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A vertex ranking of a graphG is an assignment of positive integers (colors) to the vertices ofG such that each path
connecting two vertices of the same color contains a vertex of a higher color. Our main goal is to find a vertex
ranking using as few colors as possible. Considering on-line algorithms for vertex ranking of split graphs, we prove
that the worst case ratio of the number of colors used by any on-line ranking algorithm and the number of colors
used in an optimal off-line solution may be arbitrarily large. This negative result motivates us to investigate semi
on-line algorithms, where a split graph is presented on-line but its clique number is given in advance. We prove that
there does not exist a(2 − ε)-competitive semi on-line algorithm of this type. Finally,a 2-competitive semi on-line
algorithm is given.

Keywords: graph coloring, graph ranking, on-line algorithm, greedy algorithm, semi on-line algorithm, advice com-
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1 Introduction
In this paper we consider the vertex ranking problem for simple, finite, undirected graphsG = (V,E)
with the vertex setV , edge setE andordern = |V (G)|. A coloringof a graphG = (V,E) is a function
c : V (G)→ Z+ such that for eachuv ∈ E(G) we havec(u) 6= c(v). Moreover, if each path between two
vertices of the same colorq contains a vertex of color greater thanq, thenc is arankingof G. A ranking
that usesk colors is called ak-rankingand the smallestk for which there exists ak-ranking ofG, denoted
by χr(G), is theranking numberof G. See also [9] for a survey on graph rankings.

In what follows we use the standard graph theoretical notation and terminology. In particular, given
U ⊆ V (G), G[U ] denotes the subgraph ofG inducedby U with vertex setU and edge setE(G[U ]) =
{uv ∈ E(G) |u, v ∈ U}. If H is an induced subgraph ofG, it is customary to writeH ≤ G, whileH ≃ G
is used whenH is isomorphic toG. The complementG of a graphG is the graph withV (G) = V (G) and
E(G) = {uv |uv /∈ E(G)}. For v ∈ V (G), NG(v) = {u ∈ V (G) |uv ∈ E(G)} is theneighborhood
of v in G, whileNG[v] = NG(v) ∪ {v} is called theclosed neighborhoodof v in G. A set of verticesI,
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I ⊆ V (G), is independentin G, if no two vertices ofI are adjacent. The cardinality of a maximum
independent set inG is called theindependence numberof a graphG, denoted byα(G). We use the
symbolNr, r ≥ 0, to denote the edgeless graph of orderr. A subgraph isomorphic to a complete
graphKr is called aclique. The order of the largest clique inG is called theclique numberof G, denoted
by ω(G). We useH ∪ G for the union of vertex disjoint graphsH andG, while 2H denotes the graph
consisting of two vertex disjoint copies ofH . For any other notions undefined here we refer the reader to
[1, 19, 23].

The on-line version of the ranking problem is frequently viewed as a game between two players,Presenter
(the adversary) andPainter(the coloring algorithm). In contrast to the off-line approach, Painter does not
know the structure of the graphG = (V,E) that has to be colored. Presenter starts the game and reveals
subsequent vertices ofG in some order(v1, . . . , vn) unknown to Painter. More precisely, each vertexvi
is presented together with the edgesEi = {vivj ∈ E(G) | j < i}. Consequently, after presentation ofvi,
Painter knows only the structure of the subgraphGi induced by{v1, . . . , vi}. Painter has to irrevocably
assign a permissible colorc(vi) to the vertexvi beforevi+1 is presented. The aim of Painter is to use as
few colors as possible while Presenter aims at finding an ordering of the vertices forcing Painter to use as
many colors as possible. The game can also be viewed as a sequence(P1, A1, . . . , Pn, An) of alternate
movesPi = (vi, Ei) of Presenter and movesAi of the ranking algorithm. Defining a pairRi = (Pi, Ai)
as thei-th roundwe will also view the game as a sequence ofn rounds(R1, . . . , Rn). In what follows
we useχA(G, π) to denote the number of colors used by the coloring algorithmA for the orderingπ of
the vertex set, andχA(G) for the maximum number of colors that may be required byA to colorG, i.e.,
χA(G) = maxπ χA(G, π). Theon-line ranking numberof a graphG is the minimumχA(G) taken over
all on-line ranking algorithmsA. We say that an on-line ranking algorithm isc-competitiveif there exists
a constantb such thatχA(G) ≤ c ·χr(G)+ b. We say for brevity that an algorithm isconstant competitive
if it is c-competitive for some constantc. We refer the reader interested in a more extensive description of
a classical on-line coloring to [3, 18].

Several results concerning on-line vertex ranking are known. Schiermeyeret al. [20] characterized graphs
with the on-line vertex ranking number equal to3 and proved that thegreedy algorithm, which always
assigns the smallest permissible color to the incoming vertex, produces a(3 log2 n)-ranking for a pathPn.
Note thatχr(Pn) = 1 + ⌊log2 n⌋. On-line rankings of paths and cycles were also considered by Bruoth
and Horňák [6], who proved an even better bound of2⌊log2 n⌋ + 1 for both classes of graphs. This, in
particular, implies that the ratio of the on-line and the off-line ranking numbers for paths is bounded by2.
The lower bound of1.619 log2 n−1 for the on-line ranking number of paths was given by the same authors
in [7]. It was also proved by Semanišin and Soták [22] that there exists an infinite sequence of graphs for
which the ratio of the on-line and the off-line ranking numbers can be arbitrarily large. Ghoshalet al. [14]
introduced the problem of finding aminimal rankingwhich is defined as a ranking with the property that
decreasing the color assigned to any vertex results in a function that is not a ranking. Thearank number
of a graphG is the largestk such that there exists a minimalk-ranking ofG. As pointed out by Isaak
et al. [16] there is a connection between on-line rankings and minimal rankings. In particular, the arank
number equals the number of colors assigned in the worst caseby the greedy ranking algorithm. So, the
number of colors assigned by the greedy on-line algorithm isat most the arank number of the input graph.
Ranking is also closely related to parity coloring (see, e.g., [4, 8]) and conflict-free coloring [12]. Aparity
coloring is a coloring with the property that every path contains somecolor an odd number of times, while
in a conflict-free coloringevery path has to use some color exactly once.
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In this paper we investigate the on-line version of the ranking problem for split graphs. A graphG is
called asplit graphif there exists a bipartition(C, I) of its vertex set such thatI is an independent set and
C induces a clique. Such a partition is called asplit bipartition. Notice that a split bipartition does not
have to be unique but it always satisfies one of the three conditions given in the following theorem.

Theorem 1.1 (P. L. Hammer, B. Simeone, [15])Let the vertex set of a split graphG be partitioned into
an independent setI and a setC inducing a clique. Then, exactly one of the following conditions holds:

(a) |I| = α(G) and|C| = ω(G),

(b) |I| = α(G) and|C| = ω(G)− 1,

(c) |I| = α(G) − 1 and|C| = ω(G).

We say thatG is asplit graph of typeA if V (G) has a split bipartition satisfying (a), whileG is asplit
graph of typeB if its vertex set can be partitioned such that (b) or (c) holds. Note that the complement
G of a split graphG is also a split graph. The class of split graphs is also known as the intersection of
chordal and co-chordal graphs [13].

WheneverG is a split graph, thenχr(G) = n− α(G) + 1 (see [9]). Combining this fact with Theorem
1.1 we obtain

Theorem 1.2 For any split graphG it holds that

χr(G) =

{

ω(G) + 1 if G is of typeA,
ω(G) if G is of typeB.

In Section 2 we prove that the worst case ratio of the number ofcolors used by any on-line ranking algo-
rithm and the number of colors used in an optimal off-line solution may be arbitrarily large. This negative
result motivates us to strengthen an on-line algorithm by providing it with some additional information
about the graph to be colored. This kind of approach is usually calledsemi on-lineand has been widely
studied, e.g., for various scheduling problems (see, e.g.,[11, 17, 21]). In general a semi on-line algorithm
may be given the values of some invariants of a graph in advance, i.e., before Presenter reveals the first
vertex of a graph. The choice of the appropriate invariants is a separate and challenging problem, e.g.,
a semi on-line ranking algorithm for completem-partite graphsKk1,...,km

presented in [22] knows in
advance the values ofk1, . . . , km that uniquely describe the structure of the graph. In Section 3 we prove
that for anyε > 0, there does not exist a semi on-line ranking algorithm that is(2−ε)-competitive even if
it is given the clique number of a split graph. The remaining parts of the paper focus on the statement and
analysis of a2-competitive semi on-line ranking algorithm that knows theclique number of a split graph
in advance. In particular, in Section 4, prior to the formal description of the algorithm we introduce the
concept ofsplit tripartitions that are used for on-line classification of vertices. The idea is useful both for
the formulation of the algorithm in Section 5 as well as for its analysis in Sections 6 and 7. The analysis
is broken into two parts. First, in Section 6, we observe thatthough there are infinitely many possible
Presenter’s moves that may occur during the presentation ofa split graph, it is possible to distinguish a
finite number oftypesof moves. This fact is crucial, as it allows to represent all possible sequences of
Presenter’s moves as the directed walks of a well-structured digraphD, called thestate transition digraph.
The state transition digraph is defined so that its walks reflect certain aspects of the evolution of graph
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structure during the game. It is important to point out that the directed walk corresponding to a particular
game is independent of the ranking algorithm. Hence, a similar approach may also be used for the analysis
of on-line algorithms for other combinatorial problems on split graphs.

From the results proved in this paper it follows that for split graphs there does not exist a constant compet-
itive on-line ranking algorithm that could guarantee the usage of an interval of colors containing color1.
Consequently, minimization of the largest color differs from the minimization of the number of colors
which is our main interest. We remark on the former criterionin Section 8.

2 On-line Ranking
The main purpose of this section is to describe Presenter’s strategy from which it follows that there does
not exist a constant competitive on-line ranking algorithmfor split graphs. This serves as the main reason
to consider semi on-line algorithms.

Theorem 2.1 For any on-line ranking algorithmA and any integerp > 0, there exists a split graphG
such thatχA(G)/χr(G) ≥ p.

Proof: LetA be an arbitrary on-line ranking algorithm. IfA assigns color1 to v1, then Presenter fixesv1 to
be the center of a starSn (which is a split graph) and continues the presentation of the remaining vertices,
thus forcingA to color them with pairwise different colors. This yieldsχA(Sn) = n, while χr(Sn) = 2.
Therefore, let us assume without loss of generality thatA used colork > 1 for the first vertex. Also note
that since we describe a strategy of Presenter, there is no loss of generality in assuming thatv1v2 ∈ E(G).
Presenter maintains a bipartition(C, I) of the vertex set, i.e., as soon as the revealed vertex gets colored,
Presenter assigns it either to the independent setI or to the setC inducing a clique. The only exception
is the decision on the assignment of the first vertex which is postponed until the second vertex is colored.
Then, a vertex with the smaller color is assigned toC, while the other one is assigned toI. From now on,
for i > 2, each vertexvi revealed by Presenter is joined to all vertices currently inC. If A uses forvi a
color smaller thank, thenvi is assigned toC. Otherwise, it is assigned toI. The strategy of assigning
vertices with the smallest colors toC ensures that anyA is forced to introduce a new color whenever a
subsequent vertex is revealed (notice thatC induces a clique, while reusing a color of any vertex fromI
spoils ranking). Consequently,χA(G) = n. On the other hand, sinceA started with colork, the number of
vertices assigned toC is at mostk. This also bounds the clique number of a graph used by Presenter, i.e.,
ω(G) ≤ k + 1, and since Presenter constructs a split graph of typeB, we haveχr(G) ≤ k + 1. Hence,
the differenceχA(G) − χr(G) as well asχA(G)/χr(G) may be arbitrarily large. ✷

3 Lower Bounds for Semi On-line Ranking
In this section we argue that the knowledge of an upper bound on the clique number of a graph is a
prerequisite for any semi on-line ranking algorithm to be constant competitive in the class of split graphs.
Moreover, in the first theorem we reveal that even when the clique number of a split graph is given in
advance, the algorithm has to satisfy some additional conditions; for if not, it is not constant competitive.

Theorem 3.1 LetA be a semi on-line ranking algorithm that is givenω and letk be one of the colors that
A used for the first two vertices. Ifk < ω + 1, then for anyp > 0, there exists a split graphG such that
ω(G) ≤ ω andχA(G)/χr(G) ≥ p.
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v1 (12)

v2 (17) v3 (6) v4 (10)

(a)
v1 (12)

v2 (17) v4 (10) v5 (7)

v3 (6)

v6 (4)

(b)
v1 (12)

v2 (17)

v3 (6)

v4 (10) v5 (7)

v6 (4)

v7 (13)

(c)

Fig. 1: An example for Theorem 3.2. Numbers in braces denote sample colors. Black vertices belong toC, white to
I , while diamonds represent vertices before Presenter’s decision on their assignment.

Proof: We use the strategy of Presenter from Theorem 2.1 and prove that its slight modification is also
successful against anyA that is givenω but colorsv1 or v2 with color k < ω + 1. The case ofk = 1
is trivial. Without loss of generality we may assume thatv1 was assigned colork = ω andv2 some
color greater thank. According to the strategy,v1 gets assigned toC, while v2 is assigned toI. The
game continues and since the number of colors smaller thank is limited, eitherA loses because it may be
forced to use inI arbitrarily many colors greater thank (they all have to be pairwise different because of
ranking) or it is faced with the setC that consists of the vertices colored2, . . . , k. As long as|C| < ω,
the algorithm is not allowed to use color1 for vi, since it would be immediately assigned toC and used
by Presenter to force an arbitrary number of new colors by presenting a star with the central vertexvi. On
the other hand, there are no more permissible colors smallerthank and hence using new colors greater
thank for vi and for arbitrarily many subsequent vertices is unavoidable. ✷

It is worth pointing out that Presenter’s strategies used inthe preceding theorems do not work if for both
verticesv1, v2 the algorithm uses colors greater than the clique number. Since Presenter adds toC one of
these vertices, at mostω − 1 colors smaller thanω + 1 may further be required to color all vertices inC.
Therefore, the algorithm can save color 1 untilω colors are already present inC and it can safely use it
for any subsequent vertex which will undoubtedly belong toI. In the next theorem we prove that for any
ε > 0, there does not exist a semi on-line algorithmA that is(2 − ε)-competitive, even whenA is given
the clique number of a split graphG and colorsv1, v2 using colors greater thanω(G).

Theorem 3.2 LetA be a semi on-line ranking algorithm that is given the clique number of a graph. Then,
there exists a split graphG such thatχA(G) ≥ 2χr(G)− 1.

Proof: Let k be the color used byA for the first vertex. By Theorem 3.1,k ≥ ω + 1. As in the previous
proofs, Presenter maintains a bipartition(C, I) of the vertex set. The presentation starts with two adjacent
vertices. Then, each vertexvi, i > 2, revealed by Presenter is adjacent to all vertices currently in C and
for even values ofi it is also adjacent tovi−1 (see Figure 1(a) – (b)). After the presentation of a vertex
vi, wheni is even, the colors ofvi andvi−1 are compared and the vertex with the lower color is added
to C while the one with the higher color is added toI. It follows directly from the construction that no
color, which has already been assigned to a vertex inC, can be reused for the currently presented vertex
vi. To see that the same holds for colors used inI, observe that for any vertexv ∈ I, there existsu ∈ C
that is adjacent tov andvi, and such thatc(u) < c(v). Hence, because of ranking, we getχA(Gi) = i.
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On the other hand, for every second round the clique number increases, i.e.,ω(Gi) = i/2 + 1 wheni is
even, andω(Gi) = (i + 1)/2 otherwise. SinceGi is a split graph of typeB, χr(Gi) = ω(Gi) and after
an odd round we haveχA(Gi) = 2χr(Gi)− 1 (see Figure 1(c)). ✷

A natural question of the existence of a2-competitive semi on-line ranking algorithm will be answered in
the affirmative in Section 5. However, before we can formulate our algorithm, we need to provide some
structural properties of split graphs. These properties are essential for the statement and analysis of the
algorithm.

4 Split Tripartitions
As we will see in the next section, an important feature of oursemi on-line ranking algorithm is its ability
to maintain a specific classification of the vertices revealed by Presenter. In order to formally describe
the classification process we have to define the split tripartition, which in turn relies on the notion of a
simplicial vertex, i.e., a vertex whose closed neighborhood induces a clique.Since the class of split graphs
is equal to the intersection of chordal and co-chordal graphs each vertex of a split graphG is simplicial in
G or its complementG. The set of vertices that are simplicial as well inG as inG is of special importance
for the above-mentioned classification.

Definition 4.1 Thesplit tripartition of V (G) is its partition (C, S, I) such that each vertex inC is not
simplicial in G, and each vertex inI is not simplicial inG, while S consists of all vertices that are
simplicial both inG and inG.

Clearly, the vertex set of every split graph has a unique split tripartition. From the above definition there
follow simple but important properties of split tripartitions. We state them here for a further reference.

Property 4.1 If G is a split graph and(C, S, I) is the split tripartition ofV (G), then

(a) G[S] is either a clique or an edgeless graph,

(b) each vertex inS is adjacent to all vertices inC and has no neighbors inI.

In the remaining part of this section we analyze selected relations between vertices of two split graphsG
andH such thatG is obtained fromH by adding a vertexv (possibly with some incident edges). The
properties will be further used in the analysis of a single round of the on-line ranking game in Section 5
as well as for the definition of types of Presenter’s moves introduced in Section 6.

Property 4.2 Let G be a split graph and letH ≤ G such thatV (G) \ V (H) = {v}. If (C, S, I) and
(C′, S′, I ′) are the split tripartitions ofV (H) and ofV (G), respectively, thenC ⊆ C′ andI ⊆ I ′.

In the following two lemmas we distinguish important configurations in the neighborhood of the above-
mentioned vertexv.

Lemma 4.1 There does not exist a split graphG that contains an induced subgraphH , V (G) \V (H) =
{v} such that for the split tripartition(C, S, I) of V (H) it holds thatNG(v) ∩ I 6= ∅ andC * NG(v).

Proof: Suppose for a contradiction that there exists a split graphG with the given properties and let
(C′, S′, I ′) be the split tripartition ofV (G). Let x ∈ I and y ∈ C be selected in such a way that
xv ∈ E(G) andyv /∈ E(G). Observe that wheneverxy ∈ E(G), thenx is not simplicial inG and hence
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x ∈ C′. However, by Property 4.2, it holds thatx ∈ I ′, a contradiction. On the other hand ifxy /∈ E(G),
then we get a contradiction by an analogous argument appliedto G. ✷

Lemma 4.2 Let H be an induced subgraph of a split graphG such thatV (G) \ V (H) = {v} and let
(C, S, I) be the split tripartition ofV (H).

(a) If H [S] ≃ Np, for somep ≥ 0, andC * NG(v), then|S ∩NG(v)| ≤ 1.

(b) If H [S] ≃ Kp, for somep ≥ 2, andNG(v) ∩ I 6= ∅, then|S ∩NG(v)| ≥ |S| − 1.

Proof: (a) Let(C′, S′, I ′) be the split tripartition ofV (G). Assume, on the contrary, that|S∩NG(v)| > 1
and letx, y ∈ S be the neighbors ofv in G. Sincex andy are not adjacent, the vertexv is not simplicial
in G, i.e.,v ∈ C′. Letu ∈ C \NG(v). Since by Property 4.2 it holds thatC ⊆ C′, the vertexu belongs to
C′. Hence,C′ contains bothu andv that are not adjacent, a contradiction. Part (b) follows directly from
(a), by examining the complement graph. ✷

5 Semi On-line 2-competitive Algorithm
In order to close the algorithmic gap we define a semi on-line algorithmSplit Ranking (SR for short),
which for any split graphG, given its clique numberω, uses at most2χr(G) colors. AlgorithmSR
processes every vertex in three stages:presentation, classificationandcoloring. We start with an informal
description of these three stages ofSR.

The main purpose of the presentation stage is to update the structure of the graph. The new vertexvi
and the edgesEi = {vivj ∈ E(G) | j < i} revealed by Presenter are added to the graphGi−1, which
results in the graphGi. Revealing a subsequent vertex together with some edges provides a new piece of
structural information on the target graphG.

Then, the classification stage begins. Its purpose is the computation of the split tripartition(Ci, Si, Ii) of
V (Gi). The setSi can be seen as a buffer that holds vertices that cannot be placed inCi or Ii. A vertexv
is kept in the buffer until it becomes clear that in some roundv can be moved to one of the two other sets
of the split tripartition, i.e., whenv is no longer simplicial either inG or G. Recall that, by Property 4.2,
in contrast to the assignment of vertices toSi, any assignment toCi or Ii is permanent in the sense that
Ci ⊆ Cj andIi ⊆ Ij for eachj > i. Though not important for the formulation of our algorithm,this fact
is crucial for its analysis.

The coloring stage relies on two variableslc andhc with the names being abbreviations for lower and
higher color, respectively. Their initial values are equalto 2ω + 2 and are assigned in the initialization
stage ofSR, that is, prior to the presentation ofv1. In the coloring stage,SR uses color1 for every vertex
vi assigned toIi. Otherwise, the color forvi is selected greedily with respect to the interval[lc, hc]. More
precisely,SR uses colorlc, provided that this results in a ranking ofGi. If this is not possible,SR checks
color lc− 1 and whenever the color is permissible,lc decreases by 1 and its new value is used as the color
for vi. Otherwise, i.e., if both colorslc and lc − 1 violate the definition of ranking, thenvi is colored
with the color obtained after incrementation ofhc by 1. At the end of the coloring stage it holds that
{c(v1), . . . , c(vi)} = {1} ∪ {lc, . . . , hc} or {c(v1), . . . , c(vi)} = {lc, . . . , hc}. See Algorithm 1 for the
pseudocode of the algorithmSR.
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Algorithm 1 Split rankingSR (ω);
Begin

V (G0)← ∅, E(G0)← ∅, C ← ∅, S ← ∅, I ← ∅; // initialization
i← 0;
lc← 2ω + 2;
hc← lc;
repeat

i← i+ 1; // presentation
read (vi, Ei);
V (Gi)← V (Gi−1) ∪ {vi};
E(Gi)← E(Gi−1) ∪ Ei;

compute the split tripartition(Ci, Si, Ii) of V (Gi); // classification

if vi ∈ Ii then // coloring
c(vi)← 1;

else iflc is permissible forvi then
c(vi)← lc;

else iflc− 1 is permissible forvi then
lc← lc− 1;
c(vi)← lc;

else
hc← hc+ 1;
c(vi)← hc;

until end of input;
End.

Now, let us consider an example of the execution ofSR presented in Figure 2. Since the first round always
results in the assignment ofv1 toS1, we depict the remaining roundsR2, . . . , R8. The description of a par-
ticular roundRi, i ∈ {2, . . . , 8}, includes the structure ofGi and the split tripartition(Ci−1, Si−1, Ii−1)
of V (Gi−1). We use arrows to depict the classification of the appropriate vertices inSi−1 and the as-
signment ofvi to Ci, Si or Ii. SinceSR receives the clique number in advance (in this caseω = 4), the
initialization of the variables results inhc = lc = 10. For each round, the values oflc andhc at the end
of the round are also given. Note thatlc decreases in roundsR2, R4 andR7. The only round in which
SR uses color1 is R5 (v5 is classified toI5). The value ofhc increases inR8. Sincev8 is adjacent to
v4 andv6 (both with color8) v8 must receive a color greater than8, for otherwise we would not have a
ranking. Consequently, neitherlc nor lc− 1 is permissible forv8. Therefore,SR increases the value ofhc
and assigns it tov8.

6 Presenter’s Moves
In order to analyze the performance of our algorithm we introduce the notion of the state transition di-
graph, which formally represents all possible states of theon-line ranking game. The vertices of the state
transition digraph are calledstateswhile arcs are calledtransitions. For any transition(s, s′), the states
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v2 (9)

I1C1 S1

v1 (10)

C2 S2 I2

v3 (9)
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v2 (9)
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v4 (8)
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v5 (1)
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v1 (10)
v5 (1)

v6 (8)

v2 (9)

v5 (1)

v2 (9)

v7 (7)

v5 (1)

v2 (9)

v1 (10)

C3 S3 I3 C4 S4 I4

C5 S5 I5 C6 S6 I6 C7 S7 I7

v4 (8) v4 (8)

v6 (8) v3 (9)

v1 (10) v1 (10)

v6 (8)

v8 (11)

v3 (9) v3 (9)
v4 (8)

v7 (7)

(R2) (R3) (R4) (R5)

(R8)(R7)(R6)

(lc = 9, hc = 10) (lc = 9, hc = 10) (lc = 8, hc = 10) (lc = 8, hc = 10)

(lc = 7, hc = 11)(lc = 7, hc = 10)(lc = 8, hc = 10)

Fig. 2: An example of the execution of the algorithmSR (roundsR2, . . . , R8). Numbers in braces denote the colors
assigned bySR.

s ands′ are calledpre-stateandpost-state, respectively. In what follows each move of Presenter will be
thought of as an event that causes a transition from the current state to the appropriate post-state.

More formally, letG be a family of graphs that are complete or edgeless, and letD = (W,T ) be an
infinite digraph with the vertex setW and arc setT . Moreover, letϕ : G → W (D) be a bijection. We
say that the digraphD is thestate transition digraphif for any H,H ′ ∈ G we have(ϕ(H), ϕ(H ′)) ∈
T (D) if and only if there exist a split graphGi−1 such thatGi−1[Si−1] ≃ H and Presenter’s move
Pi = (vi, Ei) resulting inGi for whichGi[Si] ≃ H ′. Observe that, for a particular game, the sequence
of graphs(G0, G1, . . . , Gi), G0 ≃ N0, resulting from Presenter’s moves(P1, P2, . . . , Pi) corresponds
to the directed walk(ϕ(G0[S0]), ϕ(G1[S1]), . . . , ϕ(Gi[Si])) in D. Also note that, by the definition, for
any transition(s, s′) there may exist non-isomorphic split graphsGk−1, Gl−1 such thatGk−1[Sk−1] ≃
Gl−1[Sl−1] ≃ ϕ−1(s) andGk[Sk] ≃ Gl[Sl] ≃ ϕ−1(s′). In what follows we slightly simplify our notation
by writing G[Si] instead ofGi[Si] andN(vi) in place ofNGi

(vi). Sinceϕ is a bijection, there will be
also no ambiguity whenever we useH instead ofϕ(H), as a label for a vertex ofD, e.g.,K2 instead of
ϕ(K2), or when we write “stateG[Si]” in place of “stateϕ(G[Si])”.

Though the number of states is infinite, we distinguish a finite number of types of Presenter’s moves. This
considerably simplifies the analysis of the coloring stage.The type of a movePi = (vi, Ei) depends
solely on the pre-stateG[Si−1] and the adjacency ofvi to the vertices in the setsCi−1, Si−1 andIi−1 of
the split tripartition(Ci−1, Si−1, Ii−1) of V (Gi−1). Similarly, the post-state resulting fromPi is uniquely
determined by the pre-state and the adjacency conditions, and it can be easily calculated. Therefore, the
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Fig. 3: The types of moves for whichvi is classified toSi

post-state is not required in move’s type definition, but we explicitly give a description of each post-state
to make the list of types more useful for further analysis. All types of moves are also presented in Figures
3, 4 and 5. In each figure the structure ofGi−1 is reflected by distinguishing its split tripartition while
vi is shown separately, together with all edges inEi. The arrows, when present, show the result of the
classification, i.e., they indicate whethervi or some vertices fromSi−1 belong toCi, Si or Ii (recall that
by Property 4.2,Ci−1 ⊆ Ci andIi−1 ⊆ Ii). To make the figures and further analysis more clear, we omit
all parts ofGi−1 that are irrelevant for the classification and we select symbols for the types of moves so
that they reflect the classification ofvi, i.e., the symbolsS, C andI are used whenvi is classified toSi,
Ci or Ii, respectively.

The list of the types of moves was organized in such a way that it allows for a clear proof of its
completeness in Lemma 6.1 and so that it reflects all possiblemigrations of vertices fromSi−1 to Ci or
Ii. In the next section we classify rounds of the on-line ranking game as won, tie or lost bySR. As we will
see later, the result of each round strongly depends on the type of Presenter’s move. Some types that seem
to be almost the same may differ significantly. For instance,when Presenter makes a move of typeI5, the
vertexvi is adjacent to all vertices inSi−1, while in a move of typeI4 the setSi−1 contains a vertex that is
not adjacent tovi (see Figure 5). In the next section we argue that this seemingly insignificant difference
causes thatSR always wins if Presenter makes a move of typeI5, and it looses or eventually ties in the
latter case. Also, the results of the rounds with moves of “similar” types I1 andS1 may differ, e.g.,
because of reusing a color from previous rounds, when moves of typeS1 form some specific sequences
(we address this issue in Lemma 7.2). There are also some types of moves, e.g.,I3, I6 andC1,C5 that we
distinguish mainly for the completeness and clearness of the argument.

Types of Presenter’s moves:

S1 Pre-state:G[Si−1] ≃ Np, p ≥ 0 (S◦1 whenp = 0, S•1 whenp > 0).
Adjacency conditions:N(vi) ∩ Ii−1 = ∅ andCi−1 ⊆ N(vi) andN(vi) ∩ Si−1 = ∅.
Post-state:G[Si] ≃ Np+1.

S2 Pre-state:G[Si−1] ≃ Kp, p ≥ 2.
Adjacency conditions:N(vi) ∩ Ii−1 = ∅ andCi−1 ⊆ N(vi) andSi−1 ⊆ N(vi).
Post-state:G[Si] ≃ Kp+1.
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Fig. 4: The types of moves for whichvi is classified toCi

S3 Pre-state:G[Si−1] ≃ Np, p ≥ 1.
Adjacency conditions:N(vi) ∩ Ii−1 = ∅ andCi−1 ⊆ N(vi) and|N(vi) ∩ Si−1| = 1.
Post-state:G[Si] ≃ K2.

S4 Pre-state:G[Si−1] ≃ Kp, p ≥ 2.
Adjacency conditions:N(vi) ∩ Ii−1 = ∅ andCi−1 ⊆ N(vi) and|N(vi) ∩ Si−1| = p− 1.
Post-state:G[Si] ≃ N2.

C1 Pre-state:G[Si−1] ≃ Np, p ≥ 1.
Adjacency conditions:N(vi) ∩ Ii−1 6= ∅ andCi−1 ⊆ N(vi) andt = |N(vi) ∩ Si−1| ≥ 1.
Post-state:G[Si] ≃ Nt.

C2 Pre-state:G[Si−1] ≃ Kp, p ≥ 2.
Adjacency conditions:N(vi) ∩ Ii−1 6= ∅ andCi−1 ⊆ N(vi) and|N(vi) ∩ Si−1| = p− 1.
Post-state:G[Si] ≃ N0.

C3 Pre-state:G[Si−1] ≃ Np, p ≥ 0 (C◦
3 whenp = 0, C•

3 whenp > 0).
Adjacency conditions:N(vi) ∩ Ii−1 6= ∅ andCi−1 ⊆ N(vi) andN(vi) ∩ Si−1 = ∅.
Post-state:G[Si] ≃ N0.

C4 Pre-state:G[Si−1] ≃ Kp, p ≥ 2.
Adjacency conditions:N(vi) ∩ Ii−1 6= ∅ andCi−1 ⊆ N(vi) andSi−1 ⊆ N(vi).
Post-state = pre-state.

C5 Pre-state:G[Si−1] ≃ Np, p ≥ 2.
Adjacency conditions:N(vi) ∩ Ii−1 = ∅ andCi−1 ⊆ N(vi) andt = |N(vi) ∩ Si−1| ≥ 2.
Post-state:G[Si] ≃ Nt.
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Fig. 5: The types of moves for whichvi is classified toIi

I1 Pre-state:G[Si−1] ≃ Np, p ≥ 0.
Adjacency conditions:N(vi) ∩ Ii−1 = ∅ andCi−1 * N(vi) andN(vi) ∩ Si−1 = ∅.
Post-state = pre-state.

I2 Pre-state:G[Si−1] ≃ Np, p ≥ 1.
Adjacency conditions:N(vi) ∩ Ii−1 = ∅ andCi−1 * N(vi) and|N(vi) ∩ Si−1| = 1.
Post-state:G[Si] ≃ N0.

I3 Pre-state:G[Si−1] ≃ Kp, p ≥ 2.
Adjacency conditions:N(vi) ∩ Ii−1 = ∅ andCi−1 * N(vi) andN(vi) ∩ Si−1 = ∅.
Post-state = pre-state.

I4 Pre-state:G[Si−1] ≃ Kp, p ≥ 2.
Adjacency conditions:N(vi)∩ Ii−1 = ∅ andCi−1 * N(vi) and1 ≤ t = |N(vi)∩ Si−1| ≤ p− 1.
Post-state:G[Si] ≃ Kp−t.

I5 Pre-state:G[Si−1] ≃ Kp, p ≥ 2.
Adjacency conditions:N(vi) ∩ Ii−1 = ∅ andCi−1 * N(vi) andSi−1 ⊆ N(vi).
Post-state:G[Si] ≃ N0.

I6 Pre-state:G[Si−1] ≃ Kp, p ≥ 2.
Adjacency conditions:N(vi) ∩ Ii−1 = ∅ andCi−1 ⊆ N(vi) andN(vi) ∩ Si−1 = ∅.
Post-state = pre-state.

I7 Pre-state:G[Si−1] ≃ Kp, p ≥ 3.
Adjacency conditions:N(vi)∩ Ii−1 = ∅ andCi−1 ⊆ N(vi) and1 ≤ t = |N(vi)∩ Si−1| ≤ p− 2.
Post-state:G[Si] ≃ Kp−t.
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Fig. 6: The subdigraph of the state transition digraphD containing the directed walk, which represents an execution
of the algorithmSR for the instance presented in Figure 2

In Figure 6 we use the types of moves to continue the analysis of the game presented in Figure 2. In
particular, we depict a digraph whose arcs represent all transitions in the roundsR1, . . . , R8 of the game.
Each arc is labeled with the rounds in which the corresponding transitions occur and with the types of the
appropriate Presenter’s moves.

Now, we argue that no case is missing and that the types of moves cover pairwise disjoint cases, i.e., for
the given split tripartition ofV (Gi−1) every move satisfies the adjacency conditions of exactly onetype.

Lemma 6.1 For any split graphGi−1, every Presenter’s movePi = (vi, Ei) is of exactly one of the types
I1, . . . , I7, S1, . . . , S4,C1, . . . ,C5.

Proof: In order to take into account all possible moves of Presenterwe consider two complementary
cases for each set of the split tripartition(Ci−1, Si−1, Ii−1) of V (Gi−1). Namely, forCi−1 we have
eitherCi−1 ⊆ N(vi) or Ci−1 * N(vi), for Ii−1 it holds eitherN(vi) ∩ Ii−1 = ∅ or N(vi) ∩ Ii−1 6= ∅,
while for Si−1 by Property 4.1(a) we have eitherG[Si−1] ≃ Np, p ≥ 0 orG[Si−1] ≃ Kp, p ≥ 2. Hence,
the proof falls into eight natural cases, where by Lemma 4.1 two of them, for whichN(vi) ∩ Ii−1 6= ∅
and simultaneouslyCi−1 * N(vi) are not possible, so it is enough to consider the remaining six cases.

Case1. [N(vi) ∩ Ii−1 = ∅ andCi−1 ⊆ N(vi) andG[Si−1] ≃ Np, p ≥ 0]
Observe that the only types of moves to consider areS◦1, S

•
1, S3 andC5. If p = 0, then we clearly have

a move of typeS◦1. For p = 1, if Si−1 ∩ N(vi) = ∅, then the move is of typeS•1 and of typeS3, when
|Si−1 ∩N(vi)| = 1. Similarly, forp ≥ 2, the move is of typeS3 or S•1, whenvi has one neighbor or has
no neighbors inSi−1, respectively, while for|Si−1 ∩N(vi)| ≥ 2, the move is of typeC5.

Case2. [N(vi) ∩ Ii−1 = ∅ andCi−1 ⊆ N(vi) andG[Si−1] ≃ Kp, p ≥ 2]
The only types of moves that can be taken into account areS2, S4, I6 andI7. If Si−1 ∩N(vi) = ∅, then
we clearly have a move of typeI6. If |Si−1 ∩N(vi)| = p− 1, then we have a move of typeS4. If Si−1 ⊆
N(vi), then the move is of typeS2. It remains to consider the case when1 ≤ |Si−1 ∩ N(vi)| ≤ p − 2,
which directly corresponds to a move of typeI7.

Case3. [N(vi) ∩ Ii−1 = ∅ andCi−1 * N(vi) andG[Si−1] ≃ Np, p ≥ 0]
It will be enough to considerI1 andI2. If p = 0, then obviouslyvi has no neighbor inSi−1. Hence, the
move is of typeI1. By Lemma 4.2(a) we have that|Si−1 ∩N(vi)| ≤ 1. Therefore, forp > 0, the move is
of typeI1, whenSi−1 ∩N(vi) = ∅ and of typeI2, when|Si−1 ∩N(vi)| = 1.

Case4. [N(vi) ∩ Ii−1 = ∅ andCi−1 * N(vi) andG[Si−1] ≃ Kp, p ≥ 2]
The only types of moves to consider areI3, I4 andI5. If |Si−1 ∩N(vi)| = 0, then the move is of typeI3,
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post-state N0 N1 ≃ K1 N2 N3 · · · K2 K3 K4 · · ·

pre-state

N0 I1,C◦
3 S◦1 – – – – –

N1 ≃ K1 I2,C•
3

I1,C4 S•
1

– S3 – –
N2 I2,C•

3
C1 I1,C1,C5 S•

1
S3 – –

N3 I2,C•
3

C1 C1,C5 I1,C1,C5 S3 – –
· · · · · ·

K2 I5,C2 I4 S4 – I3, I6,C4 S2 –
K3 I5,C2 I4 S4 – I4, I7 I3, I6,C4 S2
K4 I5,C2 I4 S4 – I4, I7 I4, I7 I3, I6,C4

· · · · · · · · ·

Tab. 1: Selected states and the appropriate types of Presenter’s moves

and of typeI5, when|Si−1 ∩N(vi)| = |Si−1| = p. If none of these conditions is satisfied, then the move
is of typeI4.

Case5. [N(vi) ∩ Ii−1 6= ∅ andCi−1 ⊆ N(vi) andG[Si−1] ≃ Np, p ≥ 0]
Note that the only types of moves that can be taken into account areC1,C◦

3 andC•
3. If p = 0, then we

have a move of typeC◦
3. For p > 0, the move is of typeC•

3, whenN(vi) ∩ Si−1 = ∅, and of typeC1,
when|Si−1 ∩N(vi)| ≥ 1.

Case6. [N(vi) ∩ Ii−1 6= ∅ andCi−1 ⊆ N(vi) andG[Si−1] ≃ Kp, p ≥ 2]
It is enough to considerC2 andC4. By Lemma 4.2(b) we have that|Si−1 ∩N(vi)| ≥ p− 1. Hence, for
anyp ≥ 2, we have a move of typeC2, when|Si−1 ∩N(vi)| = p− 1, while for |Si−1 ∩N(vi)| = p the
move is of typeC4. ✷

Though there are infinitely many possible states, the numberof types of moves is finite. A closer analysis
of the state transition digraph’s structure reveals some interesting properties that are crucial when proving
2-competitiveness ofSR. See Table 1 for a collection of representative states and types of moves that
correspond to the appropriate transitions.

7 Analysis of the Coloring Stage
Letπ = (v1, . . . , vn) be a fixed ordering of the vertices of a split graphG and letri = χSR(Gi, π)/χr(Gi)
for eachi ∈ {1, . . . , n}. In order to prove the main result we have to analyze all possible sequences(rn).
Obviouslyri ≥ 1 andχSR(Gi, π) − χSR(Gi−1, π) ∈ {0, 1} for each orderingπ and for eachi > 1.
Concerning the denominator ofri observe that it may differ from that ofri−1 when the movePi results in
the increase of the clique number but also when it changes thetype of a split graph. A Presenter’s move
that changes the type fromA to B (B toA) is called anAB-move(BA-move, respectively). If the type is
not changed the move is called anX-move. Since aBA-movePi cannot increase the clique number, we
haveω(Gi) = ω(Gi−1) and consequently

χr(Gi)
A
= ω(Gi) + 1 = ω(Gi−1) + 1

B
= χr(Gi−1) + 1. (1)

Analogously, since everyAB-move increases the clique number, i.e.,ω(Gi) = ω(Gi−1) + 1, we have

χr(Gi)
B
= ω(Gi) = ω(Gi−1) + 1

A
= χr(Gi−1). (2)
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ForX-moves the types ofGi andGi−1 are the same. Therefore, an increase of the clique number implies
an increase of the ranking number. It finally follows thatχr(Gi) − χr(Gi−1) ∈ {0, 1} for eachi > 1.
The above-mentioned properties let us classify the rounds of our game. We use names which represent
the viewpoint of the algorithm. A roundRi is said to be:

(a) atie round, if χr(Gi) = χr(Gi−1) andχSR(Gi, π) = χSR(Gi−1, π),

(b) a lost round, if χr(Gi) = χr(Gi−1) andχSR(Gi, π) = χSR(Gi−1, π) + 1,

(c) awon round, if χr(Gi) = χr(Gi−1) + 1 andχSR(Gi, π) ≤ χSR(Gi−1, π) + 1.

Consequently, for a tie roundri = ri−1, while for a lost oneri > ri−1. Note that without loss of generality
we may assume that wheneveri is large enough,χSR(Gi, π) > χr(Gi), i.e., ri > 1 (for otherwiseSR
would be optimal). Thus, for a won round we have thatri < ri−1, except for the several rounds at the
very beginning of the game whenri = 1.

The type of a roundRi = (Pi, Ai) depends both on Presenter’s movePi and the algorithm’s responseAi.
Let us analyze their interactions in a more detailed manner,in particular, we focus on distinguishing won,
lost and tie rounds.

Observe that a graphG is of typeA if and only if S of the tripartition(C, S, I) of V (G) is empty, which
follows from the uniqueness of the split bipartition ofV (G) for graphs of this type. Thus, the necessary
condition for the movePi to be aBA-move is its post-state to beN0. The possible types of such moves
are: I1, I2, I5,C2 andC3. Note that a move of typeI1 does not change the type of a split graph, while
no move of typeC◦

3 may occur whenGi−1 is of typeB. Following these observations, we conclude that
the onlyBA-moves are those of typeC2, C•

3, I2 andI5. By Equation (1) and by the definition of a won
round, whenever Presenter makes one of these moves, the round is won.

Let us now analyze theAB-moves. Since, as noted before, a split graph is of typeA if and only if the set
S of the split tripartition of its vertex set is empty, the pre-state of eachAB-move isN0. Hence, the only
candidates forAB-moves are the moves of typeS◦1, I1 andC◦

3. However, ifGi−1 is of typeA, then each
move of typeI1 orC◦

3 results inGi also of typeA. This implies that the onlyAB-move is a move of type
S◦1. In order to avoid tedious analysis of the algorithm’s responses we assume that whenever Presenter
makes a move of typeS◦1, the algorithm uses a new color, and since by Equation (2),χr(Gi) = χr(Gi−1)
the round is lost. The only exception isR1 = (P1, A1) with P1 of typeS◦1 which is a won round.

The remaining moves areX-moves. Recall that sinceX-moves do not change the type of a split graph,
the ranking number increases only if the clique number does,i.e., whenω(Gi) > ω(Gi−1). It is not hard
to see that the onlyX-moves that increase the clique number are the moves of typeS2, S3,C1,C◦

3,C4

andC5. Hence, the corresponding rounds are won. If Presenter makes a move of typeI1, I3, I4, I6 or I7,
thenSR obviously reuses color1 and since none of these moves increases the clique number, wehave tie
rounds, with the only exception, when the algorithm uses color 1 for the first time. The round is lost then,
but only once per game. To simplify the analysis, all rounds in which Presenter makes a move of type
S4 are assumed to be lost, while for any move of typeS•1 the round may be lost or tie (see the detailed
analysis in the proof of Lemma 7.2).

Before we continue the analysis let us summarize the above observations in the form of the following
lemma.
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Fig. 7: The subdigraphD′ of the state transition digraphD

Lemma 7.1 Each roundRi = (Pi, Ai) with Pi of type:

(a) S◦1, wheni = 1, or I2, I5, S2, S3,C1,C2,C◦
3,C

•
3,C4,C5, is won,

(b) I1, I3, I4, I6, I7, when there existsvj , j < i, such thatc(vj) = 1, is tie,

(c) I1, I3, I4, I6, I7, when there does not existvj , j < i, such thatc(vj) = 1, is lost.

The above-mentioned properties of moves of various types allow us to prove the following result.

Lemma 7.2 LetRt, Rq, t < q, be two lost rounds such that neither of them uses color1 for the first time.
Then, there existsi, t < i < q, such thatRi is won. Moreover, the first lost round is preceded by at least
two won rounds.

Proof: Let D′ be the subdigraph of the state transition digraphD, containing only these arcs ofD that
correspond to the rounds with the moves of typesnot mentioned in Lemma 7.1(a) (see Figure 7). It is
crucial to observe thatD′ is acyclic (except for the loops). Consequently, any directed walk inD that
represents transitions which occur during the game and contains no arc corresponding to a won round
is a directed path inD′. Therefore, it remains to argue that there does not exist a directed path inD′

containing two arcs that correspond to some lost rounds.

Looking for such directed paths, observe that whenever Presenter makes some number of moves of type
S1 in a row, i.e.,

(S◦1, S
•
1, S

•
1, . . .) (3)

or
(S•1, S

•
1, S

•
1 . . .) , (4)
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the thesis follows if the color used bySR in response to the first move of the above sequences is further
reused as a response to all the subsequent moves of typeS•1, which results in rounds that are not lost. The
same holds for sequences starting withS4, i.e.,

(S4, S
•
1, S

•
1, . . .) . (5)

In fact any sequence (4) or (5) may be preceded by a sequence composed of the moves of typesI3, I4, I6
andI7. Similarly, there may be the rounds when Presenter makes a move of typeI1 between the moves
in sequences (3)-(5). However, all loops ofD′ correspond to the rounds that are tie or eventually one of
them is lost, when color 1 is used for the first time. Therefore, we do not have to take them into account
in this proof.

We continue with the assumption that the value of the variable lc is greater than1 during the entire
execution of the algorithm. We will justify this assumptionlater on. First we argue that for any execution
of SR, the color used in roundRi−1, corresponding to the first move in any of the sequences (3)-(5), can
be reused in the subsequent rounds of these sequences. Observe that, as a result of roundRi−1, we have
thatvi−1 ∈ Si−1 andSi−1 is independent (see the post-states ofS◦1, S

•
1 andS4). Next, in roundRi with

a move of typeS•1, the vertexvi is classified toSi and by the definition ofS•1 it holds thatSi is also
independent. Moreover,vi−1 ∈ Si. Since in the rounds with the moves of typesS1, . . . , S4 the algorithm
uses neither color1 nor colorhc, it follows thatc(vi−1) is the smallest color assigned to the vertices in
Ci−1 ∪ Si−1. Therefore, by Property 4.1(b),c(vi) = c(vi−1) does not violate the definition of ranking,
and consequently,c(vi−1) is permissible also forvi.

It remains to prove that during every execution of the algorithm, the value oflc decreases at most2ω
times, which justifies our earlier assumption thatlc is always greater than1. Obviously, in every game
roundR1 is won. It is also not hard to see that roundsRi, i > 1, are tie as long asGi is edgeless.
Moreover, any roundRi such that|E(Gi)| ≥ 1 andE(Gi−1) = ∅ is won. Thus, in every game the first
lost round is always preceded by at least two won rounds. As argued earlier, each sequence (3)-(5) is
preceded by a won round, and contains at most one move corresponding to a lost round. By the definition
of a won round,χr(Gi) = χr(Gi−1) + 1. Hence, there arep ≤ χr(G) ≤ ω(G) + 1 won rounds and at
mostp− 1 ≤ ω(G) rounds that are lost. Consequently, there are at most2ω(G) + 1 different values oflc
used during the entire execution ofSR and hence at most2ω(G) moves may result in the decrease oflc.
This implies thatlc > 1 in each iteration of the main loop ofSR. ✷

Theorem 7.1 For any split graphG we haveχSR(G) ≤ 2χr(G).

Proof: Let π be any permutation of the vertices ofG and letRi be the round in which the color ofvi has
been set,i ∈ {1, . . . , n}. We are going to prove by induction oni that for eachi ∈ {1, . . . , n}

(i) if there is no roundRj , j ≤ i, in whichSR uses color1, thenri < 2,

(ii) if there exists a roundRj , j ≤ i, in whichSR uses color1, thenri ≤ 2.

First observe thatG1 has a single vertex, which means thatχSR(G1, π) = χr(G1) = 1 and the hypothesis
holds. Assume now that (i) and (ii) hold for eachi′ ∈ {1, . . . , i} and we will prove the claim forGi+1,
i < n. The proof falls naturally into the three cases:
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Case1. Ri+1 is a tie round.
By the definition,χr(Gi+1) = χr(Gi) andχSR(Gi+1, π) = χSR(Gi, π). So,ri+1 = ri and the induction
hypothesis completes the proof in this case.

Case2. Ri+1 is a won round.
We have thatχr(Gi+1) = χr(Gi) + 1 andχSR(Gi+1, π) ≤ χSR(Gi, π) + 1. So, by (ii) (and analogously
by (i))

ri+1 ≤
χSR(Gi, π) + 1

χr(Gi) + 1
≤ 2χr(Gi) + 1

χr(Gi) + 1
< 2,

and the hypothesis follows.

Case3. Ri+1 is a lost round.

Subcase3.1 Let us first analyze the situation whenRi+1 is the round in which color1 was used for the
first time. By assumption (i) we haveri < 2, which impliesχSR(Gi, π) ≤ 2χr(Gi)− 1. Hence,

ri+1 =
χSR(Gi+1, π)

χr(Gi+1)
=

χSR(Gi, π) + 1

χr(Gi)
≤ (2χr(Gi)− 1) + 1

χr(Gi)
= 2,

where the second equality follows directly from the definition of a lost round.

Subcase3.2 Now assume thatSR used forvi+1 some color larger than1 and that color1 has not been
used in roundsR1, . . . , Ri. Additionally, leti′ = 0 if there was no lost round precedingRi+1 or let i′ =
max{j ∈ {1, . . . , i} |Rj is lost} otherwise. Assume that there werek won rounds in{Ri′+1, . . . , Ri}.
By Lemma 7.2 we have thatk ≥ 1 wheni′ > 0 and thatk ≥ 2 wheni′ = 0. By the definition of a won
round,χr(Gi) = χr(Gi′) + k. Notice that all rounds in{Ri′+1, . . . , Ri} are either won or tie, which
implies thatχSR(Gi, π) ≤ χSR(Gi′ , π) + k. Then,

ri+1 =
χSR(Gi+1, π)

χr(Gi+1)
=

χSR(Gi, π) + 1

χr(Gi)
≤ χSR(Gi′ , π) + k + 1

χr(Gi′ ) + k
.

We need to prove thatri+1 < 2. If i′ = 0, thenχSR(Gi′ , π) = 0 andχr(Gi′) = 0 and the thesis follows.
Otherwise, by (i) of the induction hypothesis,

ri+1 <
2χr(Gi′ ) + k + 1

χr(Gi′ ) + k
=

2(χr(Gi′) + k) + 1− k

χr(Gi′ ) + k
≤ 2,

which proves (i).

Subcase3.3 If for vi+1 the algorithm used a color larger than1, but color1 has already been used in one
of the preceding rounds, then it is enough to notice that the first usage of color1 always results in a lost
round. The rest of the proof is analogous to Subcase 3.2 and wegetri+1 ≤ 2.

This completes the analysis of all possible cases, and sinceπ was chosen arbitrarily,χSR(G) ≤ 2χr(G)
follows. ✷
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8 Conclusions
The semi on-line algorithmSR presented in this paper uses at most2χr(G) colors for any split graphG.
Recall that the optimization goal used in this work, i.e., minimization of the number of pairwise different
colors assigned by the algorithm, is different from the maximum color criterion. We now point out that
SR is constant competitive for the latter criterion as well. Byconstruction,SR assigns color1 to a vertex
vi that belongs toIi, and one can prove that ifvi ∈ Si, thenc(vi) equals the value oflc at the end
of roundRi. Moreover, if a move corresponding to some roundRi is of one of the typesC1, . . . ,C5,
then |Ci| > |Ci−1|. Therefore, since|Cn| ≤ ω(G) there are at mostω(G) rounds with the moves of
typesC1, . . . ,C5, which implies thathc increases at mostω(G) times. Consequently, the maximum color
used bySR is 3ω(G) + 2, which means thatSR is 3-competitive in the sense of the second optimization
criterion.

Although for minimization of the number of colors we have proved thatSR is 2-competitive provided that
ω(G) is given, it is worth pointing out that it suffices whenSR only knows an upper bound onω(G). In
fact, we have proved that the algorithm works correctly whenlc andhc are set to at least2ω(G)+2 in the
initialization stage. Therefore, every algorithm that canfind an upper boundk onω(G) and callsSR(k) is
also2-competitive. In particular, there exists a2-competitive algorithm that is given in advance the order
n of a graphG.

Observe that a similar reasoning cannot be applied to semi on-line algorithms that known, whenever
we minimize the maximum color. We can argue, however, that there exists a(3

√
n + 2)-competitive

algorithmB of such type. To this end we first extendSR (letSR′ denote the corresponding new algorithm)
in such a way that wheneverlc reaches the value of1 in roundi, then in the subsequent roundsSR′ uses
pairwise different colors that are greater than or equal to the value ofhc in roundi. Let B proceed by
callingSR′(

√
n). If ω(G) <

√
n, then as argued in the proof of Lemma 7.2, the value oflc is greater than

1 during the entire execution ofSR. Therefore, the largest color used byB is bounded by3
√
n + 2 and

the claim trivially follows. Otherwise,χr(G) ≥ √n andSR′ produces a vertex ranking such that for any
graphG, the maximum color never exceedsn. Consequently,SR′ is

√
n-competitive in this case. On the

other hand,3
√
n + 2 constitutes an asymptotically tight bound, i.e., no semi on-line algorithmA, that is

givenn in advance, can be(
√
n − ε)-competitive for the maximum color minimization. Indeed, on the

contrary, suppose that such an algorithm exists and consider two natural cases. If the first color used byA
is less than

√
n, then by an easy generalization of Theorem 3.1, there existsPresenter’s strategy that forces

A to usen colors for a graphG with χr(G) ≤ √n. On the other hand, if the first color used is at least
√
n,

then Presenter fixesG to beNn (note thatχr(Nn) = 1). Clearly, in both casesχA(G)/χr(G) ≥ √n,
which contradicts our assumption.

Since the lower bound given in Theorem 3.2 holds for both criteria (every vertex has a different color),
an interesting direction for further research is a construction of a semi on-line ranking algorithm which is
2-competitive with respect to the minimization of the maximum color.

We finish with the remark that Dobrevet al. [10] introduced a formal framework that allows to classify
on-line problems according to how much information (advicebits) about the future input parts is needed
for solving them optimally or with a specific competitive ratio (see also [2, 5] for other results). From
the results proved in this paper it also follows that at least⌊log2 ω⌋ + 1 bits of advice are required for
any on-line ranking algorithm to be constant competitive onsplit graphs and that this number of bits is
sufficient to achieve a constant competitive ratio for both optimization criteria.
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