example 2.2, and, for any m, the

Hankel matrix M = ML(m). Starting from a cover for its finite part M ′ (as shown in Example 3.1), it

is possible to obtain a cover for M . More exactly, a cover for M ′ is given by the set S′ of all the m
matrices of size 1 corresponding to the counterdiagonal positions of M ′. Formally, S′ = {A′

1, . . . , A
′
m}

where, for i = 1, . . . ,m, A′
i is specified by the pair of picture languages (X ′

i, Y
′
i ) with X ′

i = {(m, i−1)}
and Y ′

i = {(m,m − i + 1)}. Remark that the sets X ′
i and Y ′

i both contain just one element. Then

a cover for M can be obtained by considering the set S = {A1, . . . , Am} where, for i = 1, . . . ,m,

Ai is specified by the pair of picture languages (Xi, Yi) with Xi = {(m, i − 1 + km) | k ≥ 0} and

Yi = {(m,m− i+ 1+ km) | k ≥ 0}. Remark that the sets Xi and Yi both contain an infinite number of

elements.

Moreover, it is easy to show that S is a minimal cover for M : indeed, the occurrences of 1 in two

different rows in M cannot be “covered” by a same monochromatic matrix in S. Hence CL(m) is linear

in m, and then CL(m) = 2O(m), in line with Theorem 3.1.

Example 3.3 Consider, for any m ≥ 0, the function f(m) = lcm(2m + 1, . . . , 2m+1) and the language

LM over the unary alphabet Σ = {a}, LM = {(m,n) | n is not a multiple of f(m)}. It was shown that

LM ∈ REC (see [22, 23]). Consider now the language LM , the complement of LM , and, for any m > 1,

languages LM (m) and their Hankel matrices MLM (m). The finite part of MLM (m) can be arranged in

a square matrix of size f(m) with 1 in all counter-diagonal positions and 0 elsewhere. More exactly, if

λ = λm,0 and v = (m, 1), then the finite part of MLM (m) can be arranged as follows.



146 Marcella Anselmo and Maria Madonia

λ v v2 · · · vf(m)−2 vf(m)−1

v 0 0 0 · · · 0 1

v2 0 0 0 · · · 1 0

v3 0 0 0 · · · 0 0
...

...
...

...
...

...
...

vf(m)−2 0 0 1 · · · 0 0

vf(m)−1 0 1 0 · · · 0 0

vf(m) 1 0 0 · · · 0 0

.

Reasoning as in Example 3.2, it can be shown that a minimal cover for MLM (m) has cardinality f(m)

and, therefore, CLM
(m) = f(m). Applying Theorem 3.1, since f(m) = 2Θ(2m) (see [21, 22]), it follows

that LM /∈ REC.

4 Comparison with other recognizability conditions

The investigation of recognizable two-dimensional languages has provided, in the last two decades, sev-

eral properties necessarily satisfied by recognizable languages. The section collects all of them (as far as

we know), together with the condition presented in previous section, and put them in a uniform setting.

The properties are given as bounds on some complexity functions defined for two-dimensional languages.

Then the four conditions, namely the four complexity functions, are compared to each other. The results

show that the condition introduced in Section 3 is the strongest one: all the other ones are particular cases.

Examples show the gaps existing on the growth of these complexity functions.

Let us fix some definitions.

A permutation matrix is a boolean square matrix that has exactly one occurrence of 1 in each row

and in each column. A boolean square matrix A is a fooling matrix if there exists a permutation of its

rows such that, in the resulting matrix B = ‖bij‖, for any i, bii = 1 and, for any i, j with i 6= j, if bij = 1
then bji = 0 (cf. [5]). Then, given a picture language L, one can define the following functions from

IN to IN ∪ {∞}: the row complexity function RL(m) gives the number of distinct rows of ML(m), the

permutation complexity function PL(m) gives the size of the maximal permutation matrix that is a sub-

matrix of ML(m) (cf. [14]), while the fooling complexity function FL(m) gives the size of the maximal

fooling matrix that is a sub-matrix of ML(m) (cf. [5]).

Example 4.1 Consider the language L = Lmult as defined in Example 2.2. For any m, the finite part of

the Hankel matrix M = ML(m) (see Example 3.1) is both a maximal permutation matrix and a maximal

fooling matrix. Its size is m and, hence, PL(m) = FL(m) = m. Moreover, we have CL(m) = m (see

Example 3.2).

Consider now the language L1 = {(m, km) |m ≥ 1, k ≥ 1} that is a slight variation of L. L1 ∈ REC.

For any m, the finite part of the Hankel matrix M1 = ML1(m) can be obtained by adding the column

indexed by picture (m, 0) and the row indexed by the picture (m,m) to the finite part of ML(m). Then the

finite part of M1 can be arranged as follows, where λ = λm,0 and v = (m, 1).
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λ v v2 · · · vm−2 vm−1 vm

λ 0 0 0 · · · 0 0 1

v 0 0 0 · · · 0 1 0

v2 0 0 0 · · · 1 0 0
...

...
...

...
...

...
...

...

vm−2 0 0 1 · · · 0 0 0

vm−1 0 1 0 · · · 0 0 0

vm 1 0 0 · · · 0 0 1

.

It is easy to see that the sub-matrix that contains the first m rows and the last m columns of M1 is

a maximal permutation matrix, therefore PL1(m) = m. Moreover, M1 is a fooling matrix and it is a

maximal one. Hence FL1(m) = m + 1. At last, it is possible to obtain a cover of M1 with m + 1
elements and, it can be easily proved that CL1

(m) = m + 1. Hence, CL1
(m) is linear in m, and then

CL1
(m) = 2O(m) according to Theorem 3.1.

The following theorem collects all the known necessary conditions for the recognizability of picture

languages and states them using the complexity functions just defined, following the approach in [14].

In particular, calling condition i the one stated in item i, we have that conditions 1, 2, and 3 restate

recognizability conditions proved in [8], [14] and [5], respectively, whereas condition 4 is the condition

proved in Theorem 3.1.

Theorem 4.1 Let L ⊆ Σ∗∗.

1. If L ∈ REC ∪ co-REC then RL(m) is 22
o(m)

.

2. If L ∈ REC then PL(m) is 2O(m).

3. If L ∈ REC then FL(m) is 2O(m).

4. If L ∈ REC then CL(m) is 2O(m).

In the sequel we compare the four conditions and find that the new one extends the other ones. The

comparison of condition 4 with condition 1 is in Proposition 4.2, while the comparison with conditions 2

and 3, is in the following proposition.

Proposition 4.1 Let L ⊆ Σ∗∗. Then, for all m ≥ 1, PL(m) ≤ FL(m) ≤ CL(m) ≤ RL(m).

Proof: For any m, consider the Hankel matrix ML(m).

PL(m) ≤ FL(m) since every permutation matrix is a fooling matrix.

Moreover, FL(m) ≤ CL(m). Indeed, for any m, let S = {M1,M2, . . . ,Mn} be a cover for ML(m)

and let A = ‖aij‖, 1 ≤ i, j ≤ k, be a sub-matrix of ML(m) that is a fooling matrix. Suppose A is

specified by the pair of picture languages (X,Y ) with X = {x1, x2, . . . , xk} and Y = {y1, y2, . . . , yk},

and that w.l.o.g., for any 1 ≤ i ≤ k, axiyi = 1 and, for any 1 ≤ i, j ≤ k with i 6= j, if axiyj = 1 then

axjyi = 0. Then consider two entries in A indexed by the pairs (xi, yi) and (xj , yj), with i 6= j: since

they carry symbol 1 and S is a cover of ML(m), these entries belong to some matrices in S. But they

cannot belong to the same matrix: S contains only 1-monochromatic matrices and we cannot have, at the
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same time, axiyj
= axjyi

= 1. Therefore, for any 1 ≤ i ≤ k, the entries in A indexed by pair (xi, yi)
belong to different elements of S, i.e. the size of A is less than or equal to the cardinality of S.

The last inequality CL(m) ≤ RL(m) follows from the observation that it is always possible to ob-

tain a cover for the Hankel matrix ML(m) with as many elements as the number of rows. Indeed,

suppose that the finite part of ML(m) is ‖aαiβj
‖ with i, j = 1, . . . , r and r = RL(m). Then the set

S = {M1,M2, . . . ,Mr}, where each Mi, for i = 1, . . . , r, is specified by the pair Ui = {αi} and

Vi = {βj | aαiβj = 1}, is a cover for ML(m). ✷

Remark: There exist languages such that, for any m, PL(m) = FL(m) = CL(m) = RL(m). Consider

for example language L = Lmult: then PL(m) = FL(m) = CL(m) = RL(m) = m (see Example 4.1).

✷

Proposition 4.2 Let L ⊆ Σ∗∗. Then, for all m ≥ 1, RL(m) ≤ 2CL(m).

Proof: For any m, consider the Hankel matrix ML(m), let CL(m) = n and let S = {M1,M2, . . . ,Mn} be

a minimal cover for ML(m). Suppose that Mi is indexed by the pair of languages (Xi, Yi), i = 1, . . . , n.

For any x ∈ Σm,∗, let B(x) = {Mi ∈ S | x ∈ Xi}, i.e. the set of all matrices in S that contain the row

indexed by x.

We claim that for all x, x′ ∈ Σm,∗, B(x) = B(x′) implies x ≡L(m) x′, where ≡L(m) is the Myhill-

Nerode equivalence relation for L(m). Indeed consider y ∈ Σm,∗. If there exists ı ∈ {1, . . . , n} such that

the entry (x, y) belongs to Mı, then Mı ∈ B(x) and in this case x ∈ Xı and y ∈ Yı. Since B(x) = B(x′),
Mı ∈ B(x′) also (and, therefore, x′ ∈ Xı). Recalling that Mı is a 1-monochromatic matrix, we have

both xy ∈ L(m) and x′y ∈ L(m). Otherwise, if there is no ı ∈ {1, . . . , n} such that the entry (x, y)
belongs to Mı, then B(x) = B(x′) implies both xy /∈ L(m) and x′y /∈ L(m). We can conclude that, if

B(x) = B(x′) then xy ∈ L(m) if and only if x′y ∈ L(m), i.e. x ≡L(m) x
′.

Then, define x ∼ x′ with x, x′ ∈ Σm,∗ if and only if B(x) = B(x′). This equivalence relation induces

2|S| equivalence classes and it is a refinement of the Myhill-Nerode equivalence relation. Therefore,

RL(m), that is equal to the number of classes of the ≡L(m), by Myhill-Nerode Theorem, is less than or

equal to the number of classes of the ∼ relation, that is 2CL(m). ✷

Note that Propositions 4.1, 4.2 and Theorem 3.1 together, provide an alternative proof of conditions 1,

2, 3.

Corollary 4.1 Let L ⊆ Σ∗∗. If L ∈ REC then RL(m) is 22
o(m)

, PL(m) and FL(m) are 2O(m).

Propositions 4.1 and 4.2 show that condition 4 extends conditions 1, 2, and 3. A typical use of such

conditions is as a tool to disprove the recognizability of a language, by showing that some of its complexity

functions exceeds the corresponding bound. For example, one can prove that a given language is not in

REC, by showing that its cover complexity function grows more than exponentially, or prove that neither

a language nor its complement are in REC showing that its row complexity has a more than doubly

exponential growth. Propositions 4.1 and 4.2 ensure that if we succeed using condition 1, 2 or 3, then

we can also succeed by condition 4. Nevertheless it is convenient to take into account all of them: the

computation of the values of one complexity function could be simpler than for another one, and at

the meantime, sufficient to disprove recognizability. Regarding condition 1, note that it concerns the

recognizability of a language and its complement. Indeed, since the Hankel matrix of the complement of
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a language can be obtained by exchanging 0 with 1, then RL(m) = RL(m). Hence if RL(m) = RL(m)
exceeds any doubly exponential function then both CL(m) and CL(m) exceed any exponential function,

since CL(m) ≥ log2 RL(m) and CL(m) ≥ log2 RL(m) (see Proposition 4.2).

From Propositions 4.1 and 4.2, we know that PL(m) ≤ FL(m) ≤ CL(m) ≤ RL(m) ≤ 2CL(m).

Now we want to understand how much bigger can be FL(m) with respect to PL(m), CL(m) with respect

to FL(m), and RL(m) with respect to CL(m). Remark that the complexity functions PL(m), FL(m)
and CL(m) are related to some known lower bounds on the state complexity of regular string languages

(see [6]). More exactly the bounds on PL(m), FL(m) and CL(m) follow from the application to the

Hankel matrices of a two-dimensional language, of the fooling set, the extended fooling set and the non-

deterministic message complexity techniques, respectively. Different lower bounds techniques give raise

to different necessary conditions. In [16] it is shown that the gap between the best bounds in the three

techniques can be arbitrarily large, for some given string languages. Next Propositions 4.3 and 4.4 show

the analogous result for picture languages, by constructing appropriate two-dimensional counterexamples,

partially inspired from the examples of string languages in [16].

Proposition 4.3 There exists L ∈REC such that PL(m) = 3 and FL(m) = m+ 2.

Proof: Consider the language L = L2col in Example 2.3, containing pictures p over {a, b}, with two

columns such that there is only one symbol b in each column and the entry that carries symbol b in the

second column of p is not higher than the one in the first column. For any m ≥ 1, consider the language

L(m) and the corresponding Hankel matrix ML(m). Then for any 1 ≤ i ≤ m, denote by pi the one-

column picture, with symbol b in its i-th row, and symbol a elsewhere, by p the picture p1 ❡p1, and

by λ the picture λm,0. The Hankel matrix ML(m) is given by the following matrix, where |L(m)| − 1
copies of the row indexed by p and of the column indexed by p (one for any other picture of L(m) with

two columns) are omitted, as well as an infinite number of 0-rows and 0-columns (for any picture not in

L(m)).

p1 p2 p3 · · · pm λ p
p1 1 1 1 · · · 1 0 0

p2 0 1 1 · · · 1 0 0

p3 0 0 1 · · · 1 0 0
...

...
...

...
...

...
...

...

pm 0 0 0 · · · 1 0 0

p 0 0 0 · · · 0 1 0

λ 0 0 0 · · · 0 0 1

.

Consider now a permutation matrix A = ‖aij‖, 1 ≤ i, j ≤ k, that is a sub-matrix of ML(m). Let A
be specified by the pair of languages (X,Y ) with X = {x1, x2, . . . xk} and Y = {y1, y2, . . . yk}, and

suppose w.l.o.g. that, for any 1 ≤ i ≤ k, axiyi
= 1 and, for any 1 ≤ i, j ≤ k with i 6= j, axiyj

= 0. Then

for any 1 ≤ i ≤ k, xiyi ∈ L(m) and, for any 1 ≤ i, j ≤ k with i 6= j, xiyj /∈ L(m).
Remark that, for any 1 ≤ i ≤ k, xi, yi ∈ Σm,0 ∪ Σm,1 ∪ Σm,2. Since a permutation matrix cannot

have two equal rows or columns, in X there is only one index i at most such that xi = λ. Similarly,

we can have only one index i such that xi ∈ Σm,2. At last, in A, there is only one index i such that

xi ∈ Σm,1: otherwise, if there were two different indexes, say i1 and i2, such that xi1 , xi2 ∈ Σm,1 then,
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since xi1yi1 , xi2yi2 ∈ L(m), necessarily xi1 = pj1 , xi2 = pj2 and yi2 = pj′2 with j2 ≤ j′2. Suppose

w.l.o.g. j1 ≤ j2. This implies xi1yj2 = pj1pj′2 ∈ L(m) and, hence, the row indexed by xi1 = pj1 would

carry two occurrences of symbol 1, that is a contradiction. Therefore any permutation matrix that is a

sub-matrix of ML(m), has size at most 3. The bound is tight: it suffices to consider in the figure above the

sub-matrix specified by the pair of picture languages (X,X) with X = {pm, p, λ}.

To compute the fooling complexity of L consider the sub-matrix F = ‖fij‖ of ML(m) above depicted.

F is a fooling matrix (on the diagonal fλp = fpλ = 1 and, for any 1 ≤ i ≤ m, fpipi
= 1; for any

1 ≤ i ≤ m, fλpi = fpiλ = 0; elsewhere, for any 1 ≤ i, j ≤ m, i 6= j, fpipj = 1 if and only if i < j,

and in this case fpjpi = 0). Since, from Proposition 4.1, the size of a fooling sub-matrix of ML(m) must

be less than or equal to RL(m) = m + 2, it follows that F , that has size m + 2, is a maximal fooling

sub-matrix of ML(m) and, hence, FL(m) = m+ 2. ✷

Remark: Consider language L = L2col. In the proof of Proposition 4.3, we have shown that PL(m) = 3
and FL(m) = m+2; moreover RL(m) = m+2. From Proposition 4.1, FL(m) ≤ CL(m) ≤ RL(m) =
m+ 2. Hence, it easily follows CL(m) = m+ 2. ✷

In order to compare the asymptotic growth of functions FL(m), CL(m) and RL(m), let us state a

technical lemma.

Lemma 4.1 Let Am denote the boolean square matrix of size m with symbol 0 in all the counterdiagonal

positions and symbol 1 elsewhere. The cardinality of a (minimal) covering for matrix Am is less than or

equal to 2 log2 m, for any m.

Proof: The statement is proved by exhibiting, for any m, a covering for the matrix Am of cardinality

2 log2 m. More exactly, the proof shows how to obtain a covering of cardinality γm = γ⌈m/2⌉ + 2 for

Am, starting from a covering of cardinality γ⌈m/2⌉ for A⌈m/2⌉. Remarking that there is a covering of

cardinality 2 for matrix A2, it follows γm = 2 log2 m.

Indeed, let us first consider the case m is even (in this case we have ⌈m/2⌉ = m/2), and split Am in

four square sub-blocks of size m/2: Am =
B1 B2

B3 B4
. Then B2 = B3 = Am/2, while B1 and B4

are 1-monochromatic matrices. Suppose now that {M ′
1, . . . ,M

′
γm/2

} is a covering for B2 and that any

M ′
i is specified by the pair of sets of indexes (X ′

i, Y
′
i ), 1 ≤ i ≤ γm/2. Consider the set B of the γm/2

sub-matrices of Am specified by the pairs (X ′
i ∪ X ′′

i , Y
′
i ∪ Y ′′

i ) where X ′′
i = {k +m/2 | k ∈ X ′

i} and

Y ′′
i = {k −m/2 | k ∈ Y ′

i }. Then easily the set B ∪ {B1, B4} is a cover for Am and the claim follows.

In the case m is odd, consider the matrix Am+1: since m + 1 is even, starting from a covering of

cardinality γ(m+1)/2 for the matrix A(m+1)/2 and using the previous construction, we can obtain a cover

S for Am+1 of cardinality γm+1 = γ(m+1)/2 + 2 = γ⌈m/2⌉ + 2. By erasing the first column and the last

row from all the matrices in S, one has a cover for Am, preserving cardinality γ⌈m/2⌉ + 2 (in S there is

not a matrix indexed by the first column and the last row of Am+1 only). ✷

Proposition 4.4 There exists L ∈REC such that FL(m) = 3, CL(m) = Θ(logm) and RL(m) = m.

Proof: Consider the language L = Lmult, where Lmult is the language defined in the Example 2.2. L ∈
REC. For any m, consider the Hankel matrix ML(m): it can be obtained by exchanging entries 0 with

entries 1 in the Hankel matrix for Lmult. It easy to see that RL(m) = m.
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From Proposition 4.2 we have RL(m) ≤ 2CL(m), i.e. CL(m) ≥ log(RL(m)) = logm. Moreover,

remarking that, for any m, the finite part of ML(m) is equal to Am as defined in Lemma 4.1, and applying

the same lemma, we have CL(m) ≤ 2 logm. Therefore CL(m) = Θ(logm).

Now, we will show that FL(m) = 3. Let F be a fooling sub-matrix of ML(m) of size k, for some

integer k. Let b0 be the number of symbols 0 that occur in F . Remark that b0 ≤ k, since any row of F has

one symbol 0 at most. On the other hand, the number of symbols 1 that occur in F , apart from the k on the

diagonal positions, is k2 − k − b0. Since F is fooling, it must be k2 − k − b0 ≤ b0, i.e. recalling b0 ≤ k,

k2−3k ≤ 0 that is k ≤ 3. Hence FL(m) ≤ 3. But it is easy to find a fooling sub-matrix of ML(m) of size

3 (consider for example the sub-matrix specified by the pair (X,Y ) with X = {(m, 1), (m, 2), (m, 3)}
and Y = {(m,m− 1), (m,m− 2), (m,m− 3)}) and hence the equality FL(m) = 3 follows. ✷

5 Application of the new condition

Conditions 1-4 in Theorem 4.1 state properties necessarily satisfied by recognizable two-dimensional

languages. A typical application is as a tool to disprove that a given language is recognizable. For example

the language LM in Example 3.3 is not recognizable because the function CLM
(m) is not exponentially

bounded. Results in previous section show that condition 4 can be used with this aim for a wider class

of two-dimensional languages than conditions 1-3. This section shows examples in which it is possible

to disprove recognizability by applying condition 4 and not by using the other ones. Unfortunately, none

of these necessary conditions is also sufficient; finding characterizations of two-dimensional recognizable

languages, based on their definitions, seems to be a hard task since it is related to hard questions in

computational complexity. Counter-examples to conditions 1-3 are given in [5]; Proposition 5.1 shows a

counter-example to condition 4.

Let us consider a one-letter alphabet. Recall that, given a function f , the picture language defined by

f , is the set Lf = {(m, f(m)) | m ≥ 0} (cf. [11], see also [13]). The sequel will concern languages Lf ,

together with their closure L∗ ❡

f , that will be denoted Lf∗ for short, and their complements Lf and Lf∗ .

In [11], it is proved that, if f(m) is a super-exponential function, then Lf /∈ REC. Moreover, under the

same hypothesis, Lf /∈ REC (the result is in [5] and could be inferred by some properties in [15, 24]).

Proposition 5.1 Let L ⊆ Σ∗∗.

The condition that CL(m) is 2O(m) does not imply that L ∈ REC.

Proof: Examples of languages not in REC with covering complexity less than exponential are all lan-

guages Lf where f(m) is a super-exponential function and f(m) = 2O(cm), for some constant m (an

example is f(m) = m!). Indeed, if f(m) is a super-exponential function, then Lf /∈ REC [5]. For any m,

the Hankel matrix associated to the language Lf (m) is given by the following matrix “surrounded” by an

infinite number of columns and rows of 1’s, where λ = λm,0 and v = (m, 1).
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λ v · · · vf(m)−2 vf(m)−1 vf(m)

λ 1 1 · · · 1 1 0

v 1 1 · · · 1 0 1

v2 1 1 · · · 0 1 1
...

...
...

...
...

...
...

vf(m)−1 1 0 · · · 1 1 1

vf(m) 0 1 · · · 1 1 1

.

From Lemma 4.1, CL(m) is logarithmic in f(m) and, hence, CL(m) is O(cm). ✷

Let us give examples of languages for which it is possible to disprove recognizability by applying

condition 4 and not by other ones. More precisely, Proposition 5.2 shows an example where condition 4

outperforms conditions 2 and 3, while Proposition 5.3 shows an example where condition 4 outperforms

condition 1. Unfortunately, we don’t have a unique language such that the new condition is useful whereas

all other conditions fail.

Proposition 5.2 There exists L ⊆ Σ∗∗ such that PL(m) and FL(m) are 2O(m), whereas CL(m) is not

2O(m).

Proof: Consider the language L = Lf∗ with f(m) = 22
2m

. For any m, the Hankel matrix for L(m)
can be obtained by gluing an infinite number of copies of the following matrix, where λ = λm,0 and

v = (m, 1).

v v2 v3 · · · vf(m)−2 vf(m)−1 vf(m)

λ 1 1 1 · · · 1 1 0

v 1 1 1 · · · 1 0 1

v2 1 1 1 · · · 0 1 1
...

...
...

...
...

...
...

...

vf(m)−3 1 1 0 · · · 1 1 1

vf(m)−2 1 0 1 · · · 1 1 1

vf(m)−1 0 1 1 · · · 1 1 1

.

Now, RL(m) = f(m) = 22
2m

and therefore CL(m) ≥ log(RL(m)) = 22
m

applying Proposition 4.2.

Moreover, it is easy to see that PL(m) = 2 and FL(m) = 3, using a technique similar to the one used in

Proposition 4.4. ✷

Proposition 5.3 There exists L ⊆ Σ∗∗ such that RL(m) and RL(m) are 22
O(m)

, whereas CL(m) is not

2O(m).

Proof: Consider the language L = Lf with f(m) = 22
O(m)

. For any m, the Hankel matrix for L(m)
is given by the following matrix “surrounded” by an infinite number of columns and rows of 0’s. Here

λ = λm,0 and v = (m, 1).
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v v2 v3 · · · vf(m)−2 vf(m)−1 vf(m)

λ 0 0 0 · · · 0 0 1

v 0 0 0 · · · 0 1 0

v2 0 0 0 · · · 1 0 0
...

...
...

...
...

...
...

...

vf(m)−3 0 0 1 · · · 0 0 0

vf(m)−2 0 1 0 · · · 0 0 0

vf(m)−1 1 0 0 · · · 0 0 0

.

Consider now the language L, complement of L. Then, for any m, the Hankel matrix for L(m) can be

obtained by exchanging entries 0 with entries 1 in the Hankel matrix for L(m) and therefore, RL(m) =

RL(m) = f(m) = 22
O(m)

. Finally it is easy to see that CL(m) is f(m) = 22
O(m)

(cf. Example 3.2). ✷

6 Conclusions and open problems

The characterization of tiling recognizable languages appears as a difficult problem. The paper presents

a new tool to prove that a language is not recognizable. The comparison with other similar results high-

lighted the possibility to gain necessary conditions for the recognizability of two-dimensional languages,

from lower bound techniques for regular string languages. Indeed to estimate the number of states of a

minimal NFA for a regular language is still an open problem, while computing such an NFA is PSPACE-

complete. This field is therefore an active research area, where problems are tackled by different methods

(communication complexity as well as graph theory, for instance). Hopefully, further results in the area

could provide new insights also on two-dimensional languages.

In particular, consider the unary language given in the proof of Proposition 5.1 as an example of a

language whose non-recognizability cannot be proved using the function CL. Its non-recognizability

follows from some result on automata over a one-letter alphabet. It should be interesting to see whether

it is possible to obtain a stronger non-recognizability condition for unary languages, by reformulating in

terms of Hankel matrices some known result of the unary automata theory.

Finally note that all results given in this paper are based on the investigation of the sequence of lan-

guages L(m), the languages of pictures with fixed number of rows m. They can be straightaway trans-

lated to get further recognizability conditions concerning the languages of pictures with fixed number of

columns. The combination of both bounds (on fixed number of rows and columns) could be a possible

way to strengthen the conditions in order to better exploit the two-dimensional nature of picture languages.
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