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It has been shown by Bokal et al. that deciding 2-colourability of digraphs is an NP-complete problem. This result
was later on extended by Feder et al. to prove that deciding whether a digraph has a circular p-colouring is NP-
complete for all rational p > 1. In this paper, we consider the complexity of corresponding decision problems for
related notions of fractional colourings for digraphs and graphs, including the star dichromatic number, the fractional
dichromatic number and the circular vertex arboricity. We prove the following results:

• Deciding if the star dichromatic number of a digraph is at most p is NP-complete for every rational p > 1.

• Deciding if the fractional dichromatic number of a digraph is at most p is NP-complete for every p > 1, p 6= 2.

• Deciding if the circular vertex arboricity of a graph is at most p is NP-complete for every rational p > 1.

To show these results, different techniques are required in each case. In order to prove the first result, we relate the star
dichromatic number to a new notion of homomorphisms between digraphs, called circular homomorphisms, which
might be of independent interest. We provide a classification of the computational complexities of the corresponding
homomorphism colouring problems similar to the one derived by Feder et al. for acyclic homomorphisms.

Keywords: dichromatic number, circular chromatic number, circular vertex arboricity, computational complexity

Graphs and digraphs in this paper are considered loopless, but are allowed to have multiple parallel and
anti-parallel edges/arcs between vertices. We will refer to edges e in graphs by uw where u,w are the
end vertices of e, if this does not lead to confusion with parallel edges. Given an arc e of a digraph, we
use e = u → w or equivalently e = (u,w) to express that e has tail u and head w. This is not to be
understood as a proper equality but as a statement on the arc e. Cycles and paths in graphs and directed
cycles and paths in digraphs are always considered without repeated vertices. A cycle of length two in a
graph consists of two parallel edges, while a directed cycle of length two (a digon) is a pair of anti-parallel
arcs in a digraph.

Throughout the paper, whenever we write a + b or a − b for elements a, b ∈ Zk, this is meant as
on the group (Zk,+). In most cases, we will identify the elements of Zk with their representatives
within {0, . . . , k − 1}. In addition, for every k ∈ N and elements x, y ∈ {0, . . . , k − 1} ' Zk, let
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distk(x, y) := |(x − y)mod k|k, where |a|k := min{|a|, |k − a|}, for all a = 0, . . . , k − 1, denote the
circular k-distance between x and y. For elements x of Zk or Z we will use x mod k to denote the unique
element within {0, . . . , k − 1} ⊆ Z equivalent to x modulo k.
Circular colourings of graphs were introduced by Vince (1988), where the concept of the star chromatic
number, nowadays also known as the circular chromatic number of a graph, made its first appearance.
The original definition of the star chromatic number by Vince is based on so-called (k, d)-colourings,
where colours at adjacent vertices are not only required to be distinct as usual but moreover ’far apart’ in
the following sense:

Definition 1 (Vince (1988)) Let G be a graph and (k, d) ∈ N2, k ≥ d. A (k, d)-colouring of G is an
assignment c : V (G) → {0, . . . , k − 1} ' Zk of colours to the vertices so that distk(c(u), c(w)) ≥ d
whenever u,w are adjacent.
The circular chromatic number χc(G) ≥ 1 of the graph G is defined as the infimum over all values of kd
for which (k, d)-colourings exist.

The following canonical construction related to the circular chromatic number will be used in Section 4.

Definition 2 For any given natural numbers (k, d) ∈ N2 with k ≥ 2d, we denote by C(k, d) the circulant
graph with vertex set Zk where vertices i 6= j ∈ Zk are adjacent if and only if distk(i, j) ≥ d.

As was observed in Theorem 6 by Vince (1988), it holds that χc(C(k, d)) = k
d and χ(C(k, d)) = dkde.

In this paper, we focus on fractional colourings related to (directed) cycles in graphs and digraphs and
determine the computational complexities of natural decision problems for various fractional colouring
parameters. For details on circular colourings of graphs we refer to the survey article of Zhu (2001).

Circular Chromatic Number of Digraphs Given a natural number k ≥ 1, a k-colouring of a digraph
D with k colours is defined to be an assignment c : V (D) → {0, . . . , k − 1} with the property that
there is no monochromatic directed cycle, i.e., c−1(i) induces an acyclic subdigraph of D for every i ∈
{0, . . . , k − 1}. The minimal number of colours required to colour a digraph D in this way is defined
to be the dichromatic number ~χ(D). This notion, introduced by Erdős and Neumann-Lara (1982) and
Neumann-Lara (1982) generalises graph colourings and has been studied in numerous papers until today
with still a lot of natural problems remaining unresolved.
Circular colourings of digraphs were introduced by Bokal et al. (2004) as a finer distinction between
digraphs with the same dichromatic number by allowing fractional values. Instead of integers, they allow
real numbers as colours in their definition:
Given a real number p ≥ 1, consider a plane-circle Sp of perimeter p and define a weak circular p-
colouring as a colour-map c : V (D)→ Sp, such that equal colours at both ends of an arc, i.e., c(u) = c(w)
where e = (u,w) ∈ E(D), are allowed, but at the same time, the clockwise distance from c(u) to c(w)
on Sp is at least 1 whenever they are distinct. Moreover, each so-called colour class, i.e., c−1(t), t ∈ Sp,
has to induce an acyclic subdigraph of D.
The circular dichromatic number ~χc(D) now is defined as the infimum over all values p ≥ 1 providing
weak circular p-colourings of D. This infimum can be proved to be always attained as a minimum.
For any natural numbers k ≥ d ≥ 1, denote by ~C(k, d) the digraph with vertex set Zk in which there is an
arc (i, j) for i, j ∈ Zk if and only if (j − i) mod k ≥ d. The following sums up the most basic properties
of the circular dichromatic number and these special circulant digraphs.
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Theorem 1 (Bokal et al. (2004), Steiner (2018)) Let D be a digraph. Then the following holds:

(i) ~χc(D) ≥ 1 is a rational number with numerator at most |V (D)|.

(ii) d~χc(D)e = ~χ(D), i.e., ~χc(D) ∈ (~χ(D)− 1, ~χ(D)].

(iii) ~C(k, d) admits circular dichromatic number exactly k
d for any k ≥ d ∈ N.

(iv) Any digraph D is weakly circularly p-colourable for p ≥ 1 if and only if for every (k, d) ∈ N2

with k
d ≥ p, D admits a colouring ck,d : V (D) → Zk with the following properties: For any arc

(u,w) ∈ E(D), either ck,d(u) = ck,d(w) or (ck,d(w)− ck,d(u)) mod k ≥ d, and c−1k,d(i) is acyclic
for every i ∈ Zk.

Graph Homomorphisms and Acyclic Homomorphisms Given a pair of graphs G,H , a graph homo-
morphism fromG toH is a mapping φ : V (G)→ V (H) which preserves adjacency. It is well-known that
graph homomorphisms generalise graph colourings in the following way: Given a fixed graph H , for any
graph G, an H-colouring is defined to be a graph homomorphism φ : V (G)→ V (H). The H-colouring
problem then asks for a given graph G whether it is H-colourable. If we take H to be the complete graph
on k vertices, this is just the k-colouring problem for graphs which is known to be polynomially solvable
for k = 2 and NP-complete for k ≥ 3. It was a long-standing open problem to determine the complexity
of H-colourability for arbitrary graphs H . This was finally resolved by Hell and Nešetřil (1990) who
proved the following:

Theorem 2 (Hell and Nešetřil (1990)) The H-colouring problem is polynomially solvable if H is bipar-
tite, and it is NP-complete if H is non-bipartite.

It is natural to ask for a definition of homomorphisms acting on digraphs which resembles digraph colour-
ings in a similar way. One such notion which has received quite some attention in past years are acyclic
homomorphisms. Given a pairD1, D2 of digraphs, an acyclic homomorphism fromD1 toD2 is defined to
be a mapping φ : V (D1)→ V (D2) with the property that for any arc (u,w) in D, either φ(u) = φ(w) or
(φ(u), φ(w)) is an arc in D2, and additionally, for every vertex v ∈ V (D2), the vertex set φ−1(v) induces
an acyclic subdigraph of D1. The following statement describes the relation of (circular) digraph colour-
ings and acyclic homomorphisms and shows that for digraph colourings, the circulant digraphs ~C(k, d)
as defined above take the role of the complete graphs for usual graph colourings.

Proposition 1 (Bokal et al. (2004)) Let p = k
d ≥ 1 be a rational number. Then for any digraph D, we

have ~χc(D) ≤ p if and only if there is an acyclic homomorphism mapping D to the digraph ~C(k, d).

The question of determining the complexity of the decision problem whether or not ~χc(D) ≤ p for
different real numbers p ≥ 1 was raised by Bokal et al. (2004) and answered in Feder et al. (2003) for
rational values of p in form of a much more general statement which can be seen as a variant of Theorem 2
for acyclic homomorphisms:

Theorem 3 (Feder et al. (2003)) Let F be a digraph. Then the F -colouring problem, i.e., the problem of
deciding whether a given digraph D admits an acyclic homomorphism to F , is polynomially solvable if
F is acyclic and NP-complete otherwise.

Corollary 1 (Feder et al. (2003)) Given a rational number p > 1, deciding whether a digraph admits a
weak circular p-colouring, i.e., ~χc(D) ≤ p, is NP-complete.
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Star Dichromatic Number Another related concept of circular colourings of digraphs was introduced
by Hochstättler and Steiner (2019) under the name of the star dichromatic number ~χ∗(D) of a digraph.
Again, for a colouring, real numbers associated with a plane circle are used, but instead of looking at
circular distances between adjacent vertices, an acyclic p-colouring of a digraph D for any p ≥ 1 requires
pre-images of cyclic open subintervals of length 1 to induce acyclic subdigraphs. Alternatively, one may
use pairs of integers to define the star dichromatic number:

Definition 3 (Hochstättler and Steiner (2019)) Let D be a digraph, (k, d) ∈ N2, k ≥ d. An acyclic
(k, d)-colouring of D is an assignment c : V (D) → Zk of colours to the vertices such that for every i ∈
Zk, the pre-image of the cyclic intervalAi := {i, i+1, . . . , i+d−1} ⊆ Zk of colours, c−1(Ai) ⊆ V (D),
induces an acyclic subdigraph of D. The infimum over the values k

d for which an acylic (k, d)-colouring
exists is defined to be the star dichromatic number ~χ∗(D) ≥ 1 of D.

Similar to the circular dichromatic number, the star dichromatic number fulfils a series of natural proper-
ties.

Theorem 4 (Hochstättler and Steiner (2019)) Let D be a digraph. Then the following holds:

(i) ~χ∗(D) ≥ 1 is a rational number with numerator at most |V (D)|.

(ii) d~χ∗(D)e = ~χ(D), i.e., ~χ∗(D) ∈ (~χ(D)− 1, ~χ(D)].

(iii) ~C(k, d) admits star dichromatic number exactly k
d for any k ≥ d ∈ N.

(iv) For all k ≥ d ∈ N, D admits an acyclic (k, d)-colouring if and only if ~χ∗(D) ≤ k
d .

Although the star dichromatic number and the circular dichromatic number have a similar definition,
they may behave very differently. While the star dichromatic number is immune to the addition of sinks
and sources (as directed cycles may never pass them), this may have a significant effect on the circular
dichromatic number, see Figure 1 for an illustration.

One of the by-products of the Section 2 will be a notion of homomorphisms for digraphs, so-called
circular homomorphisms, which are appropriate for generalising the star dichromatic number in the same
way acyclic homomorphisms generalise circular digraph colourings.

Fractional Dichromatic Number The last notion of fractional colourings for digraphs we want to dis-
cuss here is the fractional dichromatic number of a digraph D, denoted by ~χf (D) ≥ 1. As its analogue
for graphs, the well-known fractional chromatic number χf (G) of a graph G, it may be defined as the
optimal value of a linear program. Here, acyclic vertex sets play the role of independent vertex sets.

Definition 4 (Severino (2014) and Mohar and Wu (2016)) Let D be a digraph. Denote by A(D) the
collection of vertex subsets of D inducing an acyclic subdigraph, and for each v ∈ V (D), let A(D, v) ⊆
A(D) be the subset containing only those sets including v. The fractional dichromatic number ~χf (D) of
D is now defined as the value of

min
∑

A∈A(D)

xA (1)

subj. to
∑

A∈A(D,v)

xA ≥ 1, for all v ∈ V (D)

x ≥ 0.
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Fig. 1: Left: The directed cycle ~C4, which has fractional, star and circular dichromatic number 4
3

. While the addition
of a dominating source does not change the fractional and the star dichromatic number, the circular dichromatic
number jumps to 2 (Right).

The fractional dichromatic number has received some attention in recent years, it has e.g. shown useful
for proving a fractional version of the so-called Erdős-Neumann-Lara-conjecture (Mohar and Wu (2016))
or in the light of acyclic homomorphisms (Severino (2014)).
By dualising the linear program defining ~χf (D), we get the following alternative definition:

Proposition 2 (Hochstättler and Steiner (2019)) The fractional dichromatic number of a digraph D
can be computed as the optimal value of

max
∑
v∈V

yv (2)

subj. to
∑
v∈A

yv ≤ 1, for all A ∈ A(D)

y ≥ 0.

The following puts the three presented fractional digraph colouring parameters in relation and establishes
direct relations to corresponding notions for graphs. We need the following notation: For a given graph
G, we denote by S(G) its symmetric orientation, i.e., the digraph obtained fromG by replacing each edge
by an antiparallel pair of arcs.

Theorem 5 (Hochstättler and Steiner (2019))

(i) Let D be a digraph. Then ~χf (D) ≤ ~χ∗(D) ≤ ~χc(D).

(ii) For any graph G, we have ~χ∗(S(G)) = ~χc(S(G)) = χc(G) and ~χf (S(G)) = χf (G).

Circular Vertex Arboricity The counterpart of digraph colourings for undirected graphs is known as
the vertex arboricity. Given some k ∈ N, a k-tree-colouring of a (multi-)graph G is defined to be a
colouring of the vertices of G using colours {0, . . . , k − 1} such that there are no monochromatic cycles,
i.e., G[c−1(i)] is a forest for any i ∈ {0, ..., k − 1}. The vertex arboricity va(G), which was introduced
by Chartrand et al. (1968), then denotes the minimal number of colours required for a tree-colouring of
the graph G. Since its introduction, this parameter, which is closely related to the Hamiltonicity of planar
graphs, has been widely studied. Similar to the notions of circular colourings of graphs and digraphs, it is
also possible to investigate a circular version of the vertex arboricity, which was introduced by Wang et al.
(2011) under the name circular vertex arboricity. For this purpose, the notion of a (k, d)-tree-colouring of
a graph G is defined. Similarly to acyclic (k, d)-colourings of digraphs, this is a mapping c : V (G)→ Zk



6 Winfried Hochstättler, Felix Schröder, Raphael Steiner

with the property that for any cyclic subinterval Ai := {i, i + 1, . . . , i + d − 1} of Zk, the subgraph of
G induced by c−1(Ai) is a forest. The circular vertex arboricity vac(G) of the graph G is now defined as
the infimum of the values k

d for which a (k, d)-tree-colouring exists. The circular vertex arboricity has the
following basic properties.

Theorem 6 (Wang et al. (2011)) Let G be a (multi-)graph. Then the following holds:

(i) vac(G) ≥ 1 is a rational number with numerator at most |V (G)|.

(ii) dvac(G)e = va(G), i.e., vac(G) ∈ (va(G)− 1, va(G)].

(iii) For all k ≥ d ∈ N, D admits a (k, d)-tree-colouring if and only if vac(G) ≤ k
d .

1 Outline
The paper is divided into three sections, studying the complexity of decision problems for the Star Dichro-
matic Number, the Fractional Dichromatic Number respectively the Circular Vertex Arboricity as defined
above. The following main results are proved:

Theorem 7

• For any fixed rational number p > 1, deciding whether a given (multi-)digraph D fulfills ~χ∗(D) ≤
p is NP-complete.

• For any fixed real number p > 1, p 6= 2, deciding whether a given (multi-)digraph D fulfills
~χf (D) ≤ p is NP-complete.

• For any fixed rational number p > 1, deciding whether a given (multi-)graph G fulfills vac(G) ≤ p
is NP-complete.

This theorem answers open questions of Hochstättler and Steiner (2019) as well as questions in the
context of the work by Wang et al. (2011) and naturally extends the results achieved by Feder et al. (2003)
on the circular dichromatic number.
The proof of the NP-hardness in each case requires different techniques. The notion of circular homo-
morphisms acting between digraphs introduced in Section 2 might be of independent interest.

2 The Complexity of the Star Dichromatic Number and Circular
Homomorphisms

In this section, we deal with decision problems for the star dichromatic number analogous to those consid-
ered by Feder et al. (2003). The problem of determining the complexity of the following decision problem
was posed by Hochstättler and Steiner (2019):

Problem 1 Let p ≥ 1 be a fixed rational number.
Instance: A (multi-)digraph D.
Decide whether ~χ∗(D) ≤ p.
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For p = 1, the problem is to decide whether ~χ∗(D) = 1, which is equivalent to D being acyclic, and this
can be solved in time linear in |E(D)|.
We now introduce circular homomorphisms as an extension of the well-known acyclic homomorphisms
defined in the previous section. In the following, a vertex subset in a digraph will be called acyclic if the
corresponding induced subdigraph is acyclic.

Definition 5 Let D1, D2 be digraphs. A mapping φ : V (D1) → V (D2) is called a circular homomor-
phism, if for all A ⊆ V (D2) such that D2[A] is acyclic, φ−1(A) is acyclic in D1. Equivalently, for any
directed cycle C in D1, D2[φ(V (C))] contains a directed cycle.

It is obvious that D1 admits the injection id|V (D1) as a circular homomorphism to D2 whenever D1 is a
subdigraph of D2 and that the composition of two circular homomorphisms remains a circular homomor-
phism.
Note that this definition is one natural way to generalise graph homomorphisms to digraphs, as the for-
mer may be characterised by the property that pre-images of independent sets remain independent. This
similarity is made precise by the following.

Proposition 3 Let G1, G2 be graphs and denote by S(G1), S(G2) its symmetric orientations. Then a
mapping φ : V (G1) → V (G2) is a graph homomorphism if and only if it is a circular homomorphism
from S(G1) to S(G2).

Proof: This follows immediately from the characterisations of graph resp. circular homomorphisms in
terms of independent resp. acyclic vertex sets and the fact that for any graph G, the acyclic vertex sets of
S(G) are exactly the independent vertex sets of G. 2

The following, which is similar to Proposition 1, reformulates acyclic (k, d)-colourings in terms of
circular homomorphisms.

Proposition 4 Let p = k
d ≥ 1, k, d ∈ N. Then ~χ∗(D) ≤ p, i.e., there is an acyclic (k, d)-colouring of D,

if and only if there is a circular homomorphism from D to ~C(k, d).

Proof: Recall that ~C(k, d) was defined to be the digraph with vertex set Zk ' {0, . . . , k− 1} where there
is an arc (i, j) between two elements if and only if j − i ∈ {d, . . . , k − 1} ⊆ Zk. To prove the claim, we
need the following property: A vertex set A ⊆ ~C(k, d) is acyclic if and only if it is contained in a set of d
consecutive vertices, i.e., A ⊆ {i, i+ 1, . . . , i+ d− 1} ⊆ Zk with some i ∈ Zk.
For the first implication, assume that A is acyclic. Then ~C(k, d)[A] must contain a sink i ∈ A (i.e., i has
no out-neighbors in A), which means that none of the vertices i+ d, . . . , i+ k− 1 ∈ Zk can be contained
in A, and so A ⊆ {i, . . . , i+ d− 1}. For the reverse, since ~C(k, d) is circulant, it is enough to show that
{0, . . . , d− 1} ⊆ Zk is acyclic. However, by definition, this interval can only contain backward arcs, and
so the subdigraph of ~C(k, d) induced by {0, . . . , d− 1} admits an acyclic ordering.
Consequently, the circular homomorphisms φ : V (D) → Zk = V (~C(k, d)) from any digraph D to
~C(k, d) are exactly those mappings for which φ−1({i, . . . , i + d − 1}) is acyclic for all i ∈ Zk, and this
is just the same as an acyclic (k, d)-colouring of D. This proves the claim. 2

Furthermore, the well-studied acyclic homomorphisms between digraphs appear as a special case of
circular homomorphisms:



8 Winfried Hochstättler, Felix Schröder, Raphael Steiner

Proposition 5 Let D1, D2 be two digraphs. Then any acyclic homomorphism φ : V (D1)→ V (D2) is a
circular homomorphism.

Proof: Let C be any directed cycle in D1. We need to show that φ(V (C)) contains the vertex set of a
directed cycle. Since pre-images of single vertices under φ are acyclic in D1, φ(V (C)) needs to contain
at least two vertices. Any arc x → y on C is either mapped to a single vertex φ(x) = φ(y) or to an arc
φ(x) → φ(y) of D2, which implies that D2[φ(V (C))] admits a closed directed trail visiting at least two
vertices and thus also a directed cycle. This proves the claim. 2

However, the reverse of this statement is not true. This follows from the fact that there are digraphs with
~χc(D) > ~χ∗(D), Proposition 1 and Proposition 4. Examples of such digraphs are e.g. directed cycles
with an additional dominating source (cf. Hochstättler and Steiner (2019)), see Figure 1.

We conclude the discussion of circular homomorphisms with the following observation, which iden-
tifies them as interlacing structures between digraphs in terms of their star and fractional dichromatic
numbers:

Proposition 6 LetD1, D2 be digraphs such that there is a circular homomorphism φ : V (D1)→ V (D2).
Then ~χ∗(D1) ≤ ~χ∗(D2) and ~χf (D1) ≤ ~χf (D2).

Proof: The inequality for the star dichromatic number follows from Proposition 4 and the fact that the
composition of two circular homomorphisms remains a circular homomorphism. The inequality for the
fractional dichromatic number can be seen from the definition in terms of the linear program (1) as follows:
Given any optimal solution x′ ≥ 0 of the program with respect to D2, define a corresponding instance
x ≥ 0 of the program for D1 by assigning the value

xA :=
∑

A′∈A(D2):

φ−1(A′)=A

x′A′

for every acyclic vertex set A ∈ A(D1). It is now easily verified using the fact that φ−1(A′) ∈ A(D1)
for any A′ ∈ A(D2), that x is a legal instance of (1) with respect to D1 with

~χf (D1) ≤
∑

A∈A(D1)

xA =
∑

A′∈A(D2)

x′A′ = ~χf (D2).

2

Given a fixed digraph F , any other digraph D will be called circularly F -colourable if there exists
a circular homomorphism mapping D to F . The following decision problem, which can be seen as a
directed analogue of the H-colouring problem for graphs then generalises Problem 1.

Problem 2 Let F be a fixed (multi-)digraph.
Instance: A (multi-)digraph D.
Decide whether D is circularly F -colourable.

As in the graph colouring problem, there is a trivial case: Only acyclic digraphs map circularly to acyclic
digraphs:

Observation 1 The circular F -colouring problem is polynomially solvable for any acyclic digraph F .
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We conjecture that this simple observation covers already all polynomially solvable cases under the as-
sumption P6=NP. In other words,

Conjecture 1 Let F be a digraph which contains a directed cycle. Then the circular F -colouring problem
is NP-complete.

Our main result of this section is the following theorem, which shows that this conjecture holds true in
almost all the cases. Given a (multi-)digraph, the symmetric part of D is defined to be the graph on the
same vertex set as D which contains an edge xy if and only if there is an arc from x to y and from y to x
in D.

Theorem 8 Let F be a digraph containing a directed cycle such that at least one of the following holds:

(i) The symmetric part of F is empty, i.e., F is digon-free, or

(ii) The symmetric part of F contains an odd cycle, or

(iii) F is 2-colourable.

Then the circular F -colouring problem is NP-complete.

Proof: We start by observing that the problem is certainly contained in NP: Given any digraph D, a
circular homomorphism from D to F can be used as an NP-certificate. Note that the digraph F itself
defines the colouring problem and is not considered as an instance, and so for checking whether a given
mapping φ : V (D)→ V (F ) defines a circular homomorphism, it suffices to compute at most constantly
many inverse images under φ and verify that the corresponding subdigraphs of D are indeed acyclic,
which can be done in polynomial time in |V (D)|.

(i), (ii) Assume that the symmetric part of F is either empty or non-bipartite. Let k denote the digirth,
i.e., the length of a shortest directed cycle, of F . We will define a graph HF whith vertex set
V (F ) and in which two vertices u 6= v are adjacent if and only if there is a directed cycle of
length k containing both u and v in F . Similar to the proof of the corresponding result by Feder
et al. (2003) (cf. Theorem 3), we will give a polynomial reduction of the HF -colouring problem
to the circular F -colouring problem. For a given instance G of the HF -colouring problem, we will
construct a polynomial-sized instance DG for the circular F -colouring problem and prove that G is
HF -colourable if and only if DG is circularly F -colourable.

If the symmetric part of F is empty, then there is a directed cycle of length k ≥ 3 in F , which forms
a clique of size k in HF and therefore HF contains a triangle. Otherwise, the symmetric part of
HF is non-empty but non-bipartite. In this case, we have k = 2 and the vertices of any odd cycle in
the symmetric part of F will form an odd cycle in HF . In any case, HF is non-bipartite, and thus,
the decision problem of HF -colourability is NP-hard according to Theorem 2.

Let nowG be an instance of theHF -colouring problem. AsHF is loopless, we may assume that the
same holds for G as well. We construct the digraph DG by first choosing some acyclic orientation
~G of G and then attaching to every arc x → y of ~G a directed path of length k − 1 in reverse
direction whose only common vertices with ~G are x and y, so that each arc e = x → y in ~G is
contained in a directed cycle C(e) of length k in DG. The set of the k − 2 extra vertices added is
pairwise disjoint for distinct edges. Clearly, this construction is polynomial in the size of G.
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We now claim that there is a graph homomorphism from G to HF if and only if there is a circular
homomorphism from DG to F , which yields the desired polynomial reduction.

For the first implication let φ : V (G) → V (HF ) be a graph homomorphism mapping G to
HF . Then for any arc e = x → y in ~G, φ(x)φ(y) is an edge in HF , i.e., there is a directed
cycle C ′(e) of length k containing {φ(x), φ(y)} in F . Moreover, since |V (C(e))\{x, y}| =
|V (C ′(e))\{φ(x), φ(y)}| = k − 2, we find that there are bijections fe : V (C(e))\{x, y} →
V (C ′(e))\{φ(x), φ(y)} for every edge e of G.

Let now φ′ : V (DG) → V (F ) be the mapping defined by φ′(u) := φ(u) for any u ∈ V (G) ⊆
V (DG) and φ′(u) := fe(u) for any u ∈ V (C(e))\{x, y} and any edge e = xy ∈ E(G). We claim
that this defines a circular homomorphism from DG to F : If C is any directed cycle in DG, since ~G
is an acyclic orientation, C needs to contain a full attachment path and thus the vertex set of C(e)
for at least one edge e ∈ E(G). This implies φ′(V (C)) ⊇ φ′(V (C(e)) = V (C ′(e)) by definition
of φ′, and thus C ′(e) is a directed cycle contained in the image of V (C), as required.

Conversely, assume there is a circular homomorphism φ′ mapping DG to F . We claim that the
restriction φ := φ′|V (G) is a graph homomorphism from G to HF . For this purpose, let e = xy be
any edge of G. Then, since φ′ is a circular homomorphism, φ′(V (C(e))) contains the vertex set of
a directed cycle in F , which must have length at least k. However, |φ′(V (C(e)))| ≤ |V (C(e))| = k
by definition of C(e), so this directed cycle has exactly φ′(V (C(e))) as vertex set, which contains
φ′(x) and φ′(y). Moreover, φ′ restricted to V (C(e)) must be an injection, and so φ′(x) 6= φ′(y).
According to the definition of HF , this finally implies that φ(x)φ(y) = φ′(x)φ′(y) is an edge of
HF , and so φ is indeed a graph homomorphism as required. This settles the poof in the case where
the symmetric part of F is empty or non-bipartite.

(iii) Now, let F be 2-colourable. Referring to (i) and (ii), we may assume that the symmetric part
of F is non-empty and bipartite. Since F is 2-colourable, by Proposition 4 there is a circular
homomorphism from F to ~C2. On the other hand, since the symmetric part of F is non-empty, F
contains a digon, and thus, there also is a circular homomorphism from ~C2 to F . Hence, in this case
the circular F -colouring and the circular ~C2-colouring problem are equivalent. However, deciding
2-colourability of a digraph is NP-hard (cf. Bokal et al. (2004)).

2

Applying this result to the star dichromatic number, we finally obtain the desired hardness result:

Theorem 9 Let p > 1 be a rational number. Deciding whether ~χ∗(D) ≤ p is NP-complete.

Proof: Let p = k
d with k, d ∈ N. By Proposition 4, the decision problem is equivalent to the circular

~C(k, d)-colouring problem.
To prove NP-completeness, we distinguish between p ≤ 2 and p > 2. In the first case, ~C(k, d) is not
acyclic and 2-colourable and thus the claim follows from Theorem 8.
In the case p > 2, the symmetric part of ~C(k, d) is given by the circulant graph C(k, d) defined in
Definition 2. C(k, d) has chromatic number dpe ≥ 3 and thus is not bipartite. Consequently, another
application of Theorem 8 yields the claimed result. 2
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3 The Complexity of the Fractional Dichromatic Number
As in the previous section, we now want to deal with decision problems for the fractional dichromatic
number as follows.

Problem 3 Let p ≥ 1 be a fixed real number.
Instance: A (multi-)digraph D.
Decide whether ~χf (D) ≤ p.

Again, it is clear that for p = 1, ~χf (D) ≤ p if and only if the digraphD is acyclic, and this can be decided
in polynomial time in |V (D)|. Conversely, we want to show in the following that for all real numbers
p > 1, p 6= 2, this problem is NP-complete. It is indeed always contained in NP:

Observation 2 For any p ≥ 1, the Problem 3 is in NP.

Proof: Let D be a digraph given as an instance of the problem. Let again A(D) denote the set of acyclic
vertex sets in D. We have to prove the existence of a certificate polynomially-sized in |V (D)| which is
verifiable in polynomial time. For this purpose, we repeat some standard arguments from linear program-
ming for (1). Clearly, any optimal solution of (1) satisfies x ≤ 1. Thus, adding the constraints xA ≤ 2
for all A ∈ A(D) yields an equivalent bounded feasible program. As the optimal solution is attained by
a vertex x of the corresponding polyhedron there is a subset |A(D)| of the inequality-constraints which
are satisfied by x with equality, and the corresponding linear system uniquely determines x. Since any
optimal solution x satisfies x ≤ 1, none of the additional constraints is tight, implying that the support of
x satisfies m := |supp(x)| ≤ |V (D)|. Denote by x′ ∈ Rm the subvector of x restricted to the support.
As x′ is the unique solution of a regular linear system, according to Cramer’s rule, there are matrices
B1, . . . , Bm, B ∈ {−1, 0, 1}m×m such that xi =

det(Bi)
det(B) , i = 1, . . . ,m. According to Hadamard’s in-

equality, we have |det(Bi)|, |det(B)| ≤ mm/2 ≤ |V (D)||V (D)|/2, i = 1, . . . ,m. This finally implies
that there exist optimal solutions to the linear program (1) whose support is of size at most |V (D)| and
where the non-zero values in the solution are rational numbers, each of which can be stored using at most
|V (D)| log |V (D)| bits. Such a solution can thus be described using O(|V (D)|2 log |V (D)|) bits. As we
can verify all the constraints and the inequality

∑m
i=1 xi ≤ p, certifying that ~χf (D) ≤ p, in polynomial

time in m ≤ |V (D)|, this finally proves that we can use optimal solutions of this form as NP-certificates.
This concludes the proof. 2

We start our proof of the hardness with the following simple observation derived from the relation of
the fractional chromatic and the fractional dichromatic number:

Observation 3 Let p ∈ R, p > 2. Then Problem 3 is NP-complete.

Proof: It is well-known (see e.g. Scheinerman and Ullman (2013), Theorem 3.9.2) that the problem of
deciding whether χf (G) ≤ p for a given graph G is NP-hard for any real number p > 2. However, this
problem admits a polynomial reduction to Problem 3 for p: For any graph G, the symmetric orientation
S(G) fulfils χf (G) ≤ p⇔ ~χf (S(G)) = χf (G) ≤ p. This proves the claim. 2

It thus suffices to prove the hardness in the case p ∈ (1, 2). For any given p, we will reduce one of the
decision problems proved to be hard in Observation 3 to Problem 3 with p. For this purpose, we introduce
a certain operation on digraphs reducing its fractional dichromatic number:
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Definition 6 LetD be a digraph. For every l ≥ 1, we denote byDl a digraph called l-split ofD obtained
from D by replacing each vertex by a directed path of length l − 1 as follows: Each vertex x ∈ V (D)
is assigned a directed path P (x) = x1 → . . . → xl in Dl. The remaining adjacencies within Dl are
given as follows: For each arc e = (u,w) in D, we have a corresponding arc (ul, w1) in Dl. Thus, in
a path P (x), x1, . . . , xl−1 have outdegree 1 while x2, . . . , xl have each exactly one incoming arc. It is
furthermore obvious that each directed cycle in Dl contains the whole path P (x) or none of its vertices,
for all x ∈ V (D). This means that there is a bijection between the directed cycles in D and those in Dl

by replacing each vertex x ∈ V (D) contained in a directed cycle by P (x) in Dl and vice versa.

The following makes the relation between the fractional and star dichromatic numbers of D and Dl

precise.

Proposition 7 For each digraph D, the following holds:

(i)

~χ∗(Dl) ≤
l~χ∗(D)

(l − 1)~χ∗(D) + 1
.

(ii)

~χf (Dl) =
l~χf (D)

(l − 1)~χf (D) + 1
.

If ~χ∗(D) = ~χf (D), then ~χ∗(Dl) = ~χf (Dl) =
l~χ∗(D)

(l−1)~χ∗(D)+1 .

Proof:

(i) In the following, let p := ~χ∗(D), q := ~χ∗(Dl). We have to prove that

q ≤ lp

(l − 1)p+ 1
=

p

p− p−1
l

.

By scaling, it suffices to construct a mapping cl : V (Dl) → [0, p) such that there is no directed
cycle in Dl whose image is contained in some open subinterval of length p− p−1

l of Dl.

For this purpose, consider an acyclic p-colouring c : V (D) → [0, p) of D. Define cl according to
cl(xi) := (c(x) + (i− 1)p−1l ) mod p for all xi ∈ V (P (x)) and x ∈ V (D).

In order to see that this defines a colouring as required, assume for contrary there was an open
subinterval (a, b)p ⊆ [0, p) of length p − p−1

l containing the image cl(V (Cl)) of a directed cycle
Cl. Without loss of generality, let a = 0, b = p − p−1

l . We claim that the directed cycle C in
D induced by Cl is contained in an open cyclic subinterval of [0, p) of length 1, which finally
contradicts the definition of c. Let x ∈ V (C) so that c(x) = maxx∈V (C) c(x). It now suffices to
show that c(x) < 1. We have that

cl(xi) =

(
c(x) + (i− 1)

p− 1

l

)
mod p ∈

(
0, p− p− 1

l

)
(i = 1, . . . , l).
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Because of (cl(xi+1)− cl(xi)) mod p = p−1
l for i = 1, . . . , l − 1, the cl(xi) can not cross the gap

[p− p−1
l , 0]p of length p−1

l and thus we have

cl(xl) = c(x) + (l − 1)
p− 1

l
< p− p− 1

l

implying c(x) < 1. Finally, this proves the first inequality.

(ii) For the second statement we again use the alternative representation of ~χf (D) as the maximal value
of the dual program (2) in Proposition 2.

Throughout the rest of the proof, the following relation between acyclic sets of D and its l-split will
be crucial: Define a mapping f : A(Dl) → A(D) such that for all B ⊆ V (Dl), f(B) := {x ∈
V (D)|V (P (x)) ⊆ B}. Furthermore, define g : A(D) → A(Dl) by g(A) :=

⋃
x∈A V (P (x)).

These mappings are well-defined due to the bijection between directed cycles in D resp. Dl de-
scribed above. We clearly have f ◦ g = idA(D) and thus, g is injective while f is surjective.

We start by showing that ~χf (Dl) ≥ l~χf (D)
(l−1)~χf (D)+1 . For this purpose, let yv, v ∈ V (D) be an

optimal instance for the dual program (2) for D, i.e.,
∑
v∈V (D) yv = ~χf (D). We define an instance

of the dual problem for Dl as follows: For every w ∈ V (Dl), v ∈ V (D) with w ∈ V (P (v)), let
y′w := yv

(l−1)~χf (D)+1 ≥ 0. Obviously,

∑
w∈V (Dl)

y′w =

∑
y∈V (D) lyv

(l − 1)~χf (D) + 1
=

l~χf (D)

(l − 1)~χf (D) + 1
.

Furthermore, for each B ∈ A(Dl), we have∑
w∈B

y′w ≤
∑

v∈f(B)

l
yv

(l − 1)~χf (D) + 1
+

∑
v∈V (D)\f(B)

(l − 1)
yv

(l − 1)~χf (D) + 1

=
1

(l − 1)~χf (D) + 1

(l − 1)
∑

v∈V (D)

yv +
∑

v∈f(B)

yv︸ ︷︷ ︸
≤1

 ≤ 1.

Thus, the y′w are admissible for the program, which proves the first inequality.

For the reverse inequality, we want to show

~χf (Dl) ≤
l~χf (D)

(l − 1)~χf (D) + 1
or equivalently

~χf (D) ≥ ~χf (Dl)

l − (l − 1)~χf (Dl)
.

Notice that always ~χf (Dl) ≤ ~χ∗(Dl) ≤ l~χ∗(D)
(l−1)~χ∗(D)+1 <

l
l−1 and thus l − (l − 1)~χf (Dl) > 0.
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Assume now that y′w, w ∈ V (Dl) is an optimal solution of the dual program (2) for Dl, which
means

∑
w∈V (Dl)

y′w = ~χf (Dl). We define an instance of the dual program for D according to

yv :=

∑
w∈V (P (v)) y

′
w

l − (l − 1)~χf (Dl)
≥ 0

for each v ∈ V (D). First of all, with this definition, we have∑
v∈V (D)

yv =

∑
w∈V (Dl)

y′w

l − (l − 1)~χf (Dl)
=

~χf (Dl)

l − (l − 1)~χf (Dl)
.

For the above inequality, it thus suffices to verify that the yv define a legal instance for the dual
program: Let A ∈ A(D) be arbitrary. Then∑

v∈A
yv =

∑
v∈A

∑
w∈V (P (v)) y

′
w

l − (l − 1)~χf (Dl)
=

∑
w∈g(A) y

′
w

l − (l − 1)~χf (Dl)
.

For each v ∈ V (D)\A, we choose exactly one vertex wv ∈ V (P (v)) with minimal value within
P (v) and consider the acyclic vertex subset X := V (Dl)\

⋃
v∈V (D)\A {wv} which contains g(A).

According to our choice of the wv , we know that

1 ≥
∑
w∈X

y′w =
∑

w∈g(A)

y′w +
∑

v∈V (D)\A

 ∑
w∈V (P (v)),w 6=wv

y′w


≥

∑
w∈g(A)

y′w+
∑

v∈V (D)\A

l − 1

l

∑
w∈V (P (v))

y′w =

(
l − 1

l
+

1

l

) ∑
w∈g(A)

y′w+
l − 1

l

∑
w∈V (Dl)\g(A)

y′w

=
l − 1

l
~χf (Dl) +

1

l

∑
w∈g(A)

y′w.

Multiplying the inequality with l and subtracting (l − 1)~χf (Dl) now yields that indeed∑
v∈A

yv =

∑
w∈g(A) y

′
w

l − (l − 1)~χf (Dl)
≤ 1

and thus ~χf (D) ≥ ~χf (Dl)
l−(l−1)~χf (Dl)

as claimed.

Finally, this proves ~χf (Dl) =
l~χf (D)

(l−1)~χf (D)+1 .

If now ~χ∗(D) = ~χf (D), we may conclude:

l~χ∗(D)

(l − 1)~χ∗(D) + 1
=

l~χf (D)

(l − 1)~χf (D) + 1
= ~χf (Dl) ≤ ~χ∗(Dl) ≤

l~χ∗(D)

(l − 1)~χ∗(D) + 1
.

Thus all inequalities hold with equality, and this yields the last statement claimed in the theorem. 2

The following is now an immediate consequence of the above:
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Theorem 10 Problem 3 is NP-complete for every real number p > 1, p 6= 2.

Proof: The case p > 2 was proved in Observation 3, so let now p ∈ (1, 2) be arbitrary. Then there is an
l ∈ N, l ≥ 2 only dependent on p such that p ∈ ( 2l

2l−1 ,
l
l−1 ). Choose such an l and define p′ := p

l−(l−1)p .
Then p′ > 2 and thus, Problem 3 is NP-hard for p′. However, since the function x → lx

(l−1)x+1 is
strongly increasing for positive values of x, we have for any digraph D that ~χf (D) ≤ p′ if and only if
~χf (Dl) =

l~χf (D)
(l−1)~χf (D)+1 ≤

lp′

(l−1)p′+1 = p. This thus provides a polynomial reduction of Problem 3 with
p′ to the one with p, proving the NP-hardness (and thus -completeness) of the latter. 2

4 The Complexity of the Circular Vertex Arboricity
In this section, we treat the analogue of the decision Problems 1 and 3 for the circular vertex arboricity
vac(G) of graphs.

Problem 4 Let p ≥ 1 be a fixed rational number.
Instance: A (multi-)graph G.
Decide whether vac(G) ≤ p.

It is easy to see that in the case that p = k
d ≥ 1 is a rational number, any (k, d)-tree-colouring of a graph

can be used as polynomially verifiable certificate for vac(G) ≤ p, and so the above decision problem for
p is contained in NP.
In order to prove complexity results, as in the case of the star dichromatic number, we could introduce a
notion of circular homomorphisms between graphs analogous to Definition 5 and consider corresponding
homomorphism-colouring problems. However, unlike in the case of digraphs, no easy interpretation of
the (k, d)-tree-colouring problem of a graph as such a homomorphism problem seems possible in general,
which goes along with the fact that no simple canonical constructions of graphs with circular vertex
arboricity k

d for any pair (k, d) similar to the circulant (di)graphs ~C(k, d), C(k, d) are known so far.
It is again easily observed that vac(G) = 1 for any graph G if and only if it is a forest, so the above
decision problem is polynomially solvable for p = 1.
In the following we prove that similar to the cases of the circular and star dichromatic numbers, Problem
4 is NP-complete for all rational numbers p > 1. We prepare the proof with the following observation.

Lemma 1 Let (k, d) ∈ N2, k > d. Let I(k, d) denote the minimal size of a subset of Zk which is not
contained in a cyclic subinterval of size d. Then

I(k, d) := min
{
|A|
∣∣A ⊆ Zk,∀i ∈ Zk : A 6⊆ {i, i+ 1, ..., i+ d− 1}

}
=

⌈
k

k − d

⌉
.

Proof: The complements of the cyclic subintervals of Zk of size d are the cyclic subintervals of size
k − d. Thus, if A ⊆ Zk is not contained in a cyclic subinterval of length d, any two consecutive points
in A according to the cyclic ordering of Zk must have cyclic distance at most k − d. Consequently,
(k − d)|A| ≥ k implying |A| ≥

⌈
k
k−d

⌉
, and thus I(k, d) ≥

⌈
k
k−d

⌉
. On the other hand, we may define⌈

k
k−d

⌉
points in Zk according to ai := ((k−d)i), for each i ∈ {0, . . . ,

⌈
k
k−d

⌉
−1} ⊆ Zk, and it is easily

seen that
{
a0, . . . , ad k

k−de−1
}

defines a set as required, proving I(k, d) ≤
⌈

k
k−d

⌉
. 2
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For any pair (k, d) ∈ N2, k > d we now define a simple auxiliary graph H(k, d) which has vertex
set Zk and in which a pair i 6= j ∈ Zk of vertices is adjacent if and only if there is a subset A ⊆ Zk
not contained in any cyclic subinterval of size d such that {i, j} ⊆ A and |A| = I(k, d). It is easy
to see that whenever k

d ≥ 2, H(k, d) is just the circulant graph C(k, d) defined in Definition 2. More
generally, it follows from the definition that adjacency in H(k, d) only depends on the circular distance of
the respective vertices. Hence, H(k, d) is always a circulant graph. For instance, H(5, 3) is the complete
graph K5, H(6, 4) is the disjoint union of two triangles and H(8, 5) admits an edge between vertices
i, j ∈ Z8 if and only if |i− j|8 ∈ {2, 3}.
We are now prepared to prove the following NP-hardness result.

Theorem 11 For any rational number p > 1, Problem 4 is NP-complete.

Proof: The NP-membership of the problem was verified above.
So let now 1 < p = k

d be arbitrary but fixed. We distinguish between the cases p = 2 and p 6= 2.
Assume first that p 6= 2. We prove the claimed NP-hardness by describing a polynomial reduction of
the H(k, d)-colouring problem (in terms of graph homomorphisms) to Problem 4 with p = k

d . To do so,
given any graph G as an instance of the H(k, d)-colouring problem, we construct (in polynomial time) a
graph Gk,d of size polynomial in |V (G)| and prove that G maps to H(k, d) if and only if vac(Gk,d) ≤ k

d ,
which is equivalent to Gk,d admitting a (k, d)-tree-colouring.
The graph Gk,d is obtained from G by replacing any edge e ∈ E(G) by a bunch of 2k parallel paths of
length I(k, d) − 1 each connecting the end vertices of e. The vertex sets of different replacement-paths
are disjoint except for common end vertices.
To prove the first direction of the claimed equivalence, assume there is a graph homomorphism φ :
V (G) → Zk = V (H(k, d)). This means that for any edge e = xy ∈ E(G), φ(x) 6= φ(y) are con-
tained in a subset A(e) ⊆ Zk of size I(k, d) which is not contained in a cyclic subinterval of Zk of size
d. We now define a colouring c : V (Gk,d)→ Zk of Gk,d as follows: Any vertex v ∈ V (Gk,d) originally
contained in G gets colour c(v) := φ(v). For any replacement-path P of an edge e ∈ E(G), we assign
all the I(k, d)− 2 elements of A(e) \ {φ(x), φ(y)} to the I(k, d)− 2 internal vertices of P (in arbitrary
order). We claim that this defines a (k, d)-tree-colouring ofGk,d: For any cycle C inGk,d, V (C) contains
the vertex set of a whole replacement-path of an edge e ∈ E(G), and thus c(V (C)) ⊇ A(e). As A(e)
is not contained in any cyclic subinterval of Zk of size d, the same is true for c(V (C)). This proves the
validity of c as a (k, d)-tree-colouring and we conclude vac(Gk,d) ≤ k

d .
To prove the reverse implication, assume vac(Gk,d) ≤ p = k

d , i.e., Gk,d admits a (k, d)-tree-colouring
c. We define φ : V (G) → Zk = V (H(k, d)) by restriction of c to the vertices originally contained in
G. We claim that this defines a graph homomorphism. To prove this, let e = xy ∈ E(G) be an edge.
Any of the 2k replacement-paths of e in Gk,d receives a non-empty subset of Zk of colours according
to c. Applying the pigeon-hole principle we find a pair P1(e) 6= P2(e) of replacement-paths of e such
that c(V (P1(e))) = c(V (P2(e))). As the union of P1(e) and P2(e) forms a cycle in Gk,d, according to
the definition of a (k, d)-tree-colouring, it follows that c(V (P1(e)))∪ c(V (P2(e))) = c(V (P1(e))) is not
contained in a cyclic subinterval of Zk of size d and is of size at most |c(V (P1(e)))| ≤ |V (P1(e))| =
I(k, d). According to the definition of I(k, d), this implies |c(V (P1(e)))| = I(k, d). Consequently, all the
I(k, d) colours assigned to the vertices of P1(e) are pairwise distinct, and thus, φ(x), φ(y) ∈ c(V (P1(e)))
are distinct. According to the definition of H(k, d), this implies that φ(x)φ(y) forms an edge in H(k, d),
i.e., φ indeed is a graph homomorphism mapping G to H(k, d).
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We finally conclude the correctness of the reduction. For the NP-hardness, it thus remains to verify that
the H(k, d)-colouring problem is NP-hard. According to Theorem 2, its suffices to prove that H(k, d)

is non-bipartite. As p = k
d 6= 2, we either have k

d < 2, which implies I(k, d) =
⌈

k
k−d

⌉
≥ 3, and

thus, H(k, d) contains a clique of size at least 3 and is thus not bipartite. Otherwise, we have k
d > 2

and thus, χ(H(k, d)) = χ(C(k, d)) = dpe ≥ 3. This finally yields the claimed NP-hardness (and thus
-completeness) in the case p 6= 2.
In the remaining case of p = 2, deciding Problem 4 is the same as deciding whether a given graph G
fulfills va(G) ≤ 2. However, it is not hard to see that a planar cubic 3-connected graph G admits a
Hamiltonian cycle if and only if its planar dual graph G∗ admits vertex arboricity at most 2 (cf. Hakimi
and Schmeichel (1989), Hochstättler (2017)). Consequently, the NP-hardness of the decision problem
4 in this case follows from the NP-hardness of the Hamiltonicity problem restricted to planar cubic 3-
connected graphs. 2

5 Conclusive Remarks
The complexity results achieved in this paper together with the results by Feder et al. (2003) clarify our
view on fractional colouring parameters related to acyclic vertex sets in digraphs and graphs in terms
of computational complexity. In contrast to the initial guess of the authors, deciding p-colourability for
these notions remains NP-complete even for values of p close to 1. Looking at related notions such as
the fractional and circular arboricity of graphs, which can be computed in polynomial time using the
Matroid Partitioning Algorithm (cf. Scheinerman and Ullman (2013), Chapter 5 and van den Heuvel and
Thomassé (2012)), those results show that circular notions of vertex- and edge-arboricity behave very
differently with respect to complexity.

Theorem 10 furthermore does not treat the case p = 2. Thus, we cannot rule out the possibility that
there is some clever way to algorithmically decide whether a given digraph has fractional dichromatic
number at most 2. Still, the authors strongly believe that using other techniques, it should be possible to
prove NP-completeness also in this case.

A natural question left open in this paper concerns restrictions of the treated decision problems to
specialised inputs. An interesting special case consists of (simple) planar (di)graphs. It is clear that
deciding the problems 1, 3 and 4 will now be trivially polynomial-time solvable for large values of p, as
for instance, simple planar digraphs are conjectured to be 2-dichromatic (Neumann-Lara (1982)), while
an upper bound of 2.5 for each of the three notions studied in this paper is known when restricting to
simple planar (di)graphs (Hochstättler and Steiner (2019), Wang et al. (2011)).

It appears to be hard to use the reductions provided in this paper to achieve hardness results for planar
inputs. This is mostly due to the fact that the complexity of H-colouring planar graphs is very poorly
understood. While the K4-colouring problem is trivially in P (output true), only for few graphs H such
as odd cycles (cf. MacGillivray and Siggers (2009)) hardness results are known, while for many non-
trivial graphs such as the Clebsch graph, the H-colouring problem becomes solvable in polynomial time.
Moreover, the l-split-operation used in Section 3 does not preserve planarity.

Still, we may deduce the following special cases:

Theorem 12

• Deciding whether a given simple planar digraph D fulfills ~χ∗(D) ≤ 3
2 is NP-complete.
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• Deciding whether a a given simple planar graph G fulfills vac(G) ≤ 3
2 is NP-complete.

Proof: Both problems are clearly in NP. Notice that H~C(3,2) = K3 for the graph defined in the proof of
Theorem 8 andH(3, 2) = K3 for the auxiliary graph defined in section 4. It is easy to see that the digraph
DG defined in the proof of Theorem 8 as well as the graph G3,2 as defined in the proof of Theorem
11 are both planar and simple for any planar and simple graph G. Deciding K3-colourability of planar
graphs can thus be polynomially reduced to each of the above decision problems. The NP-hardness of
3-colourability of planar graphs (cf. Garey and Johnson (1979)) now yields the claim. 2

It would be furthermore interesting to study the notion of circular homomorphisms in more detail.
Natural questions consider for instance descriptions of the cores of such homomorphisms, which enable
the study of a corresponding homomorphism order. For graphs, this is a wide and active field of research,
we refer to the book by Hell and Nešetřil (2004) for a comprehensive survey of the topic.

In this context, a graph G is called a core if it does not admit a graph homomorphism to a proper
subgraph. Equivalently, one may define a core to be a graph G such that every homomorphism φ :
V (G) → V (G) is a bijection. The interest in cores comes from their role as minimal representatives
of homomorphic equivalence classes of graphs. Harutyunyan et al. (2011) considered the following cor-
responding definition of digraph cores: A digraph D is called a core, if every acyclic homomorphism
φ : V (D) → V (D) of D to itself is a bijection. Similarly, we define a digraph D to be a circular core
if any circular homomorphism φ : V (D) → V (D) is bijective. We want to conclude the discussion of
circular homomorphisms with some first observations concerning this notion.

Proposition 8

• A graph G is a core if and only if S(G) is a circular core.

• If D is a circular core, then D is a core with respect to acyclic homomorphisms.

• For any integers k ≥ d ≥ 1, the circulant digraph ~C(k, d) is a core if and only if k and d are
coprime.

Proof:

• This is a direct consequence of Proposition 3.

• This follows from Proposition 5.

• Assume for the first direction that gcd(k, d) = l > 1, let k′ := k
l , d
′ := d

l and consider the
mapping φ : Zk → Zk′ defined by φ(i) := b il c for all i ∈ {0, . . . , k − 1} ' Zk. We claim that
this defines a circular homomorphism from ~C(k, d) to ~C(k′, d′). However, φ is easily seen to be
an acylic (k′, d′)-colouring of ~C(k, d), and according to Proposition 4, this already means that φ is
a circular homomorphism. As ~C(k′, d′) is isomorphic to the proper subdigraph of ~C(k, d) induced
by the vertices il, i = 0, . . . , k′ − 1, this proves that ~C(k, d) is circularly homomorphic to a proper
induced subdigraph and thus no circular core.

To prove the reverse, let gcd(k, d) = 1 and assume that contrary to the assertion, ~C(k, d) admits
a circular homomorphism φ : ~C(k, d) → ~C(k, d) which is not bijective. Let D be the subdigraph



On the Complexity of Digraph Colourings and Vertex Arboricity 19

of ~C(k, d) induced by Im(φ). Then according to Proposition 6, we have k
d = ~χ∗(~C(k, d)) ≤

~χ∗(D) ≤ ~χ∗(~C(k, d)) = k
d . However, referring to Theorem 4, (i), we also know that kd = ~χ∗(D)

can be represented as a fraction with numerator at most |V (D)| < |V (~C(k, d))| = k. This finally
contradicts the assumption that k and d are coprime, and we deduce the claimed equivalence.

2

Moreover, it turns out that many famous theorems and problems for graph homomorphisms have di-
rected analogues in terms of circular homomorphisms. For instance, the following is a well-known con-
jecture on homomorphism bounds for planar graphs of large girth:

Conjecture 2 (cf. Jaeger (1984)) Any planar graph G of girth at least 4k admits a homomorphism to
C2k+1. In other words, χc(G) ≤ 2k+1

k .

This conjecture contains as a special case for k = 1 the famous Theorem of Grötzsch stating that every
planarC3-free graph admits a homomorphism toC3, i.e., is 3-colourable. The following directed analogue
of this conjecture was posed by Hochstättler and Steiner (2019):

Conjecture 3 Any planar digraph D of directed girth at least k ≥ 3 admits a circular homomorphism to
~Ck−1. In other words, ~χ∗(D) ≤ k−1

k−2 .

The case k = 3 here corresponds to the so-called 2-Colour-Conjecture posed by Neumann-Lara, while
k = 4 means the following directed analogue of Grötzsch’ result: Every oriented planar ~C3-free digraph
admits a circular homomorphism to ~C3. An analogue of the above conjecture using acyclic homomor-
phisms however is not possible: There are planar digraphs with arbitrarily large digirth but circular dichro-
matic number 2. Examples are again given by oriented wheels of arbitrary size with a dominating source
whose deletion results in a directed cycle.

Closely related to the fractional chromatic number of a graph is the notion of b-colourings of graphs
defined as follows: For fixed b, k ∈ N with b ≤ k, a (k, b)-colouring of a graph G is an assignment of
subsets Bv ⊆ {1, . . . , k}, v ∈ V (G) of size b to the vertices in such a way that Bx ∩By = ∅ for adjacent
vertices x, y ∈ V (G). The b-chromatic number χb(G) of G is then defined as the least k for which a
(k, b)-colouring exists. It is a well-known fact that χf (G) = limb→∞

χb(G)
b = infb≥1

χb(G)
b for any

loopless graph G (cf. Scheinerman and Ullman (2013)).
Regarding the relation of b-colourings of graphs and their fractional chromatic number, it is natural to

ask for a similar notion corresponding to the fractional dichromatic number. Such a notion was defined
by Severino (2014) as follows: Given any natural numbers k ≥ b, a b-tuple k-colouring of a digraph D
is defined to be an assignment of subsets Bv ⊆ {1, . . . , k}, v ∈ V (D) of size b to the vertices in such a
way that for any i ∈ {1, . . . , k}, the subdigraph of D induced by the vertices having i in their colour set,
is acyclic. It can again be shown (cf. Severino (2014), Theorem 5.1) that for any digraph D, ~χf (D) is the
minimal fraction k

b for which a b-tuple k-colouring of D exists.
For b-colourings of graphs, a very useful reformulation in terms of homomorphisms to the Kneser graphs
K(k, b) is known: For any k, b ∈ N, k ≥ b, a graph G admits a (k, b)-colouring if and only if there is a
graph homomorphism mapping G to K(k, b) (cf. Scheinerman and Ullman (2013), Proposition 3.2.1).

It would be interesting to find a directed version of Kneser graphs yielding an analogous reformulation
of b-tuple colourings of digraphs. To be more precise, we conclude with the following question.
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Problem 5 For given k, b ∈ N with k ≥ b, is there a directed graph ~K(k, b) with vertex set
(
[k]
b

)
such

that the following holds?
The subdigraph of ~K(k, b) induced by any {B1, . . . , Bl} ⊆

(
[k]
b

)
is acylic if and only if

⋂l
i=1Bi 6= ∅.

For instance, whenever k = b + 1, such a digraph is given by the directed cycle of length b + 1 whose
vertices are associated with the sets {1, . . . , b+ 1} \ {i} for i = 1, . . . , b+ 1.

If such a “directed Kneser graph” ~K(k, b) for the parameters (k, b) exists, we have the following refor-
mulation of b-tuple k-colourings in terms of circular homomorphisms:
A digraph D is b-tuple k-colourable if and only if there is a circular homomorphism mapping D to
~K(k, b).
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