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Linear chord diagrams are partitions of [2n] into n blocks of size two called chords. We refer to a block of the form

{i, i+ 1} as a short chord. In this paper, we study the distribution of the number of short chords on the set of linear

chord diagrams, as a generalization of the Narayana distribution obtained when restricted to the set of noncrossing

linear chord diagrams. We provide a combinatorial proof that this distribution is unimodal and has an expected value

of one. We also study the number of pairs (i, i + 1) where i is the minimal element of a chord and i + 1 is the

maximal element of a chord. We show that the distribution of this statistic on linear chord diagrams corresponds to

the second-order Eulerian triangle and is log-concave.
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1 Introduction

Linear chord diagrams are partitions of [2n] = {1, 2, ..., 2n} into n blocks of size two called chords. For

a given chord {a, b} with b > a, we call a the startpoint, b the endpoint and b− a the length of the chord.

Linear chord diagrams with n chords are also called (perfect) matchings on [2n], i.e. ways of connecting

2n points in the plane lying on a horizontal line by n arcs, each arc connecting two of the points and lying

above the points, as described by Stanley (2015).

Two chords, {a1, b1} and {a2, b2}, are said to be crossing if a1 < a2 < b1 < b2 and are said to be

nesting if a1 < a2 < b2 < b1. For example, when n = 2 there are three linear chord diagrams:

1 2 3 4 1 2 3 4 1 2 3 4

The first of the three linear chord diagrams above consists of a pair of chords that are neither crossing nor

nesting; the second diagram consists of exactly one crossing and the third diagram consists of exactly one

nesting.

When n = 3, there are fifteen linear chord diagrams, all of which are shown in Figure 1 below. The

diagrams in the first row of Figure 1 are noncrossing (i.e., contain no crossings), while the last diagram

in the first row and the first four diagrams in the second row of Figure 1 are nonnesting (i.e., contain no

nestings). In general, the total number of linear chord diagrams having n chords is (2n− 1)!!.
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Fig. 1: The set of all linear chord diagrams with three chords each of length at least one.

Sullivan gave a relationship for the diagonals of the array (1) below of linear chord diagrams with n

chords where all chords have length at least k. See Sullivan (2017).

n\k 1 2 3 4 5
1 1
2 3 1
3 15 5 1
4 105 36 10 1
5 945 329 99 20 1
... · · ·

(1)

We are interested in further refining this table by considering the number of chords of length k for each

linear chord diagram with n chords.

In this paper, we will focus only on the case where k = 1, i.e. those linear chord diagrams with n

chords whose shortest chord is of length at least 1, classified by the number of chords of length 1. In

other words, we will look at the set of all linear chord diagrams with n chords (since all diagrams have

a shortest chord of length at least 1) by number of chords of length 1. In this context, a short chord will

be understood to be a chord of length one. Table (2) gives the total number Ln,s of linear chord diagrams

with n chords exactly s of which are short (have length one):

n\s 0 1 2 3 4 5 6 7 8
0 1
1 0 1
2 1 1 1
3 5 6 3 1
4 36 41 21 6 1
5 329 365 185 55 10 1
6 3655 3984 2010 610 120 15 1
7 47844 51499 25914 7980 1645 231 21 1
8 72135 769159 386407 120274 25585 3850 406 28 1
... · · ·

(2)
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n L1
n(q) L2

n(q) L3
n(q)

1 q

2 1 + q + q2 q2

3 5 + 6q + 3q2 + q3 1 + 2q + 2q2 q3

4 36+41q+21q2+6q3+q4 10+ 14q+9q2 +2q3 + q4 1 + 3q + 4q2 + 2q3

...
...

Fig. 2: The distribution of the number of minimal length chords on Lk

n for k = 1, 2, 3, . . . .

More generally, if we let Lk
n denote the set of all linear chord diagrams having n chords, each of which

has length at least k, then for π ∈ Lk
n, we refer to a chord of length k in π as a short chord. For π ∈ Lk

n,

define sc(π) to be the number of short chords, i.e. the number of chords of length k, in π. We want to

consider the distribution of the number of short chords on Lk
n, that is,

Lk
n(q) :=

∑

π∈Lk
n

qsc(π).

See Figure 2. Note that the numbers Ln,s in the table (2) above are the coefficients of the polynomials

L1
n(q) in the first column of the table in Figure 2. The numbers Ln,s are recorded as A079267 in Sloane

(2019).

It is known that the Catalan numbers Cn = 1
n+1

(

2n
n

)

count the number of noncrossing matchings on

[2n]. The Narayana numbers, N(n, k) = 1
k

(

n−1
k−1

)(

n
k−1

)

, count the number of noncrossing matchings on

[2n] with k arcs of the form (i, i+ 1) (i.e., k chords of length 1). The Narayana numbers are given by the

following table:

n\k 1 2 3 4 5
1 1
2 1 1
3 1 3 1
4 1 6 6 1
5 1 10 20 10 1
... · · ·

We may consider table (2) as a generalization of the Narayana numbers on the set of all matchings on

[2n].
An LR pair in a linear chord diagram is a pair of consecutive integers (i, i + 1) where i is a startpoint

of a chord and i + 1 is an endpoint of a (possibly different) chord. The Narayana numbers also count the

number of nonnesting matchings on [2n] with k LR pairs, which can be seen as follows. We first make

the well known observation that the Narayana numbers count the number of Dyck paths of length 2n with

k peaks, as described by Stanley (1999). Consider a Dyck path as a list of n up steps U and n down steps

D, such that at any step the number of preceding down steps never exceeds the number of preceding up

steps. Label the U steps of the list with the numbers 1 through n, from left to right, and label the D steps

of the list with the numbers 1 through n, from left to right. Draw a linear chord diagram with n chords

by connecting the U step labeled i with the D step labeled i, for all i = 1, . . . , n. The result is a unique

nonnesting linear chord diagram with n chords and k LR-pairs.

https://oeis.org/A079267
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We obtain a different generalization of the Narayana numbers by considering LR pairs in all matchings

on [2n] (equivalently, linear chord diagrams with n chords). Let Tn,k denote the number of all linear

chord diagrams with n chords having exactly k LR pairs. The following table gives the numbers Tn,k:

n\k 1 2 3 4 5 6 7
1 1
2 2 1
3 6 8 1
4 24 58 22 1
5 120 444 328 52 1
6 720 3708 4400 1452 114 1
7 5040 33984 58140 32120 5610 240 1
... · · ·

(3)

In Section 2 of this paper, we prove combinatorially that the rows of table (2) are unimodal and con-

jecture that they are also log-concave. We also give the exponential generating functions for the columns

of this triangle. It is known that the expected number of short chords among the elements of L1
n is one.

This fact was first shown by Kreweras and Poupard (1978) and more recently extended by Young (2018).

However, in Section 2, we provide a combinatorial proof of this fact by providing a bijection between the

total number of linear chord diagrams with n chords and the total number of chords of length one among

all linear chord diagrams with n chords. In Section 3, we explore the triangle given by table (3). We

connect table (3) to the second order Eulerian triangle and prove that the rows of table (3) are log-concave

(and thus also unimodal).

2 A Generalized Narayana Triangle

We now explore several interesting properties of the generalized Narayana triangle given in table (2), i.e,

the number of linear chord diagrams with n chords, exactly s of which have length 1. It is easy to see

that the entries on the main diagonal of this triangle will always have the value 1. Furthermore, the entries

along the first sub-diagonal correspond to the triangular numbers
(

n
2

)

.

Now recall from Section 1 that Ln,s =
∣

∣{π ∈ L1
n | sc(π) = s}

∣

∣ is the number of linear chord diagrams

having n chords exactly s of which are chords of length one. We introduce the following shorthand,

Ln(q) := L1
n(q) =

n
∑

s=0

Ln,s q
s,

and note that the coefficients of Ln(q) are given by the rows of table (2).

Theorem 1. Ln(q) is unimodal.

Proof: Let Ln,s := {π ∈ L1
n| sc(π) = s} denote the set of linear chord diagrams having n chords and

exactly s short chords (i.e., chords of length one), so that |Ln,s| = Ln,s. We can show that Ln(q) is

unimodal by establishing injective maps φ1 : Ln,0 → Ln,1 and φj : Ln,j → Ln,j−1 for j = 2, . . . , n.

Define φj : Ln,j → Ln,j−1 for j ≥ 2 as follows. Let π ∈ Ln,j . Then π has j short chords, where j ≥ 2.

Take the rightmost short chord, say {i, i+ 1}, and unwrap this chord by sending the right endpoint to the
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beginning of the diagram, i.e., replacing it with the long chord {1, i}. The result is a linear chord diagram

with j − 1 short chords where all short chords are covered. φj is injective. Define φ1 : Ln,0 → Ln,1 as

follows. Let π ∈ Ln,0. Take the first (long) chord {1, i} and turn it into the short chord {i, i + 1}; the

result is a chord diagram with exactly one short chord. This map is injective but not surjective because it

will not produce the chord diagrams in Ln,1 that begin with a short chord.

Conjecture 1. The coefficients of Ln(q) form a log-concave sequence.

Theorem 2. The exponential generating function for the number Ln,s of linear chord diagrams with n

chords, exactly s of which are chords of length one, is

e(−1+
√
1−2t)

√
1− 2t

· (1−
√
1− 2t)s

s!
.

Proof: First we note that, for s ≥ 0, the numbers Ln,s satisfy the recurrence

Ln,s = Ln−1,s−1 + (2n− 2− s)Ln−1,s + (s+ 1)Ln−1,s+1 (4)

with L0,0 = 1 and Ln,s = 0 for s > n. A combinatorial proof of this recurrence is given in Krasko and

Omelchenko (2017). We want to find the exponential generating function

Ls(t) :=

∞
∑

n=0

Ln,s

tn

n!

for the sth column of the triangle in (2). To do this, we extend the approach in Krasko and Omelchenko

(2017) that was used to find the exponential generating function L0(t). Recalling this approach, we define

Ln(q) := Ln,0 + Ln,1q + Ln,2q
2 + · · ·+ Ln,nq

n

and note that

Ln,s =
L
(s)
n (0)

s!
.

In Krasko and Omelchenko (2017), the authors define the bivariate generating function

ω(q, t) =
∞
∑

n=0

Ln(q)
tn

n!

and use recurrence (4) to show that

ω(q, t) =
e(1−q)(−1+

√
1−2t)

√
1− 2t

,

thereby setting q = 0 to obtain

L0(t) =
e(−1+

√
1−2t)

√
1− 2t
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as the exponential generating function for the first column of (2).

We can extend this observation by noting that

Ls(t) =

∞
∑

n=0

Ln,s

tn

n!
=

∞
∑

n=0

L
(s)
n (0)

s!

tn

n!
=

(

1

s!

∂sω

∂qs

∣

∣

∣

∣

q=0

)

and
1

s!

∂sω

∂qs
=

e(1−q)(−1+
√
1−2t)

√
1− 2t

· (1−
√
1− 2t)s

s!
.

Letting q = 0 in the last equation we obtain

Ls(t) =
e(−1+

√
1−2t)

√
1− 2t

· (1 −
√
1− 2t)s

s!
.

The last line of the preceding proof implies that the triangle in (2) is an exponential Riordan array with

initial function g = e(−1+
√

1−2t)
√
1−2t

and multiplier function f = 1 −
√
1− 2t. For reference, see Shapiro

et al. (1991) or Barry (2007). Furthermore, we may use Riordan group algebra to count the total number

of short chords among all linear chord diagrams with n chords. To do this, we multiply triangle (2) by the

infinite column vector (0, 1, 2, 3, . . . )T , using Riordan group multiplication. Since tet is the exponential

generation function for the sequence 0, 1, 2, 3, 4, . . . , the Riordan multiplication proceeds as follows:

(

e(−1+
√
1−2t)

√
1− 2t

, 1−
√
1− 2t

)

∗ tet =
e(−1+

√
1−2t)

√
1− 2t

(

1−
√
1− 2t

)

e1−
√
1−2t

=
1√

1− 2t
− 1

=

∞
∑

n=0

(2n− 1)!!
tn

n!
,

where (2n − 1)!! = 1 · 3 · 5 · (2n − 1) for n ≥ 1 and 0 otherwise. The result is that the total number

of short chords among all linear chord diagrams with n chords is the same as the total number of linear

chord diagrams with n chords.

We now provide a bijective argument for the fact that the expected number of short chords among all

linear chord diagrams with n chords is one.

Theorem 3 (Kreweras and Poupard (1978)). The total number of short chords among all linear chord

diagrams with n chords is equal to the number of linear chord diagrams with n chords.

Proof: We will construct a bijection which maps each short chord s in a linear chord diagram D with n

chords to a unique linear chord diagram Ds with n chords.

To begin, identify a short chord s in any linear chord diagram D with n chords. If s = {1, 2}, then

s will be mapped to the diagram D that s is a part of, that is, Ds = D. If s = {i, i + 1} in D, where

i > 1, then s will be mapped to the diagram Ds that has the same connectivity as D, except that the chord
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Fig. 3: An illustration of the bijective proof of Theorem 3 in the case where n = 3. For each short chord s (highlighted

in bold) above, see its corresponding linear chord diagram Ds pictured below.

{i, i+1} in D has been replaced with the chord {1, i+1} and all start and endpoints between 1 and i− 1
have moved one position to the right. It should be clear that if s1 and s2 are two different short chords,

either from the same or different diagrams, then Ds1 6= Ds2 , and hence this map is injective.

To invert this map, we do the following. Take a linear chord diagram D and consider its first chord

{1, i + 1}. If i = 1, associate D with its first chord s = {1, 2}. If i > 1, create a new diagram by

removing {1, i+ 1} from D, shifting all the start and endpoints 2, . . . , i of D one position to the left and

inserting the chord s = {i, i+1}. Associate D with the short chord s = {i, i+1} from this new diagram.

It should be clear from the description of this inverse map that if D1 and D2 are two different linear chord

diagrams, then the short chord s1 associated with D1 will be different from the short chord s2 associated

with D2.

See Figure 3 for a depiction of this bijection when n = 3.

Hence, we have a bijection between the set of short chords among all linear chord diagrams with n

chords and the set of linear chord diagrams with n chords.

3 The Second-Order Eulerian Triangle

In this section, we explore the second-order Eulerian triangle, which can be thought of as another general-

ization of the Narayana triangle. The second-order Eulerian triangle is given below, where entry E(n, k)
is known to count the number of permutations of the multiset {1, 1, 2, 2, . . . , n, n} with k ascents such
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that between any two copies of m there are only numbers less than m.

n\k 0 1 2 3 4 5 6
1 1
2 1 2
3 1 8 6
4 1 22 58 24
5 1 52 328 444 120
6 1 114 1452 4400 3708 720
7 1 240 5610 32120 58140 33984 5040
... · · ·

This triangle is recorded as A008517 Sloane (2019). The second-order Eulerian numbers are known to

satisfy the recurrence:

E(n, k) = (k + 1)E(n− 1, k) + (2n− k − 1)E(n− 1, k − 1) (5)

where E(n, 0) = 1. This can be seen by the following argument.

One can form all permutations of the multiset {1, 1, 2, 2, . . . , n, n} with k ascents in which between

any two copies of m there are only numbers less than m by taking all such permutations of the multiset

{1, 1, 2, 2, . . . , n − 1, n − 1} with k ascents and first replacing all numbers m = 1, 2, . . . , n − 1 with

m + 1. Then insert the pair 1 1 at the end of the permutation or between any ascent, which can be done

in k + 1 ways. One can also form such a permutation by taking any such permutation of the multiset

{1, 1, 2, 2, . . . , n − 1, n − 1} with k − 1 ascents and inserting the pair 1 1 at any place which is not an

ascent, which can be done in 2n− k − 1 ways.

The row reversal of the second-order Eulerian triangle gives the triangle

n\k 1 2 3 4 5 6 7
1 1
2 2 1
3 6 8 1
4 24 58 22 1
5 120 444 328 52 1
6 720 3708 4400 1452 114 1
7 5040 33984 58140 32120 5610 240 1
... · · ·

(6)

whose entries we will denote by T (n, k). Note we have re-indexed the columns to initialize with k = 1.

Proposition 1. The entries T (n, k) of the row reversed second-order Eulerian triangle (6), which satisfy

T (n, k) = (n− k + 1)T (n− 1, k − 1) + (n− 1 + k)T (n− 1, k) (7)

with n, k ≥ 1 and T (n, 1) = n!, count the number of linear chord diagrams with n chords and k LR

pairs.

https://oeis.org/A008517
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Proof: The fact that T (n, k) satisfies recurrence (7) follows directly from recurrence (5) for the second-

order Eulerian triangle. We will show that the number of linear chord diagrams with n chords and k LR

pairs also satisfies recurrence (7).

To form a linear chord diagram with n chords and k LR pairs, start with a linear chord diagram with

n − 1 chords and k − 1 LR pairs. Place a new start point for a chord at the beginning of the diagram

and place the end point for the chord after any start point that isn’t in an LR pair. This can be done in

n− (k−1) = n−k+1 ways. One can also form a linear chord diagram with n chords and k LR pairs by

starting with a linear chord diagram with n− 1 chords and k LR pairs. Place a new start point for a chord

at the beginning of the diagram and place the end point for the chord after any end point or after any start

point that is in an LR pair. This can be done in (n− 1) + k ways.

Thus we can consider the row-reversed second-order Eulerian triangle to be a generalization of the

Narayana triangle for all linear chords diagrams (not just those that are non-nesting, which are those

counted by the Narayana triangle). Since the generalized Narayana triangle studied in Section 2 has

entries that we have proven to be unimodal and conjecture to be log-concave, one might wonder if those

properties hold for this second generalization of the Narayana triangle as well.

Using the following lemma due to Kurtz (1972), we may conclude that the coefficients in each row of

the (row-reversed) second-order Eulerian triangle form a log-concave, and therefore unimodal, sequence.

Lemma 1 (Kurtz (1972)). Suppose

n
∑

k=0

R(n, k)qk is a polynomial for which R(n, k) satisfies the recur-

rence relation

R(n, k) = (a1n+ a2k + a3) R(n− 1, k)

+ (b1n+ b2k + b3) R(n− 1, k − 1),

for n ≥ k ≥ 1, with boundary conditions R(0, 0) > 0,

R(n,−1) = R(n, n+ 1) = 0, for n ≥ 1,

a1 ≥ 0, a1 + a2 ≥ 0, a1 + a2 + a3 > 0, and

b1 ≥ 0, b1 + b2 ≥ 0, b1 + b2 + b3 > 0.

Then, for given n, the sequence {R(n, k)}0≤k≤n is log-concave.

Theorem 4. T (n, k) forms a log-concave sequence.

Proof: T (n, k) satisfies Lemma 1 with a1 = 1, a2 = 1, a3 = −1, b1 = 1, b2 = −1, b3 = 1.

4 Summary and Future Work

We have given two generalizations of the Narayana numbers, the number of linear chord diagrams with n

chords and k short chords and the number of linear chord diagrams with n chords and k LR pairs which

give the Narayana numbers when restricted to non-crossing linear chord diagrams (in the first case) and

nonnesting linear chord diagrams (in the second case), but which are not themselves equidistributed. In
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addition, the first generalization gives a study of the coefficients given by the polynomials in the first

column of table in Figure 2.

Since the results of this paper focus on generalizing the Narayana numbers and the first column of the

table in Figure 2, one might wonder if there are interesting results that could be proven for the coefficients

of the remaining columns in Figure 2.

Another interesting observation is that all matchings can be considered to be Fibonacci tableaux with no

fixed points and all non-nesting matchings are both Fibonacci tableaux and 2×n tableaux that are counted

by the Catalan numbers. Fibonacci tableaux with no fixed points correspond to permutations that are 312,

321 and 123 avoiding, thus giving a relation between matchings and pattern avoiding permutations. It

would be interesting to see results involving various statistics on these objects translated to and/or from

linear chord diagrams.
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