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A vertex ranking of a grapli is an assignment of positive integers (colors) to the vestiof G such that each path
connecting two vertices of the same color contains a vertex liigher color. Our main goal is to find a vertex
ranking using as few colors as possible. Considering andigorithms for vertex ranking of split graphs, we prove
that the worst case ratio of the number of colors used by arynerranking algorithm and the number of colors
used in an optimal off-line solution may be arbitrarily largThis negative result motivates us to investigate semi
on-line algorithms, where a split graph is presented oa4tint its clique number is given in advance. We prove that
there does not exist@ — ¢)-competitive semi on-line algorithm of this type. Finaly2-competitive semi on-line
algorithm is given.
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1 Introduction

In this paper we consider the vertex ranking problem for $&mnfinite, undirected graph® = (V, E)
with the vertex seV/, edge sefr andordern = |V (G)|. A coloring of a graphG = (V, E) is a function
¢:V(G) — Z* such that for eachv € E(G) we havec(u) # c¢(v). Moreover, if each path between two
vertices of the same colgrcontains a vertex of color greater th@rthenc is arankingof G. A ranking
that useg: colors is called &-rankingand the smallest for which there exists &-ranking ofGG, denoted
by x.(G), is theranking numbenof G. See also [9] for a survey on graph rankings.

In what follows we use the standard graph theoretical rmtasind terminology. In particular, given
U C V(G), G[U] denotes the subgraph 6finducedby U with vertex sel/ and edge sek(G[U]) =
{uv € E(GQ) |u,v € U}. If Hisaninduced subgraph 6f, itis customary to writé¢d < G, while H ~ G

is used wher is isomorphic taZ. The complement of a graph is the graph with/ (G) = V(G) and
E(G) = {wv|uv ¢ E(G)}. Forv € V(G), Ng(v) = {u € V(G) |uww € E(G)} is theneighborhood
of v in G, while Ng[v] = Ng(v) U {v} is called theclosed neighborhoodf v in G. A set of verticed,
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I C V(G), isindependenin G, if no two vertices ofl are adjacent. The cardinality of a maximum
independent set i is called theindependence numberf a graphG, denoted byx(G). We use the
symbol N,.,, » > 0, to denote the edgeless graph of orderA subgraph isomorphic to a complete
graphk, is called aclique The order of the largest clique (# is called theclique numbenof G, denoted

by w(G). We useH U G for the union of vertex disjoint graphd andG, while 2H denotes the graph
consisting of two vertex disjoint copies &f. For any other notions undefined here we refer the reader to
[1, 19, 23].

The on-line version of the ranking problem is frequentlyweéel as a game between two play&sgsenter

(the adversary) anBainter (the coloring algorithm). In contrast to the off-line appoh, Painter does not
know the structure of the graghi = (V, F) that has to be colored. Presenter starts the game and reveals
subsequent vertices 6f in some ordefv, ..., v,) unknown to Painter. More precisely, each vertex

is presented together with the edgés= {v;v; € E(G)|j < i}. Consequently, after presentationef
Painter knows only the structure of the subgra&phinduced by{v,,...,v;}. Painter has to irrevocably
assign a permissible cole(v;) to the vertexy; beforev,; is presented. The aim of Painter is to use as
few colors as possible while Presenter aims at finding arrimiglef the vertices forcing Painter to use as

many colors as possible. The game can also be viewed as anseqire, A4, ..., P,, A,) of alternate
movesP; = (v;, E;) of Presenter and moves of the ranking algorithm. Defining a palt; = (P;, 4;)
as thei-th roundwe will also view the game as a sequencewabunds(Ry, ..., R,). In what follows

we usexa(G, ) to denote the number of colors used by the coloring algoriéhior the orderingr of
the vertex set, anga(G) for the maximum number of colors that may be required\dp colorG, i.e.,
Xa(G) = max, xa(G, 7). Theon-line ranking numbeof a graphG is the minimumya(G) taken over
all on-line ranking algorithm#. We say that an on-line ranking algorithmdgompetitivaf there exists
a constanb such thatya(G) < ¢- x-(G) +b. We say for brevity that an algorithmd®nstant competitive
if itis c-competitive for some constantWe refer the reader interested in a more extensive desaript
a classical on-line coloring to [3, 18].

Several results concerning on-line vertex ranking are kn@chiermeyeet al. [20] characterized graphs
with the on-line vertex ranking number equal3@nd proved that thgreedy algorithmwhich always
assigns the smallest permissible color to the incomingxeproduces & log, n)-ranking for a pattP,,.
Note thaty, (P,) = 1 + |log, n]. On-line rankings of paths and cycles were also consideydstboth
and Hornak [6], who proved an even better boun@ dég, n| + 1 for both classes of graphs. This, in
particular, implies that the ratio of the on-line and thelofé ranking numbers for paths is boundedy
The lower bound of.619 log, n—1 for the on-line ranking number of paths was given by the sautteoas

in [7]. It was also proved by SemaniSin and Sotak [22] that¢ exists an infinite sequence of graphs for
which the ratio of the on-line and the off-line ranking nunbean be arbitrarily large. Ghostetlal.[14]
introduced the problem of findingrainimal rankingwhich is defined as a ranking with the property that
decreasing the color assigned to any vertex results in gifumihat is not a ranking. Tharank number

of a graphG is the largesk such that there exists a minimidranking of G. As pointed out by Isaak
et al. [16] there is a connection between on-line rankings andmmahrankings. In particular, the arank
number equals the number of colors assigned in the worstigadee greedy ranking algorithm. So, the
number of colors assigned by the greedy on-line algorithah msost the arank number of the input graph.
Ranking is also closely related to parity coloring (see., §4g 8]) and conflict-free coloring [12]. parity
coloringis a coloring with the property that every path contains sooter an odd number of times, while
in aconflict-free coloringevery path has to use some color exactly once.
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In this paper we investigate the on-line version of the ragkiroblem for split graphs. A grapfi is
called asplit graphif there exists a bipartitioQC, I') of its vertex set such thdtis an independent set and
C' induces a clique. Such a partition is called@it bipartition. Notice that a split bipartition does not
have to be unique but it always satisfies one of the three tondigiven in the following theorem.

Theorem 1.1 (P. L. Hammer, B. Simeone, [15])Let the vertex set of a split grapgh be partitioned into
an independent sdtand a set” inducing a clique. Then, exactly one of the following caodg holds:

@) |I| = a(G) and|C| = w(G),
() 7] = o(G) and|C| = w(G) — 1,
©) |I] = a(G) — 1 and|C| = w(G).

We say that7 is asplit graph of typeA if V(G) has a split bipartition satisfying (a), whit& is asplit
graph of typeB if its vertex set can be partitioned such that (b) or (c) holNste that the complement
G of a split graphG' is also a split graph. The class of split graphs is also knosvtha intersection of
chordal and co-chordal graphs [13].

WhenevelG is a split graph, then,.(G) = n — a(G) + 1 (see [9]). Combining this fact with Theorem
1.1 we obtain

Theorem 1.2 For any split graphG it holds that

@) w(G@)+1 ifGisoftypeA,
X = w(@) if G is of typeB.

In Section 2 we prove that the worst case ratio of the numbeolofrs used by any on-line ranking algo-
rithm and the number of colors used in an optimal off-lineiioh may be arbitrarily large. This negative
result motivates us to strengthen an on-line algorithm lyigling it with some additional information
about the graph to be colored. This kind of approach is ugealledsemi on-lineand has been widely
studied, e.g., for various scheduling problems (see, [@3.17, 21]). In general a semi on-line algorithm
may be given the values of some invariants of a graph in advare, before Presenter reveals the first
vertex of a graph. The choice of the appropriate invaria;ts $eparate and challenging problem, e.g.,
a semi on-line ranking algorithm for complete-partite graphs<y, .. ,, presented in [22] knows in
advance the values éf, . . . , k,,, that uniquely describe the structure of the graph. In Se@iwe prove
that for any= > 0, there does not exist a semi on-line ranking algorithm thét + ¢)-competitive even if

it is given the clique number of a split graph. The remainiagpof the paper focus on the statement and
analysis of &-competitive semi on-line ranking algorithm that knows tfigue number of a split graph
in advance. In particular, in Section 4, prior to the forma$cription of the algorithm we introduce the
concept ofsplit tripartitionsthat are used for on-line classification of vertices. Thaideuseful both for
the formulation of the algorithm in Section 5 as well as feranalysis in Sections 6 and 7. The analysis
is broken into two parts. First, in Section 6, we observe thatigh there are infinitely many possible
Presenter's moves that may occur during the presentatiarspfit graph, it is possible to distinguish a
finite number oftypesof moves. This fact is crucial, as it allows to represent agible sequences of
Presenter’'s moves as the directed walks of a well-strudtigraphD, called thestate transition digraph
The state transition digraph is defined so that its walksceflertain aspects of the evolution of graph
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structure during the game. It is important to point out thatdirected walk corresponding to a particular
game is independent of the ranking algorithm. Hence, aairapproach may also be used for the analysis
of on-line algorithms for other combinatorial problems gfitgraphs.

From the results proved in this paper it follows that fortsptaphs there does not exist a constant compet-
itive on-line ranking algorithm that could guarantee thagesof an interval of colors containing colbr
Consequently, minimization of the largest color differsnfr the minimization of the number of colors
which is our main interest. We remark on the former criteiio8ection 8.

2 On-line Ranking

The main purpose of this section is to describe Presenteategy from which it follows that there does
not exist a constant competitive on-line ranking algoriflemsplit graphs. This serves as the main reason
to consider semi on-line algorithms.

Theorem 2.1 For any on-line ranking algorithnA and any integep > 0, there exists a split grapty
such thatya(G)/x-(G) > p.

Proof: Let Abe an arbitrary on-line ranking algorithm.Afassigns colot to v, then Presenter fixag to

be the center of a st&t, (which is a split graph) and continues the presentationefd¢imaining vertices,
thus forcingA to color them with pairwise different colors. This yielgg(S,) = n, while x,-(S,,) = 2.
Therefore, let us assume without loss of generality Avased color: > 1 for the first vertex. Also note
that since we describe a strategy of Presenter, there isa@fgenerality in assuming thatv, € E(G).
Presenter maintains a bipartitio@, I') of the vertex set, i.e., as soon as the revealed vertex gletedo
Presenter assigns it either to the independent setto the setC inducing a clique. The only exception
is the decision on the assignment of the first vertex whicloggoned until the second vertex is colored.
Then, a vertex with the smaller color is assigned’tavhile the other one is assigneditoFrom now on,
for i > 2, each vertex; revealed by Presenter is joined to all vertices currentlg'inf A uses for; a
color smaller thark, thenv; is assigned t@'. Otherwise, it is assigned tb The strategy of assigning
vertices with the smallest colors @ ensures that an is forced to introduce a new color whenever a
subsequent vertex is revealed (notice thahduces a clique, while reusing a color of any vertex frbm
spoils ranking). Consequentlya(G) = n. On the other hand, sindestarted with colok, the number of
vertices assigned t0' is at mostk. This also bounds the clique number of a graph used by Perseat,
w(G) < k + 1, and since Presenter constructs a split graph of ,pge havey,.(G) < k + 1. Hence,
the differenceya(G) — x(G) as well asya(G)/x(G) may be arbitrarily large. O

3 Lower Bounds for Semi On-line Ranking

In this section we argue that the knowledge of an upper bounthe clique number of a graph is a
prerequisite for any semi on-line ranking algorithm to bastant competitive in the class of split graphs.
Moreover, in the first theorem we reveal that even when ttguelinumber of a split graph is given in
advance, the algorithm has to satisfy some additional ¢immd; for if not, it is not constant competitive.

Theorem 3.1 Let A be a semi on-line ranking algorithm that is giverand letk be one of the colors that
A used for the first two vertices. i < w + 1, then for anyp > 0, there exists a split grapt¥ such that
w(G) < w andxa(G)/x-(G) = p.
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Fig. 1: An example for Theorem 3.2. Numbers in braces denote sarofesc Black vertices belong 6, white to
1, while diamonds represent vertices before Presenterisidacmn their assignment.

Proof: We use the strategy of Presenter from Theorem 2.1 and pravédtslight modification is also
successful against aythat is givenw but colorsv; or v, with colork < w + 1. The case ok =1

is trivial. Without loss of generality we may assume thatwas assigned coldt = w andwv, some
color greater thark. According to the strategy;; gets assigned t6’, while vs is assigned td. The
game continues and since the number of colors smalleritlimtimited, eitherA loses because it may be
forced to use in arbitrarily many colors greater th@n(they all have to be pairwise different because of
ranking) or it is faced with the set that consists of the vertices colorgd . ., k. Aslong agC| < w,
the algorithm is not allowed to use colbrfor v;, since it would be immediately assigneddoand used
by Presenter to force an arbitrary number of new colors bggaréng a star with the central vertex On
the other hand, there are no more permissible colors sntal@rk and hence using new colors greater
thank for v; and for arbitrarily many subsequent vertices is unavoielabl O

It is worth pointing out that Presenter’s strategies usatiénpreceding theorems do not work if for both
verticesvy, vo the algorithm uses colors greater than the clique numbeceIPresenter adds €édone of
these vertices, at most— 1 colors smaller thaw + 1 may further be required to color all verticesGh
Therefore, the algorithm can save color 1 uatitolors are already presentdnand it can safely use it
for any subsequent vertex which will undoubtedly belong.ttn the next theorem we prove that for any
e > 0, there does not exist a semi on-line algoritirthat is(2 — ¢)-competitive, even wheA is given
the cligue number of a split graght and colorsy;, v, using colors greater than(G).

Theorem 3.2 LetA be a semi on-line ranking algorithm that is given the cliqueber of a graph. Then,
there exists a split grapt¥ such thatya(G) > 2x.(G) — 1.

Proof: Let k be the color used b for the first vertex. By Theorem 3.%,> w + 1. As in the previous
proofs, Presenter maintains a bipartiti@n 7) of the vertex set. The presentation starts with two adjacent
vertices. Then, each vertey, i > 2, revealed by Presenter is adjacent to all vertices cugréntl’ and

for even values of it is also adjacent te;_; (see Figure 1(a) — (b)). After the presentation of a vertex
v;, wheni is even, the colors of; andv; _; are compared and the vertex with the lower color is added
to C while the one with the higher color is addediolt follows directly from the construction that no
color, which has already been assigned to a vert&x,inan be reused for the currently presented vertex
v;. TO see that the same holds for colors usedl, inbserve that for any vertex< I, there exists. € C

that is adjacent te andv;, and such that(u) < ¢(v). Hence, because of ranking, we ga{(G;) = i.
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On the other hand, for every second round the cligue numlbegases, i.ew(G;) = i/2 + 1 wheni is
even, andv(G;) = (i + 1)/2 otherwise. Sinc&:; is a split graph of typés, x,(G;) = w(G;) and after
an odd round we havea(G;) = 2x,(G;) — 1 (see Figure 1(c)). O

A natural question of the existence o2aompetitive semi on-line ranking algorithm will be anse@in

the affirmative in Section 5. However, before we can formautatr algorithm, we need to provide some
structural properties of split graphs. These propertiesasential for the statement and analysis of the
algorithm.

4 Split Tripartitions

As we will see in the next section, an important feature ofsmmi on-line ranking algorithm is its ability
to maintain a specific classification of the vertices rewveétdlg Presenter. In order to formally describe
the classification process we have to define the split titfarf which in turn relies on the notion of a
simplicial vertexi.e., a vertex whose closed neighborhood induces a cligmee the class of split graphs
is equal to the intersection of chordal and co-chordal gsagatth vertex of a split graggh is simplicial in

G or its complement’. The set of vertices that are simplicial as welGras inG is of special importance
for the above-mentioned classification.

Definition 4.1 Thesplit tripartition of V'(G) is its partition (C, S, I) such that each vertex i@ is not
simplicial in G, and each vertex iff is not simplicial inG, while S consists of all vertices that are
simplicial both inG and inG.

Clearly, the vertex set of every split graph has a unique sjgartition. From the above definition there
follow simple but important properties of split tripartitis. We state them here for a further reference.

Property 4.1 If G is a split graph and C, S, I) is the split tripartition of V' (G), then
(a) G[9] s either a clique or an edgeless graph,
(b) each vertex irb is adjacent to all vertices id’ and has no neighbors ih.

In the remaining part of this section we analyze selecteatiogls between vertices of two split graphis
and H such thatG is obtained fromH by adding a vertex (possibly with some incident edges). The
properties will be further used in the analysis of a singlenaof the on-line ranking game in Section 5
as well as for the definition of types of Presenter’s mova®diced in Section 6.

Property 4.2 Let G be a split graph and leff < G such thatV(G) \ V(H) = {v}. If (C,S,I) and
(C',S', 1) are the split tripartitions o’ (H) and of V (G), respectively, thet’ C ¢’ andl C I'.

In the following two lemmas we distinguish important configions in the neighborhood of the above-
mentioned vertex.

Lemma 4.1 There does not exist a split graghthat contains an induced subgragh, V(G) \ V(H) =
{v} such that for the split tripartitior{C, S, I') of V' (H) it holds thatN¢(v) N I # @ andC € N¢(v).

Proof: Suppose for a contradiction that there exists a split gi@phith the given properties and let
(C',S',T") be the split tripartition oft’(G). Letax € I andy € C be selected in such a way that
v € E(G) andyv ¢ E(G). Observe that whenevey € E(G), thenz is not simplicial inG and hence
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x € C'. However, by Property 4.2, it holds thatc I’, a contradiction. On the other handiif ¢ F(G),
then we get a contradiction by an analogous argument appliéd O

Lemma 4.2 Let H be an induced subgraph of a split graghsuch thatV' (G) \ V(H) = {v} and let
(C, S, I) be the split tripartition ofV/ (H).

(@) If H[S] = N, for somep > 0, andC' ¢ N¢(v), then|S N Ng(v)] < 1.
(b) If H[S] ~ K, for somep > 2, andNg(v) N I # 0, then|S N Ng(v)| > [S] — 1.

Proof: (a) Let(C’, S, I') be the split tripartition o¥ (G). Assume, on the contrary, th&tN N (v)| > 1
and letz,y € S be the neighbors af in G. Sincex andy are not adjacent, the vertexs not simplicial
inG,i.e.,v e . Letu € C'\ Ng(v). Since by Property 4.2 it holds th@tC C’, the vertex: belongs to
C’. Hence,C’ contains both: andv that are not adjacent, a contradiction. Part (b) followsdy from
(a), by examining the complement graph. |

5 Semi On-line 2-competitive Algorithm

In order to close the algorithmic gap we define a semi on-ligerdhmSpl i t Ranki ng (SRfor short),
which for any split graphG, given its clique numbew, uses at mos2y,.(G) colors. AlgorithmSR
processes every vertex in three stageesentationclassificatiorandcoloring. We start with an informal
description of these three stagesSst

The main purpose of the presentation stage is to updaterineige of the graph. The new vertex
and the edge&; = {v,v; € E(G)|j < i} revealed by Presenter are added to the gi@ph, which
results in the graply;. Revealing a subsequent vertex together with some edgeslpsaa new piece of
structural information on the target gragh

Then, the classification stage begins. Its purpose is th@uatation of the split tripartitiodC;, S;, I;) of
V(G;). The setS; can be seen as a buffer that holds vertices that cannot bedqila€’; or I;. A vertexv

is kept in the buffer until it becomes clear that in some rourdn be moved to one of the two other sets
of the split tripartition, i.e., when is no longer simplicial either i or . Recall that, by Property 4.2,
in contrast to the assignment of verticesStg any assignment t@’; or I; is permanent in the sense that
C; C Cj andl; C I; for eachj > i. Though not important for the formulation of our algorithtinis fact

is crucial for its analysis.

The coloring stage relies on two variablesand hc with the names being abbreviations for lower and
higher color, respectively. Their initial values are equew + 2 and are assigned in the initialization
stage ofSR, that is, prior to the presentation of. In the coloring stageSR uses colot for every vertex

v; assigned td;. Otherwise, the color for; is selected greedily with respect to the interNal ic]. More
precisely SR uses coloic, provided that this results in a ranking@f. If this is not possibleSR checks
coloric — 1 and whenever the color is permissibledecreases by 1 and its new value is used as the color
for v;. Otherwise, i.e., if both colork: andic — 1 violate the definition of ranking, thew; is colored
with the color obtained after incrementation/af by 1. At the end of the coloring stage it holds that
{c(v1),...,¢e(v)} = {1} U{le,...,he} or {c(v1),...,c(vi)} = {lc,..., hc}. See Algorithm 1 for the
pseudocode of the algorithBR.
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Algorithm 1 Split rankingSR (w);
Begin
V(Go) 0, E(Go) + 0,C < 0,5 « 0, I + 0 // initialization
1< 0;
lc+ 2w + 2;
he < lc;
repeat
140+ 1 /I presentation
read (v;, E;);
V(Gl) — V(Gi_l) U {’Ui};
E(GZ) — E(Gi_l) U E;;

compute the split tripartitio(C;, S;, I;) of V(G;); /I classification

if v; € I; then /I coloring
c(v;) < 1,
else ific is permissible fow; then
c(v;) < le;
else ific — 1 is permissible fow; then
lclc—1;
c(vy) « ¢
else
hc < he—+1;
c(v;) + he;

until end of input;
End.

Now, let us consider an example of the executioBRpresented in Figure 2. Since the first round always
results in the assignmentof to S, we depict the remaining round®, . . . , Rs. The description of a par-
ticular roundR;, i € {2,...,8}, includes the structure @¥; and the split tripartitioC;_1, S;—1, [;—1)

of V(G,-1). We use arrows to depict the classification of the apprapnattices inS,_; and the as-
signment ofv; to C;, S; or I;. SinceSRreceives the clique number in advance (in this case 4), the
initialization of the variables results inc = lc = 10. For each round, the values kafandhc at the end
of the round are also given. Note tHatdecreases in rounds,, R4 and R;. The only round in which
SR uses colonl is Rs5 (vs is classified tol;). The value ofhc increases inkg. Sincewg is adjacent to
vg andwg (both with color8) vs must receive a color greater thanfor otherwise we would not have a
ranking. Consequently, neithernoric — 1 is permissible fows. ThereforeSRincreases the value ot
and assigns it tos.

6 Presenter's Moves

In order to analyze the performance of our algorithm we thtice the notion of the state transition di-
graph, which formally represents all possible states obtirine ranking game. The vertices of the state
transition digraph are callestateswhile arcs are callettansitions For any transitior(s, s’), the states
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(le =9, he = 10) (Ile =9, he = 10) (le = 8, h¢ = 10) (Ie = 8, hc = 10)
Cy S1 ' Oy S2 ) Cs ! S3
vy (10) - |
- <—=duqo
(R2) " @y @ (Rg) -~
(lc = 8, hc = 10) (le =7, hc =10)

Cs Ss ] Cs Se s Is

Fig. 2: An example of the execution of the algoritt®R (roundsRz, . . ., Rs). Numbers in braces denote the colors
assigned byR.

s ands’ are calledpre-stateandpost-staterespectively. In what follows each move of Presenter véll b
thought of as an event that causes a transition from therdistate to the appropriate post-state.

More formally, letG be a family of graphs that are complete or edgeless, anf) let (W, T) be an
infinite digraph with the vertex sé¥” and arc sef”. Moreover, letp : G — W(D) be a bijection. We
say that the digrapl is thestate transition digraphif for any H, H' € G we have(p(H), o(H')) €

T (D) if and only if there exist a split grapt¥;_; such thatG;_1[S;—1] ~ H and Presenter's move
P; = (v;, E;) resulting inG; for which G;[S;] ~ H’. Observe that, for a particular game, the sequence
of graphs(Gy, G1,...,G;), Go ~ Ny, resulting from Presenter’s mové®,, P», ..., P;) corresponds
to the directed walKp(Go[So]), o(G1[S1]), - .., »(G;[S:])) in D. Also note that, by the definition, for
any transition(s, s’) there may exist non-isomorphic split grapfis_1, G;—1 such thatGy_1[Sk_1] ~
G1-1[S1-1] = ¢~ (s) andG[Sk] =~ Gi[S1] =~ ¢~ 1(s'). In what follows we slightly simplify our notation
by writing G'S;] instead ofG;[S;] and N (v;) in place of Ng, (v;). Sincey is a bijection, there will be
also no ambiguity whenever we ugkinstead ofp(H), as a label for a vertex db, e.g., K> instead of
©(K>2), or when we write “staté:[.S;]” in place of “statep(G|[S;])".

Though the number of states is infinite, we distinguish adinitmber of types of Presenter’s moves. This
considerably simplifies the analysis of the coloring stagbe type of a move?;, = (v;, E;) depends
solely on the pre-stat€[.S; 1] and the adjacency of; to the vertices in the sets;_1, S;—; andl;_; of

the split tripartition(C;_1, S;—1, I;—1) of V(G;_1). Similarly, the post-state resulting froR) is uniquely
determined by the pre-state and the adjacency conditioasit @an be easily calculated. Therefore, the
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Fig. 3: The types of moves for which; is classified toS;

post-state is not required in move'’s type definition, but wglieitly give a description of each post-state
to make the list of types more useful for further analysid.typpes of moves are also presented in Figures
3, 4 and 5. In each figure the structure®@f_, is reflected by distinguishing its split tripartition while
v; IS shown separately, together with all edgesin The arrows, when present, show the result of the
classification, i.e., they indicate whetheror some vertices fron§; _; belong toC;, S; or I; (recall that
by Property 4.2C; 1 C C; andl;_; C I;). To make the figures and further analysis more clear, we omit
all parts ofGG;_, that are irrelevant for the classification and we select syator the types of moves so
that they reflect the classification of, i.e., the symbol§, C andI are used when; is classified taS;,
C; or I;, respectively.

The list of the types of moves was organized in such a way thaltaws for a clear proof of its
completeness in Lemma 6.1 and so that it reflects all possilgeations of vertices fron$; _; to C; or
1;. In the next section we classify rounds of the on-line raglgame as won, tie or lost [BR. As we will
see later, the result of each round strongly depends on plesofyPresenter's move. Some types that seem
to be almost the same may differ significantly. For instamd®n Presenter makes a move of typethe
vertexwv; is adjacent to all vertices ifi;_;, while in a move of typd, the setS;_; contains a vertex that is
not adjacent tw; (see Figure 5). In the next section we argue that this sedyiimgjgnificant difference
causes thaBR always wins if Presenter makes a move of typeand it looses or eventually ties in the
latter case. Also, the results of the rounds with moves ahilgir” typesl; andS; may differ, e.g.,
because of reusing a color from previous rounds, when mavigpe S, form some specific sequences
(we address this issue in Lemma 7.2). There are also some ¢ypeoves, e.gls, I andCy, Cs that we
distinguish mainly for the completeness and clearnesssofitument.

Types of Presenter’s moves:

S1 Pre-stateG[S;—1] ~ N,, p > 0 (S whenp = 0, S{ whenp > 0).
Adjacency conditionsN (v;) N I;_1 =  andC;_; C N(v;) andN (v;) NS;—1 = 0.
Post-stateG[S;] ~ Npy1.

Sy Pre-stateG[S,—1] ~ Kp,p > 2.
Adjacency conditionsN (v;) N I;—; = § andC;—1 € N(v;) andS;—1 C N(v;).
Post-stateG[S;] ~ K,11.
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Fig. 4: The types of moves for whicby is classified ta”;

Pre-state(G[S;_1] ~ N,,p > 1.

Adjacency conditionsN (v;) N I;—; = § andC;—; € N(v;) and|N(v;) N S;—1| = 1.
Post-stateG[S;] ~ K.

Pre-state(z[S;_1] ~ K,,p > 2.

Adjacency conditionsN (v;) N I;—; = § andC;—; € N(v;) and|N(v;) N S;—1| =p— 1.
Post-stateG[S;] ~ Ns.

Pre-state(z[S;_1] >~ Ny, p > L.

Adjacency conditionsN (v;) N I;—; # @ andC;_; C N(v;) andt = [N (v;) N.S;—1| > 1.
Post-stateG[S;] ~ N;.

Pre-state(G[S;_1] ~ K,,p > 2.

Adjacency conditionsN (v;) N I;_1 # @ andC;_; € N(v;) and|N(v;) N S;—1| =p — 1.
Post-stateG[S;] ~ Np.

Pre-state(G[S;_1] ~ N,,p > 0 (C3 whenp = 0, C§ whenp > 0).

Adjacency conditionsN (v;) N I;—1 #  andC;—1 € N(v;) andN (v;) NS;—1 = 0.
Post-stateG[S;] ~ Np.

Pre-state(7[S; 1] ~ K,,p > 2.

Adjacency conditionsN (v;) N I;—1 #  andC;—1 € N(v;) andS;—; C N(v;).
Post-state = pre-state.

Pre-statez[S;_1] >~ Ny, p > 2.

Adjacency conditionsN (v;) N I;—; = ) andC;_; C N(v;) andt = [N (v;) N.S;—1| > 2.
Post-stateG[S;] ~ N;.
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Fig. 5: The types of moves for which; is classified td/;

Pre-statez[S;_1] ~ N, p > 0.

Adjacency conditionsN (v;) N I;_; = 0 andC;_; € N(v;) andN (v;) N S;—1 = 0.

Post-state = pre-state.
Pre-stateG[S;_1] =~ N,,p > 1.

Adjacency conditionsN (v;) N I;_; = P andC;_; € N(v;) and|N(v;) N S;—1| = 1.

Post-stateG[S;] ~ Np.
Pre-state(G[S;_1] ~ K,,p > 2.

Adjacency conditionsN (v;) N I;—1 = @ andC;_1 € N(v;) andN (v;) N S;—1 = 0.

Post-state = pre-state.
Pre-state(G[S;_1] ~ K,,p > 2.

Adjacency conditionsN (v;) N I;_1 = @ andC;_1 € N(v;) andl <t = [N(v;)NS;—1] < p— 1.

Post-stateG[S;] ~ K,_;.
Pre-state(7[S;_1] ~ K,,p > 2.

Adjacency conditionsN (v;) N I;—1 = @ andC;_1 € N(v;) andS;—; C N(v;).

Post-stateG[S;] ~ Np.
Pre-state(7[S;_1] ~ K,,p > 2.

Adjacency conditionsN (v;) N I;_1 = f andC;_1 C N(v;) andN (v;) NS;—1 = 0.

Post-state = pre-state.
Pre-stateG[S;_1] ~ K,,p > 3.

Adjacency conditionsN (v;) N I;_1 = andC;_1 € N(v;) andl <t = |N(v;)NS;_1| < p—2.

Post-stateG[S;] ~ K.
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Ry S3
N, R7:S3

Fig. 6: The subdigraph of the state transition digrdpltontaining the directed walk, which represents an exeautio
of the algorithmSR for the instance presented in Figure 2

In Figure 6 we use the types of moves to continue the analydiseogame presented in Figure 2. In
particular, we depict a digraph whose arcs represent alsitians in the round®;, . . ., Rg of the game.
Each arc is labeled with the rounds in which the correspantlansitions occur and with the types of the
appropriate Presenter’s moves.

Now, we argue that no case is missing and that the types of sremxeer pairwise disjoint cases, i.e., for
the given split tripartition o/ (G,;_1) every move satisfies the adjacency conditions of exactlytype

Lemma 6.1 For any split graphz; 1, every Presenter's move = (v;, E;) is of exactly one of the types
]Il,...,]17781,...,S4,(C1,...,(C5.

Proof: In order to take into account all possible moves of Presem&econsider two complementary
cases for each set of the split tripartiti¢@;_1, S;—1, I;—1) of V(G;—1). Namely, forC;_; we have
eitherC;_, C N(’l}l) orC;_4 g N(’l}i), for I;,_; it holds eitherN(Ui) NIl = 0 OrN(UZ') NI 75 0,
while for S;_1 by Property 4.1(a) we have eith€(S;_1] ~ N,, p > 0 or G[S;_1] ~ K,, p > 2. Hence,
the proof falls into eight natural cases, where by Lemmawd.df them, for whichN (v;) N I;_1 # 0
and simultaneouslg;_1 ¢ N(v;) are not possible, so it is enough to consider the remainingasies.

Casel. [N(v;) N I;—; = B andC;_; C N(v;) andG[S;—1] ~ N,, p > 0]

Observe that the only types of moves to considerSgt&s, Ss andCs. If p = 0, then we clearly have
a move of typeS?. Forp = 1, if S;—1 N N(v;) = @}, then the move is of typ8} and of typeSs, when
[Si—1 N N(v;)| = 1. Similarly, forp > 2, the move is of typ&s or S7, whenv; has one neighbor or has
no neighbors irb;_1, respectively, while fof.S;_; N N (v;)| > 2, the move is of typ&s.

Case2. [N(v;)NI,—; = PandC;_; C N(v;) andG[S;—1] ~ K, p > 2]

The only types of moves that can be taken into accoun$ar®,, Is andl;. If S;_1 N N(v;) = 0, then
we clearly have a move of tyde. If |S;—1 N N(v;)| = p — 1, then we have a move of tyfSa. If S;,_1 C
N(v;), then the move is of typB,. It remains to consider the case wher< |S;—1 N N(v;)| < p — 2,
which directly corresponds to a move of type

Cases. [N(’Ul) NIl = 0 andci,1 g N(UZ) andG[Sl-,l] ~ Np,p > O]
It will be enough to consider, andl,. If p = 0, then obviously,; has no neighbor it%;_;. Hence, the

move is of typel; . By Lemma 4.2(a) we have thgf; 1 N N(v;)| < 1. Therefore, fop > 0, the move is
of typel;, whenS;_1 N N(v;) = () and of typel, when|S;—1 N N (v;)| = 1.

Cased. [N(’Ul) NIl = 0 andci,1 g N(UZ) andG[Sl-,l] ~ Kp, D> 2]
The only types of moves to consider dgel, andls. If |S;—1 N N(v;)| = 0, then the move is of typk;,
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post-state No Ny ~ Ky No N3 ces Ko K3 Ky
pre-state
No Tp,C3 S§ - - - - _
N1 ~ Ky ]IQ,(C§ I;,Cy SI - S3 - -
Np  12,C3 Cy I,Cq,Cs ST Sg - -
N3 12,C3 Cy Cy,Cs I,Cq,C5 Sg - -
Ko 15,Cq Iy S4 - I3,16,Cyq So -
Kz 1I5,Cq Iy Sy - Iy, I7 I3,16,C4 S2

Ky 1I5,Co Iy Sy - Iy, I7 Iy, I7 I3,16,Cq

Tab. 1: Selected states and the appropriate types of Presenter&smo

and of typels, when|S;_1 N N (v;)| = |Si—1| = p. If none of these conditions is satisfied, then the move
is of typell.

Caseb. [N(’Ul) NI 7§ 0 andci,1 - N(UZ) andG[Sl-,l] ~ Np,p > O]

Note that the only types of moves that can be taken into adarerC,, C§ andC3. If p = 0, then we
have a move of typ&€3. Forp > 0, the move is of typ&$, whenN (v;) N S;—1 = 0, and of typeCy,
When|Si_1 n N(UZ)| > 1.

Caseb. [N(’Ul) NI 7§ 0 andci,1 - N(UZ) andG[Sl-,l] ~ Kp, D> 2]

It is enough to considet, andC,. By Lemma 4.2(b) we have thé$;, _; N N(v;)| > p — 1. Hence, for
anyp > 2, we have a move of typ€s, when|S;_1 N N (v;)| = p — 1, while for |S;_1 N N (v;)| = p the
move is of typeCy. |
Though there are infinitely many possible states, the nuwfitgpes of moves is finite. A closer analysis
of the state transition digraph’s structure reveals soregésting properties that are crucial when proving
2-competitiveness oBR. See Table 1 for a collection of representative states aoelstpf moves that
correspond to the appropriate transitions.

7 Analysis of the Coloring Stage

Letm = (vy,...,v,) be afixed ordering of the vertices of a split grapland letr; = xsr(Gi, 7)/x+(G:)

for eachi € {1,...,n}. In order to prove the main result we have to analyze all péssiequences-, ).
Obviouslyr; > 1 and xsr(Gi, ) — xsr(Gi—1,7) € {0,1} for each orderingr and for eachi > 1.
Concerning the denominator of observe that it may differ from that @f_; when the mové, results in
the increase of the clique number but also when it changetypleeof a split graph. A Presenter’s move
that changes the type fros to B (5 to A) is called anAB-move(BA-move respectively). If the type is
not changed the move is called #rmove Since aBA-move P; cannot increase the clique number, we

havew(G;) = w(G;—1) and consequently
Xr(G1) Zw(Gi) +1=w(Gi1) +1 2 X (Gimn) +1. (1)
Analogously, since everfB-move increases the clique number, i€7;) = w(G;—1) + 1, we have

Xr(Gi) 2 w(G) = w(Gis1) +1 2 X, (Gia). )
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ForX-moves the types af; andG;_, are the same. Therefore, an increase of the clique numbé&esnp
an increase of the ranking number. It finally follows tha{G;) — x,(G;—1) € {0,1} for eachi > 1.
The above-mentioned properties let us classify the rouhdsiogame. We use names which represent
the viewpoint of the algorithm. A roung; is said to be:

(a) atie round if x,-(G;) = x(G;-1) andxsr(G;, ) = xsr(Gi—1, ),
(b) alost round if x,-(G;) = x»(G;—1) andxsr(G;, ) = xsr(Gi—1,7) + 1,
(c) awonroundif x,-(G;) = x»(G;—1) + 1 andxsr(Gi, 7) < xsr(Gi—1,7) + 1.

Consequently, for a tie round = r;_1, while for alost one; > r;_;. Note that without loss of generality
we may assume that wheneves large enoughysg(G;, 7) > x..(G;), i.e.,r; > 1 (for otherwiseSR
would be optimal). Thus, for a won round we have thak r; 1, except for the several rounds at the
very beginning of the game when = 1.

The type of aroun®; = (P;, A;) depends both on Presenter's md¥%eand the algorithm’s responsk.
Let us analyze their interactions in a more detailed manm@articular, we focus on distinguishing won,
lost and tie rounds.

Observe that a grap@ is of type A if and only if S of the tripartition(C, S, I') of V(G) is empty, which
follows from the uniqueness of the split bipartition{G) for graphs of this type. Thus, the necessary
condition for the moveP; to be aBA-move is its post-state to b,. The possible types of such moves
are:I;,I,,I5,Co andCs. Note that a move of typ& does not change the type of a split graph, while
no move of typeC§ may occur wherts;_; is of type3. Following these observations, we conclude that
the onlyBA-moves are those of typé,, C3, I, andls. By Equation (1) and by the definition of a won
round, whenever Presenter makes one of these moves, thetisownon.

Let us now analyze thAB-moves. Since, as noted before, a split graph is of i4peand only if the set

S of the split tripartition of its vertex set is empty, the ptate of eaclhB-move isNy. Hence, the only
candidates foAB-moves are the moves of ty§g, [, andC3. However, ifG;_; is of type A, then each
move of typel; or C3 results inG; also of typeA. This implies that the onljAB-move is a move of type

S¢. In order to avoid tedious analysis of the algorithm’s reses we assume that whenever Presenter
makes a move of typ®{, the algorithm uses a new color, and since by Equation¢2);) = x»(Gi—1)

the round is lost. The only exceptionfiy = (Py, A1) with P; of typeS$ which is a won round.

The remaining moves at&-moves. Recall that sind&-moves do not change the type of a split graph,
the ranking number increases only if the clique number daeswhenu(G;) > w(G,—1). Itis not hard

to see that the onlX-moves that increase the clique number are the moves ofSyg;, C,,C3,Cy
andCs. Hence, the corresponding rounds are won. If Presentersreakeve of typd,, I3, 14, I or 17,
thenSR obviously reuses coldr and since none of these moves increases the clique numbbauwedie
rounds, with the only exception, when the algorithm usesrcofor the first time. The round is lost then,
but only once per game. To simplify the analysis, all rounrde/hich Presenter makes a move of type
S, are assumed to be lost, while for any move of t{§jethe round may be lost or tie (see the detailed
analysis in the proof of Lemma 7.2).

Before we continue the analysis let us summarize the aboseraditions in the form of the following
lemma.
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Hl ]Il ]Il
Sp .. SL»Q—SA4Q
N3 N, Npi1
No
I

Fig. 7: The subdigraphD’ of the state transition digraph

Lemma 7.1 Each roundR; = (P;, A;) with P; of type:
(@) S, wheni =1, orl, 5, Ss, S3, Cy, Cy, C3, C3, Cy, Cs, is won,
(b) I, 15,14, Is, I, when there exists;, j < 4, such that(v,) = 1, is tie,
(c) I,1s, 14, Is, I7, when there does not exist, j < 4, such that(v;) = 1, is lost.

The above-mentioned properties of moves of various typew ais to prove the following result.

Lemma 7.2 Let R, Ry, t < g, be two lost rounds such that neither of them uses cbfor the first time.
Then, there exists t < i < ¢, such thatR; is won. Moreover, the first lost round is preceded by at least
two won rounds.

Proof: Let D’ be the subdigraph of the state transition digrdphcontaining only these arcs @ that
correspond to the rounds with the moves of typesmentioned in Lemma 7.1(a) (see Figure 7). Itis
crucial to observe thab’ is acyclic (except for the loops). Consequently, any dadatalk in D that
represents transitions which occur during the game ancaoenho arc corresponding to a won round
is a directed path iD’. Therefore, it remains to argue that there does not existextdid path inD’
containing two arcs that correspond to some lost rounds.

Looking for such directed paths, observe that whenevereRtes makes some number of moves of type
Sy inarow, i.e.,
(S1,81,8%,--) ®)

or
(S1,81,81-.), (4)
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the thesis follows if the color used ISR in response to the first move of the above sequences is further
reused as a response to all the subsequent moves ditypéich results in rounds that are not lost. The
same holds for sequences starting Vidthi.e.,

(S4,S1,8%,...). (5)

In fact any sequence (4) or (5) may be preceded by a sequengesed of the moves of typés, 14, s
andI;. Similarly, there may be the rounds when Presenter makesva ofdypel; between the moves

in sequences (3)-(5). However, all loopsiof correspond to the rounds that are tie or eventually one of
them is lost, when color 1 is used for the first time. Therefare do not have to take them into account
in this proof.

We continue with the assumption that the value of the vagiablis greater tharl during the entire
execution of the algorithm. We will justify this assumptilater on. First we argue that for any execution
of SR, the color used in roun&; 1, corresponding to the first move in any of the sequences53an

be reused in the subsequent rounds of these sequencesv®tbsdr as a result of roun@;_;, we have
thatv;_; € S;_; andS;_; is independent (see the post-stateS0fS? andS,). Next, in roundR; with

a move of typeS}, the vertexw; is classified toS; and by the definition of$ it holds thats; is also
independent. Moreover,; _; € S;. Since in the rounds with the moves of ty@igs. . ., S, the algorithm
uses neither colot nor colorhe, it follows thatc(v;—1) is the smallest color assigned to the vertices in
C;—1 U S;_1. Therefore, by Property 4.1(k)(v;) = ¢(v;—1) does not violate the definition of ranking,
and consequently(v;_1) is permissible also for;.

It remains to prove that during every execution of the alyomni the value ofc decreases at mo8t
times, which justifies our earlier assumption thais always greater thah. Obviously, in every game
round R; is won. It is also not hard to see that rounfils ¢« > 1, are tie as long a&; is edgeless.
Moreover, any round?; such thal £(G;)| > 1 andE(G;-1) = () is won. Thus, in every game the first
lost round is always preceded by at least two won rounds. @sear earlier, each sequence (3)-(5) is
preceded by a won round, and contains at most one move con@igig to a lost round. By the definition
of a won roundy(G;) = x-(G;—1) + 1. Hence, there arg < x,(G) < w(G) + 1 won rounds and at
mostp — 1 < w(G) rounds that are lost. Consequently, there are at 2w0&F) + 1 different values ofc
used during the entire execution ®R and hence at mo&w(G) moves may result in the decreasd af
This implies thatc > 1 in each iteration of the main loop &R. O

Theorem 7.1 For any split graphG we havexsr(G) < 2x,-(G).

Proof: Let 7w be any permutation of the vertices@fand letR; be the round in which the color @f has
been set; € {1,...,n}. We are going to prove by induction énthat for each € {1,...,n}

(i) if there is no round?;, j < ¢, in whichSRuses colod, thenr; < 2,
(i) if there exists a round?;, j < ¢, in which SR uses colod, thenr; < 2.
First observe that’; has a single vertex, which means thak(G1, ) = x-(G1) = 1 and the hypothesis

holds. Assume now that (i) and (ii) hold for eache {1,...,4} and we will prove the claim fo&; 1,
i < n. The proof falls naturally into the three cases:
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Casel. R, is atie round.
By the definition,x,.(Gi+1) = x»(G;) andxsr(Git1,m) = xsr(Gi, m). So,r;+1 = r; and the induction
hypothesis completes the proof in this case.

Case2. R, is awon round.
We have thak,(Gi+1) = x-(Gi) + 1 andxsr(Giy1, 7) < xsr(Gi, m) + 1. So, by (i) (and analogously
by (1))
xsr(Gi,m)+1 _ 2x,.(G;) +1
il < <
TS TG+ S G 1

and the hypothesis follows.

<2,

Case3. R, is a lost round.

Subcase3.1 Let us first analyze the situation wh&n, ; is the round in which colot was used for the
first time. By assumption (i) we have < 2, which impliesysg(G;, 7) < 2x,-(G;) — 1. Hence,

s — XsR(Git1,m) _ xsr(Gim) +1 _ (2x(Gi) —D+1
" Xr(Git1) X (Gi) T xr(Gi) ’

where the second equality follows directly from the defonitof a lost round.

Subcase3.2 Now assume th&R used forv; .1 some color larger thah and that colorl has not been
used in rounds?y, ..., R;. Additionally, let:’ = 0 if there was no lost round preceditiyj.; or leti’ =
max{j € {1,...,i} | R; is lost} otherwise. Assume that there werevon rounds in{R; 4+1,..., R;}.
By Lemma 7.2 we have th@t > 1 wheni’ > 0 and thatt > 2 wheni’ = 0. By the definition of a won
round, x-(G;) = x-(Gw) + k. Notice that all rounds i{ R, 11, ..., R;} are either won or tie, which
implies thatysg(Gi, 7) < xsr(Gir, m) + k. Then,

- XsR(Git1, ) _ xsr(Gi, ) + 1 - Xsr(Gir,m) +k +1
" Xr(Git1) x(Gi) T xe(Gi) +k

We need to prove that, < 2. If i/ =0, thenxsr(Gy,m) = 0 andx,(G;/) = 0 and the thesis follows.
Otherwise, by (i) of the induction hypothesis,

2Xr(Gi’)+k+1 o 2(Xr(Gi’)+k)+1_k <9

il < = <
TS T (G + k o (C) 1k

which proves (i).

Subcas8.3 If for v;,1 the algorithm used a color larger thanbut colorl has already been used in one
of the preceding rounds, then it is enough to notice that teedsage of colot always results in a lost
round. The rest of the proof is analogous to Subcase 3.2 ampgbirg, ; < 2.

This completes the analysis of all possible cases, and simeas chosen arbitrarilysgr(G) < 2x,-(G)
follows. O
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8 Conclusions

The semi on-line algorithr8R presented in this paper uses at niygt(G) colors for any split grapld:.
Recall that the optimization goal used in this work, i.e.nimization of the number of pairwise different
colors assigned by the algorithm, is different from the maxin color criterion. We now point out that
SRis constant competitive for the latter criterion as well. @ynstruction SR assigns colot to a vertex

v; that belongs td;, and one can prove that if, € S;, thenc(v;) equals the value ofc at the end

of round R;. Moreover, if a move corresponding to some rouRdis of one of the type&,, ..., Cs,
then|C;| > |C;_1|. Therefore, sincéC,,| < w(G) there are at most(G) rounds with the moves of
typesCy, ..., Cs, which implies thahc increases at most(G) times. Consequently, the maximum color
used bySRis 3w (G) + 2, which means thaBR is 3-competitive in the sense of the second optimization
criterion.

Although for minimization of the number of colors we havey®d thatSR is 2-competitive provided that
w(G) is given, it is worth pointing out that it suffices wh&R only knows an upper bound en(G). In
fact, we have proved that the algorithm works correctly wheandhc are set to at leagw(G) + 2 in the
initialization stage. Therefore, every algorithm that 6ad an upper bounfl onw(G) and callsSR(k) is
also2-competitive. In particular, there existacompetitive algorithm that is given in advance the order
n of a graphG.

Observe that a similar reasoning cannot be applied to serineralgorithms that know:, whenever
we minimize the maximum color. We can argue, however, thatetlexists g3+/n + 2)-competitive
algorithmB of such type. To this end we first exteBR (let SR’ denote the corresponding new algorithm)
in such a way that whenevér reaches the value dfin rounds, then in the subsequent roun8® uses
pairwise different colors that are greater than or equahévalue ofhc in round:. Let B proceed by
calling SR (v/n). If w(G) < +/n, then as argued in the proof of Lemma 7.2, the valule & greater than

1 during the entire execution &R. Therefore, the largest color used Bys bounded by3./n + 2 and
the claim trivially follows. Otherwisey . (G) > /n andSR produces a vertex ranking such that for any
graphG, the maximum color never exceedsConsequenthSR' is /n-competitive in this case. On the
other hand3+/n + 2 constitutes an asymptotically tight bound, i.e., no semlioa algorithmA, that is
givenn in advance, can bg/n — ¢)-competitive for the maximum color minimization. Indeed, the
contrary, suppose that such an algorithm exists and cansidenatural cases. If the first color used Ay
is less than/n, then by an easy generalization of Theorem 3.1, there éXistenter’s strategy that forces
Ato usen colors for a grapldz with x.,.(G) < y/n. On the other hand, if the first color used is at legst
then Presenter fixe§ to be N,, (note thaty,.(N,,) = 1). Clearly, in both casega(G)/x-(G) > /n,
which contradicts our assumption.

Since the lower bound given in Theorem 3.2 holds for botledet(every vertex has a different color),
an interesting direction for further research is a consimnf a semi on-line ranking algorithm which is
2-competitive with respect to the minimization of the maxmmuaolor.

We finish with the remark that Dobrest al. [10] introduced a formal framework that allows to classify
on-line problems according to how much information (ad\aite) about the future input parts is needed
for solving them optimally or with a specific competitiveita{see also [2, 5] for other results). From
the results proved in this paper it also follows that at le&st, w| + 1 bits of advice are required for
any on-line ranking algorithm to be constant competitivesplit graphs and that this number of bits is
sufficient to achieve a constant competitive ratio for bagttirization criteria.



214 Piotr Borowiecki and Dariusz Dereniowski

Acknowledgements

We would like to acknowledge the anonymous referees for tfaiable comments that permitted us to
significantly improve the readability of the paper.

References

[1] J. Bang-Jensen, G. Gutibigraphs: Theory, Algorithms and ApplicationSpringer (2009)
[2] P. Bianchi, H.-J. Bdockenhauer, J. Hromkovi¢ and L. I&el Online coloring of bipartite graphs with and withoutvaz,

Proc. of the 18th Annual International Conference on Cornmguand Combinatoric§COCOON 2012), LNCS 7434 (2012)
519-530

[3] P. Borowiecki, On-line coloring of graphs, in: M. Kubaled.): Graph Colorings Contemporary Mathematic352, American
Mathematical Society (2004) 21-33

[4] P. Borowiecki, K. Budajova, S. Jendrol’ and S. KrajBiarity vertex colouring of graph&iscussiones Mathematicae Graph
Theory31 (2011) 183-195

[5] H.-J. Bockenhauer, D. Komm, Ra. Kralovi€, Ri. Kr&lo and T. Mémke, On the advice complexity of online prah&Proc.
of the 20th International Symposium on Algorithms and Cdatmn (ISAAC 2009), LNCS 5878 (2009) 331-340

[6] E. Bruoth, M. Horhak, On-line ranking number for cysland pathsDiscussiones Mathematicae Graph The8/(1999)
175-197

[7] E. Bruoth, M. Hornak, A lower bound for on-line rankimymber of a pathDiscrete Mathematic807 (11-12) (2007) 1347—-
1355

[8] D.P. Bunde, K. Milans, D.B. West and H. Wu, Parity and sggarity edge-colorings of graph€pngressus Numerantium
187 (2007) 193-213

[9] D. Dereniowski, Rank coloring of graphs, in: M. Kubalal(e Graph Colorings Contemporary Mathematic352, American
Mathematical Society (2004) 79-93

[10] S. Dobrev, R. Kralovi¢ and D. Pardubska, How mucloiniation about the future is neededProc. of the 34th Conference
on Current Trends in Theory and Practice of Computer Scig¢Bc~SEM 2008), LNCS 4910 (2008) 247-258

[11] T. Ebenlendr, J. Sgall, Semi-Online Preemptive SchieduOne Algorithm for All Variants,Theory of Computing Syste®8
(3)577-613

[12] G. Even, Z. Lotker, D. Ron and S. Smorodinsky, Conflietef colorings of simple geometric regions with applicatida
frequency assignment in cellular networ$AM Journal on Computing3 (2003) 94-136

[13] S. Foldes, P.L. Hammer, Split Grapl@yngressus Numerantiuf® (1977) 311-315

[14] J. Ghoshal, R. Laskar and D. Pillone, Minimal rankingefworks28 (1) (1996) 45-53

[15] P.L. Hammer, B. Simeone, The splittance of a graptimbinatorical (3) (1981) 275-284

[16] G. Isaak, R. Jamison and D. Narayan, Greedy rankingsaesntk numberdnformation Processing Letters09 (2009) 825—
827

[17] H. Kellerer, V. Kotov, M. Grazia Speranza and Zs.Tuzam$Son-line algorithms for the partition probler®perations Re-
search Letter21 (1997) 235-242

[18] H.A.Kierstead, Coloring Graphs On-line, in: A. Fiatth@.J. Woeginger (edsPnline Algorithms. The State of the AtNCS
1442 (1998) 281-305

[19] M. Kubale (ed.)Graph Colorings Contemporary Mathematic352, American Mathematical Society (2004)
[20] I. Schiermeyer, Zs. Tuza and M. Voigt, On-line rankirddgraphs Discrete Mathematic212 (1-2) (2000) 141-147

[21] S. Seiden, J. Sgall and G. Woeginger, Semi-online adivegdwith decreasing job sizeQperations Research Lette?s (5)
(2000) 215-221

[22] G. Semanisin, R. Sotak, A note on on-line ranking nembf graphs,Czechoslovak Mathematical Journa6 (2) (2006)
591-599

[23] D.B. West,Introduction to Graph TheoryPrentice Hall (2001)



