Maximal independent sets in bipartite graphs with at least one cycle
Shuchao Li, Huihui Zhang, Xiaoyan Zhang

To cite this version:
Maximal independent sets in bipartite graphs with at least one cycle

Shuchao Li1 \quad Huihui Zhang1 \quad Xiaoyan Zhang2\dag

1Faculty of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China
2School of Mathematical Science & Institute of Mathematics, Nanjing Normal University, Nanjing 210023, China

received 18th Apr. 2013, revised 30th July 2013, accepted 21st Aug. 2013.

A maximal independent set is an independent set that is not a proper subset of any other independent set. Liu [J.Q. Liu, Maximal independent sets of bipartite graphs, J. Graph Theory, 17 (4) (1993) 495-507] determined the largest number of maximal independent sets among all \(n \)-vertex bipartite graphs. The corresponding extremal graphs are forests. It is natural and interesting for us to consider this problem on bipartite graphs with cycles. Let \(B_n \) (resp. \(B'_n \)) be the set of all \(n \)-vertex bipartite graphs with at least one cycle for even (resp. odd) \(n \). In this paper, the largest number of maximal independent sets of graphs in \(B_n \) (resp. \(B'_n \)) is considered. Among \(B_n \) the disconnected graphs with the first-, second-, \ldots, \(\frac{n-2}{2} \)-th largest number of maximal independent sets are characterized, while the connected graphs in \(B_n \) having the largest and the second largest number of maximal independent sets are determined. Among \(B'_n \) graphs having the largest number of maximal independent sets are identified.

Keywords: Maximal independent set, bipartite graph, cycle

1 Introduction

Given a graph \(G = (V_G, E_G) \), a set \(I \subseteq V_G \) is independent if there is no edge of \(G \) between any two vertices of \(I \). A maximal independent set is an independent set that is not a proper subset of any other independent set. The dual of an independent set is a clique, in the sense that a clique corresponds to an independent set in the complement graph. The set of all maximal independent sets of a graph \(G \) is denoted by \(\text{MI}(G) \) and its cardinality by \(\text{mi}(G) \).

Around 1960, Erdős and Moser proposed the problem to determine the maximum value of \(\text{mi}(G) \) when \(G \) runs over all \(n \)-vertex graphs and to characterize the graphs attaining this maximum, both of which were answered by Moon and Moser [18]. It is interesting to see that the extremal graphs turn to have most components isomorphic to the complete graph \(K_3 \). On the other hand, the theory on maximal independent set has some applications in other research field. For example, in chemistry, a Clar structure is defined to be a maximal independent set of vertices of the Clar graph of the corresponding benzenoid hydrocarbons [5]. Clar structures recently are used as basis-set to compute resonance energies. The theory of maximal
independent set is also applied to the areas of managements and networks. For the compatibility graph G, its vertices denote tasks, and an edge denotes a resource sharing constraint between the two tasks linked by it. A maximal independent set of a compatibility graph represents a maximal set of tasks that can be executed concurrently. Basagni [2] and Alzoubi et al. [21] pointed out the importance of a maximal independent set in the wireless network. Moscibrodzka and Watenhofer [19] obtained the well-known Maximal Independent Set problem when they modeled the unstructured radio network as a graph.

Along the line on the study of the maximal independent set in mathematical literature, mathematicians focused on determining the largest number of maximal independent sets in various interesting classes of graphs. Ying et al. [22] determined the maximum number of maximal independent sets in graphs of order n with at most r cycles and in connected graphs of order $n \geq 3r$ with at most r cycles. Ortiz [20] established a sharp upper bound for the number of maximal independent sets in caterpillar graphs. Arumugam et al. [1] studied the third largest number of maximal independent sets of trees. Jin and Yan [9] settled the problem for the second and third largest number of maximal independent sets of trees.

This paper is motivated directly from [17], in which the author completely characterized the n-vertex bipartite graphs having the largest number of maximal independent sets. The corresponding extremal graphs are forests. Furthermore, for the bipartite graph of order n that contains cycles, the author in [17] determined the upper bound on the number of maximal independent sets for odd n. Unfortunately, the graphs which attain this value were not characterized. It is natural and interesting to determine the corresponding extremal graphs, which is settled in this paper. On the other hand, it is necessary and interesting to consider this problem on the n-vertex bipartite graphs with cycles for even n. In this paper, among the set of all disconnected bipartite graphs with even order, the extremal graphs which have the first-, second-, ..., $\frac{n}{2}$-th largest number of maximal independent sets are characterized respectively, while among the set of all connected bipartite graphs with even order, the extremal graphs having the largest and the second largest number of maximal independent sets are identified.

2 Preliminary

Given a simple graph $G = (V_G, E_G)$, the cardinality of V_G is called the order of G. And $G - v$ denotes the graph obtained from G by deleting vertex $v \in V_G$ (this notation is naturally extended if more than one vertex is deleted). For $v \in V_G$, let $N_G(v)$ (or $N(v)$ for short) denote the set of all the adjacent vertices of v in G and $d(v) = |N_G(v)|$. For convenience, let $N_G[v] = N_G(v) \cup \{v\}$. A leaf of G is a vertex of degree one, while an isolated vertex of G is a vertex of degree zero. For any two graphs G and H, let $G \cup H$ denote the disjoint union of G and H, and for any nonnegative integer t, let tG stand for the disjoint union of t copies of G. For a connected graph H with maximum degree vertex x and a graph $G = G_1 \cup G_2 \cup \cdots \cup G_k$ with u_i being a maximum degree vertex in $G_i, i = 1, 2, \ldots, k$. Define the graph $H * G$ to be the graph with vertex set $V_{H*G} = V_H \cup V_G$ and edge set $E_{H*G} = E_H \cup E_G \cup \{xu_i : i = 1, 2, \ldots, k\}$. An odd (resp. even) component is a component of odd (resp. even) order. Throughout the text we denote by $F_n, C_n, K_{1,n-1}$ and K_n the path, cycle, star and complete graph on n vertices, respectively. Undefined terminology and notation may be referred to [3].
Throughout this paper, for simplicity, \(r \) denotes \(\sqrt{2} \).

We begin with some useful known results which are needed to prove our main results.

Lemma 1 ([7, 14]) For any vertex \(v \) in a graph \(G \), \(\text{mi}(G) \leq \text{mi}(G - v) + \text{mi}(G - N_G[v]) \). If \(v \) is a leaf adjacent to \(u \), then \(\text{mi}(G) = \text{mi}(G - N_G[v]) + \text{mi}(G - N_G[u]) \).

Lemma 2 ([14]) If \(G \) is the union of two disjoint graphs \(G_1 \) and \(G_2 \), then \(\text{mi}(G) = \text{mi}(G_1) \cdot \text{mi}(G_2) \).

Lemma 3 ([13]) If \(T \) is a tree with \(n \geq 1 \) vertices, then \(\text{mi}(T) \leq t_1(n) \), where

\[
t_1(n) = \begin{cases}
 r^{n-2} + 1, & \text{if } n \text{ is even;} \\
 r^{n-1}, & \text{if } n \text{ is odd.}
\end{cases}
\]

Furthermore, \(\text{mi}(T) = t_1(n) \) if and only if \(T \in T_1(n) \), where

\[
T_1(n) = \begin{cases}
 B(2, \frac{n-2}{2}) \text{ or } B(4, \frac{n-4}{2}), & \text{if } n \text{ is even;} \\
 B(1, \frac{n-1}{2}), & \text{if } n \text{ is odd},
\end{cases}
\]

where \(B(i, j) \) is the set of batons, which are the graphs obtained from a basic path \(P_i \) (\(i \geq 1 \)) by attaching \(j \geq 0 \) paths of length two to the endpoints of \(P_i \) in any possible ways.

Lemma 4 ([13]) If \(F \) is a forest with \(n \geq 1 \) vertices, then \(\text{mi}(F) \leq f_1(n) \), where

\[
f_1(n) = \begin{cases}
 r^n, & \text{if } n \text{ is even;} \\
 r^{n-1}, & \text{if } n \text{ is odd.}
\end{cases}
\]

Furthermore, \(\text{mi}(F) = f_1(n) \) if and only if \(F \in F_1(n) \), where

\[
F_1(n) = \begin{cases}
 \frac{n}{2} K_2, & \text{if } n \text{ is even;} \\
 B(1, \frac{n-1-2s}{2}) \cup sK_2 \text{ for some } s \text{ with } 0 \leq s \leq \frac{n-1}{2}, & \text{if } n \text{ is odd.}
\end{cases}
\]

Lemma 5 ([14]) If \(F \) is a forest with \(n \geq 4 \) vertices having \(F \not\in F_1(n) \), then \(\text{mi}(F) \leq f_2(n) \), where

\[
f_2(n) = \begin{cases}
 3r^{n-4}, & \text{if } n \geq 4 \text{ is even;} \\
 3, & \text{if } n = 5; \\
 7r^{n-7}, & \text{if } n \geq 7 \text{ is odd.}
\end{cases}
\]

Furthermore, \(\text{mi}(F) = f_2(n) \) if and only if \(F \in F_2(n) \), where

\[
F_2(n) = \begin{cases}
 P_4 \cup \frac{n-4}{2} K_2, & \text{if } n \geq 4 \text{ is even;} \\
 P_4 \ast P_4 \text{ or } P_4 \cup P_4, & \text{if } n = 5; \\
 P_7 \cup \frac{n-7}{2} K_2, & \text{if } n \geq 7 \text{ is odd.}
\end{cases}
\]
Lemma 6 ([17]) The maximum number of maximal independent sets among all bipartite graphs of order \(n \) is \(2\left\lfloor \frac{n}{2} \right\rfloor \), or \(9r_{n-8} \).

Lemma 7 ([17]) If \(G \) is an acyclic graph of order \(n \) and \(G \not\cong B_{n,k} \), then \(\mi(G) < t_1(n) \).

Lemma 8 If \(n \geq 6 \), then \(\mi(C_n) = \mi(C_{n-2}) + \mi(C_{n-3}) \). Furthermore, one has

\[
\mi(C_n) < \begin{cases}
 r^{n-1}, & \text{if } n \geq 7 \text{ is odd;} \\
 r^{n-2}, & \text{if } n \geq 12 \text{ is even.}
\end{cases}
\]

Proof: The first part is due to [13]; we show the second part by induction on \(n \). It is routine to check that

\[
\mi(C_7) = 7 < r^6, \quad \mi(C_9) = 12 < r^8, \quad \mi(C_{11}) = 22 < r^{10}, \\
\mi(C_{12}) = 29 < r^{10}, \quad \mi(C_{13}) = 39 < r^{12}, \quad \mi(C_{14}) = 51 < r^{12}.
\]

Assume the result holds for \(n \leq k \). Now consider \(n = k + 1 \geq 15 \). By induction hypothesis, we obtain

\[
\mi(C_n) = \mi(C_{n-2}) + \mi(C_{n-3}) < \begin{cases}
 r^{n-2} + r^{n-3-2} = 3r^{n-5} < r^{n-1}, & \text{if } n \text{ is odd;} \\
 r^{n-2} + r^{n-3-1} = r^{n-2}, & \text{if } n \text{ is even.}
\end{cases}
\]

This completes the proof. \(\square \)

3 Sharp bounds and extremal graphs

Let \(\mathcal{B}_n \) (resp. \(\mathcal{B}_n' \)) be the set of all \(n \)-vertex bipartite graphs with at least one cycle for even (resp. odd) \(n \). In this section, among \(\mathcal{B}_n \) the disconnected graphs with the first-, second-, \ldots, \(n/2 \)-th largest number of maximal independent sets are characterized, while the connected graphs in \(\mathcal{B}_n \) having the largest and the second largest number of maximal independent sets are determined; among \(\mathcal{B}_n' \) the graphs having the largest number of maximal independent sets are identified.

For even \(n \) and \(3 \leq k \leq \frac{n}{2} \), define \(D_{n,k} = B_{2k} \cup (\frac{n}{2} - k)K_2 \), where \(B_{2k} \) is depicted in Fig. 1. Then \(\mi(D_{n,k}) = 2^{\frac{n}{2}}(2^{k-1} + 1) \leq r^{n-k} + r^{n-6} \).

Theorem 1 For graphs \(D_{n,3}, D_{n,4}, \ldots, D_{n,\frac{n}{2}}, C_8 \cup \frac{n-8}{2}K_2, C_{10} \cup \frac{n-10}{2}K_2, (C_8 \ast K_2) \cup \frac{n-10}{2}K_2 \), one has

\[
\mi(D_{n,3}) = \mi(C_8 \cup \frac{n-8}{2}K_2) > \mi(D_{n,4}) > \mi(D_{n,5}) = \mi(C_{10} \cup \frac{n-10}{2}K_2) \\
= \mi((C_8 \ast K_2) \cup \frac{n-10}{2}K_2) > \mi(D_{n,6}) > \mi(D_{n,7}) > \cdots > \mi(D_{n,\frac{n}{2}}) = r^{n-2} + 1.
\]
Maximal independent sets in bipartite graphs

Fig. 1: Graph B_{2k}, where $k \geq 3$ and $t \geq 2$.

Proof: By direct computing, we have

$$\text{mi}(D_{n,t}) = 2^{\frac{n-2t}{2}} \cdot \text{mi}(B_{2t}) = 2^{\frac{n-2t}{2}} + 2^{\frac{n-2t}{2}}, \quad t = 3, 4, \ldots, \frac{n}{2}, \quad (1)$$

$$\text{mi}(C_8 \uplus \frac{n-8}{2}K_2) = 10 \cdot 2^{\frac{n-8}{2}}, \quad (2)$$

$$\text{mi}(C_{10} \uplus \frac{n-10}{2}K_2) = 17 \cdot 2^{\frac{n-10}{2}}, \quad (3)$$

$$\text{mi}((C_8 \ast K_2) \uplus \frac{n-10}{2}K_2) = 17 \cdot 2^{\frac{n-10}{2}}. \quad (4)$$

By (1), it is easy to see that $\text{mi}(D_{n,t}) < \text{mi}(D_{n,t-1})$ for $4 \leq t \leq \frac{n}{2}$. Combining with (2)-(4), our results follow immediately. □

Let $H_0(6), H_0(8), H_0(10), H_1(n), H_2(n), H_3(n)$ and $O_1(n)$ be the graphs depicted in Fig. 2.

Fig. 2: The extremal graphs

Theorem 2 Consider an n-vertex bipartite graph G containing cycles with $n \geq 5$.

(i) If $G \in \mathcal{B}_n \setminus \{D_{n,3}, D_{n,4}, \ldots, D_{n,\frac{n}{2}}, C_8 \uplus \frac{n-8}{2}K_2, C_{10} \uplus \frac{n-10}{2}K_2, (C_8 \ast K_2) \uplus \frac{n-10}{2}K_2\}$, then

$$\text{mi}(G) \leq r^{n-2}. \quad (5)$$

If G is connected, the equality holds in (5) if and only if $G \cong H_0(n), H_1(n), H_2(n),$ or $H_3(n)$ for $n = 6, 8, 10$; and $G \cong H_1(n), H_2(n),$ or $H_3(n)$ for $n \geq 12$.

If G is disconnected, the equality holds in (5) if and only if $G \cong C_4 \uplus \frac{n-4}{2}K_2, H_0(6) \uplus \frac{n-6}{2}K_2, H_0(8) \uplus \frac{n-8}{2}K_2, H_0(10) \uplus \frac{n-10}{2}K_2, H_1(n - 2k) \uplus kK_2, H_2(n - 2k) \uplus kK_2$, or $H_3(n - 2k) \uplus kK_2$.

(ii) If \(G \in \mathcal{B}'_n \), then
\[
\text{mi}(G) \leq 3r^{n-5}.
\]

The equality in (6) holds if and only if \(G \cong C_6 \ast K_1 \), or \(O_1(n) \) for connected \(G \) and \(G \cong O_1(n - 2k) \sqcup kK_2 \), or \((C_6 \ast K_1) \sqcup \frac{n-7}{2}K_2 \) for disconnected \(G \).

Proof: We put the proofs of (i) and (ii) together as below. Choose \(G \) in \(\mathcal{B}_n \setminus \{ D_{n,3}, D_{n,4}, \ldots, D_{n,\Phi}, C_8 \sqcup \frac{n-8}{2}K_2, C_{10} \sqcup \frac{n-10}{2}K_2, (C_6 \ast K_2) \sqcup \frac{n-10}{2}K_2 \} \) (resp. \(\mathcal{B}'_n \)) such that \(\text{mi}(G) \) is as large as possible.

We proceed by induction on \(n \).

For \(5 \leq n \leq 6 \), it is straightforward to check that our results hold. Assume that our results hold for \(n \leq k \). Now consider \(n = k + 1 \geq 7 \).

First we consider that \(G \) is disconnected. Denote
\[
G = G_{o_1} \sqcup G_{o_2} \sqcup \cdots \sqcup G_{o_{n_1}} \sqcup G_{e_1} \sqcup G_{e_2} \sqcup \cdots \sqcup G_{e_{l_2}},
\]
where \(G_{o_i} \) is an odd component for \(1 \leq i \leq l_1 \) and \(G_{e_j} \) is an even component for \(1 \leq j \leq l_2 \).

Case 1. \(n \) is even. In this case, we have that \(l_1 \) is also even. If \(l_1 \geq 2 \), then
\[
\text{mi}(G) = \prod_{i=1}^{l_1} \text{mi}(G_{o_i}) \cdot \prod_{j=1}^{l_2} \text{mi}(G_{e_j}) \quad \text{(by Lemma 2)}
\]
\[
\leq \prod_{i=1}^{l_1} r^{|V_{G_{o_i}}| - 1} \cdot \prod_{j=1}^{l_2} r^{|V_{G_{e_j}}|} \quad \text{(by Lemma 6)}
\]
\[
= r^{n-1},
\]
\[
\leq r^{n-2}.
\]

The equality in (7) holds if and only if \(G_{o_i} \cong F_1(|V_{G_{o_i}}|) \) for \(1 \leq i \leq l_1 \), \(G_{e_j} \cong F_1(|V_{G_{e_j}}|) \) for \(1 \leq j \leq l_2 \); while the equality in (8) holds if and only if \(l_1 = 2 \), which implies that \(G \cong F_1(|V_{G_{o_1}}|) \sqcup F_1(|V_{G_{e_1}}|) \sqcup \frac{n-|V_{G_{o_1}}| - |V_{G_{e_1}}|}{2}K_2 \). Obviously, \(G \) does not contain cycles, so \(\text{mi}(G) < r^{n-2} \).

Therefore we consider that \(l_1 = 0 \), that is to say, each component contained in \(G \) is an even component. Without loss of generality, assume that \(|V_{G_{e_1}}| \geq |V_{G_{e_2}}| \geq \cdots \geq |V_{G_{e_{l_2}}}| \). Note that \(G \) contains cycles, hence \(|V_{G_{e_1}}| \geq 4 \).

If \(|V_{G_{e_1}}| = 4 \), then there exists a \(p \in \{ 1, 2, \ldots, l_2 \} \) such that \(|V_{G_{e_1}}| = |V_{G_{e_2}}| = |V_{G_{e_3}}| = \cdots = |V_{G_{e_p}}| = 4 \). As \(G \) contains cycles, there is at least one \(i \in \{ 1, 2, \ldots, p \} \) such that \(G_{e_i} \cong C_4 \). We obtain that
\[
\text{mi}(G) = \text{mi}(G_{e_i}) \cdot \prod_{1 \leq j \neq i \leq p} \text{mi}(G_{e_j}) \cdot \prod_{k=p+1}^{l_2} \text{mi}(G_{e_k}) \quad \text{(by Lemma 2)}
\]
\[
\leq 2 \cdot 3^{p-1} \cdot r^{n-4p} \quad \text{(by Lemmas 3 and 6)}
\]
\[
= r^{n-2} \cdot \left(\frac{3}{4} \right)^{p-1}
\]
\[
\leq r^{n-2}.
\]
The equality in (9) holds if and only if $G_{e_1} \cong C_4$, $G_{e_2} \cong P_4$ for $1 \leq j \neq i \leq p$, $G - (G_{e_1} \cup G_{e_2} \cup \cdots \cup G_{e_p}) \cong F_1(n - 4p) = \frac{n - 4p}{2} K_2$; while the equality in (10) holds if and only if $p = 1$, which implies that $G \cong C_4 \cup \frac{n - 4}{2} K_2$, our result holds.

If $|V_{G_{e_1}}| \geq 6$, then we consider the following two possible subcases.

- $|V_{G_{e_2}}| = 2$. In this subcase, we have $G - G_{e_2} \cong \frac{n - |V_{G_{e_2}}|}{2} K_2$. Note that $G \not\cong D_{n, |V_{G_{e_2}}|/2}, C_8 \cup \frac{n - 8}{2} K_2, C_{10} \cup \frac{n - 10}{2} K_2$ and $(C_8 \ast K_2) \cup \frac{n - 10}{2} K_2$, hence $G_{e_2} \not\cong B_{|V_{G_{e_2}}|}, C_8, C_{10}$ and $C_8 \ast K_2$. By induction hypothesis and Lemma 2, we have

$$\text{mi}(G) = \text{mi}(G_{e_1}) \cdot \text{mi}(G - G_{e_1}) \leq r^{|V_{G_{e_1}}| - 2} r^{n - |V_{G_{e_2}}|} = r^{n - 2}.$$

The equality in (11) holds if and only if $G_{e_1} \cong H_0(6), H_0(8), H_0(10), H_1(|V_{G_{e_1}}|), H_2(|V_{G_{e_2}}|)$, or $H_3(|V_{G_{e_1}}|)$. Together with $G - G_{e_1} \cong \frac{n - |V_{G_{e_1}}|}{2} K_2$, our result follows immediately.

- $|V_{G_{e_2}}| \geq 4$. In this subcase, we have

$$\text{mi}(G) = \text{mi}(G_{e_1}) \cdot \text{mi}(G_{e_2}) \cdot \prod_{j=3}^{l_2} \text{mi}(G_{e_j}) \quad \text{(by Lemma 2)}$$

$$\leq (r^{|V_{G_{e_1}}| - 2} + 1) \cdot (r^{|V_{G_{e_2}}| - 2} + 1) \cdot r^{n - |V_{G_{e_1}}| - |V_{G_{e_2}}|} \quad \text{(by Lemmas 3, 6 and Theorem 1)}$$

$$= r^{n - 4} + r^{n - |V_{G_{e_2}}| - 2} + r^{n - |V_{G_{e_1}}| - 2} + r^{n - |V_{G_{e_1}}| - |V_{G_{e_2}}|}$$

$$\leq r^{n - 4} + r^{n - 6} + r^{n - 8} + r^{n - 10}$$

$$< r^{n - 2}.$$

Case 2. n is odd. In this case, l_1 is also odd. If $l_1 \geq 3$, by Lemmas 2 and 6, we get

$$\text{mi}(G) = \prod_{i=1}^{l_1} \text{mi}(G_{o_i}) \cdot \prod_{j=1}^{l_2} \text{mi}(G_{e_j}) \leq \prod_{i=1}^{l_1} r^{|V_{G_{o_i}}| - 1} \prod_{j=1}^{l_2} r^{|V_{G_{e_j}}|} = r^{n - l_1} \leq r^{n - 3} < 3r^{n - 5}.$$

Hence, we consider that $l_1 = 1$ in what follows.

If G_{o_1} contains cycles, by induction hypothesis and Lemmas 2 and 6, we obtain that

$$\text{mi}(G) = \text{mi}(G_{o_1}) \cdot \text{mi}(G - G_{o_1}) \leq 3r^{|V_{G_{o_1}}| - 5} r^{n - |V_{G_{o_1}}|} = 3r^{n - 5},$$

the equality holds if and only if $G_{o_1} \cong O_1(|V_{G_{o_1}}|) \cup C_6 \ast K_4$ and $G - G_{o_1} = \frac{n - |V_{G_{o_1}}|}{2} K_2$, which implies that $G \cong O_1(|V_{G_{o_1}}|) \cup \frac{n - |V_{G_{o_1}}|}{2} K_2$ or $(C_6 \ast K_4) \cup \frac{n - 7}{2} K_2$, the result holds.

If G_{o_1} does not contain cycles, then there exists at least one even component G_{e_j} containing cycles.
with $|V_{G_{e_j}}| \geq 4$. If $|V_{G_{e_j}}| = 4$, then $G_{e_j} \cong C_4$. We obtain that

$$
\text{mi}(G) = \text{mi}(G_{e_1}) \cdot \text{mi}(G_{e_2}) \cdot \prod_{1 \leq i \neq j \leq 2} \text{mi}(G_{e_i}) \quad \text{(by Lemma 2)}
$$

$$
\leq r^{|V_{G_{e_1}}| - 1} \cdot 2 \cdot r^{n - 4 - |V_{G_{e_1}}|} \quad \text{(by Lemmas 3 and 6)}
$$

$$
< 3r^{n - 5},
$$

the result holds. If $|V_{G_{e_j}}| \geq 6$, we obtain that

$$
\text{mi}(G) = \text{mi}(G_{e_1}) \cdot \text{mi}(G_{e_2}) \cdot \prod_{1 \leq i \neq j \leq 2} \text{mi}(G_{e_i}) \quad \text{(by Lemma 2)}
$$

$$
\leq r^{|V_{G_{e_1}}| - 1} \cdot (r^{|V_{G_{e_2}}| - 2} + 1) \cdot r^{n - |V_{G_{e_1}}| - |V_{G_{e_2}}|} \quad \text{(by Lemmas 3, 6 and Theorem 1)}
$$

$$
= r^{n - 3} + r^{n - |V_{G_{e_2}}| - 1}
$$

$$
\leq r^{n - 3} + r^{n - 7}
$$

$$
< 3r^{n - 5}.
$$

The result holds.

Now we consider that G is connected. It suffices to consider the following two possible cases.

Case 1. G has a vertex v of degree ≥ 4 such that $G - v$ has cycles.

Subcase 1.1. n is even. In this subcase, we have

$$
\text{mi}(G) \leq \text{mi}(G - v) + \text{mi}(G - N_G[v]) \quad \text{(by Lemma 1)}
$$

$$
\leq 3r^{n - 6} + r^{n - 5 - 1} \quad \text{(by induction hypothesis and Lemma 6)} \quad (12)
$$

The equality in (12) holds if and only if $G - v \cong O_1(k) \uplus \frac{n - 1}{2}K_2$ or $(C_6 \ast K_1) \uplus \frac{n - 8}{2}K_2$, $G - N_G[v] \cong F_1(n - 5)$. But there is no such bipartite graph since $G - N_G[v]$ is obtained from $G - v$ by deleting four independent vertices, hence $\text{mi}(G) < r^{n - 2}$.

Subcase 1.2. n is odd.

In this subcase, we first consider that $G - v \cong D_{n-1,k}$. Then by Theorem 1, $\text{mi}(G - v) \leq r^{n - 3} + r^{n - 7}$. If $d(v) = 4$, then $G - N_G[v]$ is either an acyclic bipartite graph which is not isomorphic to $B_{n-5,k}$ or a bipartite graph with cycles which is not isomorphic to $D_{n-5,k}$. Hence by induction hypothesis or Lemma 7, $\text{mi}(G - N_G[v]) \leq r^{n - 7}$, which gives

$$
\text{mi}(G) \leq \text{mi}(G - v) + \text{mi}(G - N_G[v]) \quad \text{(by Lemma 1)}
$$

$$
\leq r^{n - 3} + r^{n - 7} + r^{n - 7} \quad (13)
$$

$$
= 3r^{n - 5}.
$$

The equality in (13) holds if and only if $G - v \cong C_6 \uplus \frac{n - 7}{2}K_2$ and $G - N_G[v] \cong H_0(6) \uplus \frac{n - 11}{2}K_2$, $H_0(8) \uplus \frac{n - 13}{2}K_2$, $H_0(10) \uplus \frac{n - 15}{2}K_2$, $H_1(k) \uplus \frac{n - 9}{2}K_2$, $H_2(k) \uplus \frac{n - 7}{2}K_2$, or $H_3(k) \uplus \frac{n - 5}{2}K_2$. Note that
Lemma 5 and Theorem 1, we have $G - v \cong C_{6} \cup \frac{n - 7}{2} K_{2}$, hence $G - N_{G}[v]$ is a subgraph of $P_{5} \cup \frac{n - 7}{2} K_{1}$. It is easy to see that $G - N_{G}[v]$ contains no cycles, a contradiction.

Now we consider that $G - v \cong D_{n-1,k}$. In order to use the induction hypothesis, we should show that $G - v \cong C_{8} \cup \frac{n - 9}{2} K_{2}$, $C_{10} \cup \frac{n - 11}{2} K_{2}$, and $(C_{8} \ast K_{2}) \cup \frac{n - 11}{2} K_{2}$ first. In fact, if $G - v \cong C_{8} \cup \frac{n - 9}{2} K_{2}$, then $1 \leq |N_{G}(v) \cap N_{C_{8}}(v)| \leq 4$.

If $|N_{G}(v) \cap N_{C_{8}}(v)| = 1$, then $n \geq 15$ and $G - N_{G}[v] \cong P_{7} \cup \frac{n - 9}{2} K_{1}$. By Lemma 1, we get $\text{mi}(G) \leq \text{mi}(G - v) + \text{mi}(G - N_{G}[v]) = 5r^{n-7} + 7 < 3r^{n-5}$.

If $|N_{G}(v) \cap N_{C_{8}}(v)| = 2$, then $n \geq 13$ and $G - N_{G}[v] \cong P_{3} \cup \frac{n - 7}{2} K_{1}$, or $2P_{3} \cup \frac{n - 9}{2} K_{1}$. By Lemma 1, we get $\text{mi}(G) \leq \text{mi}(G - v) + \text{mi}(G - N_{G}[v]) = 5r^{n-7} + 4 < 3r^{n-5}$.

If $|N_{G}(v) \cap N_{C_{8}}(v)| = 3$, then $n \geq 11$ and $G - N_{G}[v] \cong P_{3} \cup \frac{n - 5}{2} K_{1}$. By Lemma 1, we get $\text{mi}(G) \leq \text{mi}(G - v) + \text{mi}(G - N_{G}[v]) = 5r^{n-7} + 2 < 3r^{n-5}$.

If $|N_{G}(v) \cap N_{C_{8}}(v)| = 4$, then $n \geq 9$ and $G - N_{G}[v] \cong \frac{n - 11}{2} K_{1}$. By Lemma 1, we get $\text{mi}(G) \leq \text{mi}(G - v) + \text{mi}(G - N_{G}[v]) = 5r^{n-7} + 1 < 3r^{n-5}$.

By a similar discussion as above, we may show that $G - v \not\cong C_{10} \cup \frac{n - 11}{2} K_{2}$, $(C_{8} \ast K_{2}) \cup \frac{n - 11}{2} K_{2}$. Therefore, we have

$$G - v \not\cong D_{n-1,k}, C_{8} \cup \frac{n - 9}{2} K_{2}, C_{10} \cup \frac{n - 11}{2} K_{2} \text{ and } (C_{8} \ast K_{2}) \cup \frac{n - 11}{2} K_{2}.$$ By induction hypothesis, we have $\text{mi}(G - v) \leq r^{n-3}$. Thus,

$$\text{mi}(G) \leq \text{mi}(G - v) + \text{mi}(G - N_{G}[v]) \quad \text{(by Lemma 1)}$$

$$\leq r^{n-3} + r^{n-5} \quad \text{(by Lemma 6)}$$

$$= 3r^{n-5}. \quad \text{(14)}$$

The equality in (14) holds if and only if $G - v \cong H_{0}(6) \cup \frac{n - 7}{2} K_{2}$, $H_{0}(8) \cup \frac{n - 9}{2} K_{2}$, $H_{0}(10) \cup \frac{n - 11}{2} K_{2}$, $H_{1}(k) \cup \frac{n - k - 1}{2} K_{2}$, $H_{2}(k) \cup \frac{n - k - 1}{2} K_{2}$, or $H_{3}(k) \cup \frac{n - k - 1}{2} K_{2}$ and $G - N_{G}[v] \cong F_{1}(n - 5)$. Since G is connected and $G - N_{G}[v]$ has no isolated vertex, $G - v$ contains no K_{2} as a component, i.e., $G - v \cong H_{0}(6), H_{0}(8), H_{0}(10), H_{1}(n - 1), H_{2}(n - 1), \text{ or } H_{3}(n - 1)$. However, $G - N_{G}[v]$ is obtained from $G - v$ by deleting four independent vertices which is impossible. Hence $\text{mi}(G) < 3r^{n-5}$.

Case 2. Every vertex of degree ≥ 4 is in all cycles of G.

First we consider $d(G) = 1$. Choose an edge $uv \in E_{G}$ with $d(v) = 1$. Let $G_{1} = G - \{u, v\}$ and $G_{2} = G - N[u]$. We distinguish the following two possible subcases to show our results.

Subcase 2.1. n is odd.

If $d(u) = 2$, then G_{1} is a connected graph with cycles and $G_{2} \not\cong \frac{n - 3}{2} K_{2}$. By induction hypothesis and Lemma 5 and Theorem 1, we have $\text{mi}(G_{1}) \leq 3r^{n-7}$ and $\text{mi}(G_{2}) \leq \max\{3r^{n-7}, r^{n-5} + r^{n-9}\} = 3r^{n-7}$.

By Lemma 1, we get

$$\text{mi}(G) = \text{mi}(G_{1}) + \text{mi}(G_{2}) \leq 3r^{n-7} + 3r^{n-7} = 3r^{n-5},$$

the equality holds if and only if $G_{1} \cong O_{1}(n - 2)$ or $C_{6} \ast K_{1}, G_{2} \cong P_{4} \cup \frac{n - 7}{2} K_{2}$, i.e., $G \cong O_{1}(n)$.

If $d(u) \geq 3$, by Lemmas 1 and 6, we obtain that

$$\text{mi}(G) = \text{mi}(G_{1}) + \text{mi}(G_{2}) \leq r^{n-2-1} + r^{n-4-1} = 3r^{n-5},$$
the equality holds if and only if \(G_1 \cong F_1(n - 2), G_2 \cong F_1(n - 4) \) or \(F_1(n - 5) \). If \(G_2 \cong F_1(n - 4) \), we have \(d(u) = 3 \). In this situation, we get \(G \cong C_6 \ast K_1 \). If \(G_2 \cong F_1(n - 5) \), we have \(d(u) = 4 \). \(G_2 \) is obtained from \(G_1 \) by deleting three independent vertices which is impossible.

Subcase 2.2. \(n \) is even.

- \(d(u) = 2 \). In this subcase, we know that \(G_1 \) is a connected graph with cycles. Note that \(G \not\cong C_6 \ast K_2 \), hence \(G_1 \not\cong C_6 \). By Theorem 1, we have \(\text{mi}(G_1) \leq r^{n-4} + 1 \). On the other hand, notice that \(G \not\cong D_{n,k} \), hence if \(G_2 \cong B_{n-3,k} \), we obtain that \(G \cong H_1(n), H_2(n) \), or \(H_3(n) \), our result holds. If \(G_2 \not\cong B_{n-3,k} \), by induction hypothesis or Lemma 7, we have \(\text{mi}(G_2) \leq \max\{r^{n-4} - 1, 3r^{n-8}\} = r^{n-4} - 1 \). Combining with Lemma 1, we have

\[
\text{mi}(G) = \text{mi}(G_1) + \text{mi}(G_2) \leq r^{n-4} + 1 + r^{n-4} - 1 = r^{n-2},
\]

the equality holds if and only if \(G_1 \cong B_{n-2}, C_{10} \) or \(C_6 \ast K_2 \) and \(\text{mi}(G_2) = r^{n-4} - 1 \), but there is no such bipartite graph.

- \(d(u) = 3 \). If \(G_1 \) is disconnected, then \(G_1 \) must have cycles and \(G_2 \not\cong \frac{n-4}{2}K_2 \) since \(G \) have cycles. Thus, by Lemma 5 and Theorem 1, we get \(\text{mi}(G_1) \leq r^{n-4} + r^{n-8} = 5r^{n-8} \) and \(\text{mi}(G_2) \leq \max\{3r^{n-8}, r^{n-6} + r^{n-10}\} = 3r^{n-8} \). By Lemma 1, we have

\[
\text{mi}(G) = \text{mi}(G_1) + \text{mi}(G_2) \leq 5r^{n-8} + 3r^{n-8} = r^{n-2},
\]

the equality holds if and only if \(G_1 \cong C_6 \cup \frac{n-5}{2}K_2 \) and \(G_2 \cong P_4 \cup \frac{n-5}{2}K_2 \). But there is no such bipartite graph. If \(G_1 \) is connected and \(G_2 \not\cong \frac{n-4}{2}K_2 \), then for \(n = 6 \), we get \(G_2 = 2K_1 \) and \(G \cong H_0(6) \), the result holds. We assume \(n \geq 8 \). Obviously, \(G_1 \not\cong C_6 \) since \(G \not\cong C_6 \ast K_2 \). By Lemmas 3, 5 and Theorem 1, we have \(\text{mi}(G_1) \leq r^{n-4} + 1 \), \(\text{mi}(G_2) \leq \max\{3r^{n-8}, r^{n-6} + r^{n-10}\} = 3r^{n-8} \). Thus,

\[
\text{mi}(G) = \text{mi}(G_1) + \text{mi}(G_2) \quad \text{(by Lemma 1)}
\]

\[
\leq r^{n-4} + 1 + 3r^{n-8}
\]

\[
= 7r^{n-8} + 1
\]

\[
\leq r^{n-2}.
\]

The equality in (15) holds if and only if \(G_1 \cong T_1(n - 2) \), or \(B_{n-2}, G_2 \cong P_4 \cup \frac{n-8}{2}K_2 \); while the equality in (16) holds if and only if \(n = 8 \), i.e., \(G_1 \cong P_4 \cup K_2, C_6 \) or \(P_6 \) and \(G_2 \cong P_4 \), but there is no such bipartite graph.

- \(d(u) \geq 4 \). Note that \(G \) contains cycles, it is easy to see that \(G_1 \not\cong \frac{n-2}{2}K_2 \). By Lemmas 5, 6 and Theorem 1, we get \(\text{mi}(G_1) \leq \max\{3r^{n-6}, r^{n-4} + r^{n-8}\} = 3r^{n-6} \) and \(\text{mi}(G_2) \leq r^{n-6} \). By Lemma 1,

\[
\text{mi}(G) = \text{mi}(G_1) + \text{mi}(G_2) \leq 3r^{n-6} + r^{n-6} = r^{n-2},
\]

the equality holds if and only if \(G_1 \cong P_4 \cup \frac{n-6}{2}K_2, G_2 \cong F_1(n - 5) \) or \(F_1(n - 6) \). Note that \(G_2 \) is obtained from \(G_1 \) by deleting three or four independent vertices, hence there is no such bipartite graph of order \(n \). Hence \(\text{mi}(G) < r^{n-2} \).

Now we consider \(\delta(G) \geq 2 \). In this subcase, we used the following two facts (for their proofs one may be referred to the Appendix).
Fact 1 Suppose $n \geq 7$ is odd and each vertex of degree ≥ 4 is in all cycles of G, then $\text{mi}(G) < 3r^{n-5}$.

Fact 2 Suppose $n \geq 6$ is even and each vertex of degree ≥ 4 is in all cycles of G, then $\text{mi}(G) \leq r^{n-2}$. The equality holds if and only if $G \cong H_1(n)$.

Obviously, in this case, if $\delta(G) \geq 2$, Theorem 2 holds directly from Facts 1 and 2.

4 Concluding remark

In view of Theorems 1 and 2(i), the disconnected graphs among B_n with the first-, second-, \ldots, $\frac{n-2}{2}$-th largest number of maximal independent sets are characterized, while the connected graphs in B_n having the largest and the second largest number of maximal independent sets are determined; whereas in view of Theorem 2(ii), graphs among B'_n having the largest number of maximal independent sets are identified.

Acknowledgements

The authors would like to express their sincere gratitude to the referees for a very careful reading of the paper and for all of their insightful comments and valuable suggestions, which led to a number of improvements in this paper. This work was supported by the National Natural Science Foundation of China (Grant No. 11271149) and the Special Fund for Basic Scientific Research of Central Colleges (Grant No. CCNU13F020).

References

Appendix

In the appendix, we present the proofs for Facts 1 and 2.

Proof of Fact 1: We first assume that G has a vertex v of degree 3 such that $G - v$ has cycles. Note that G contains no odd cycles and $\delta(G) \geq 2$, hence $G - v$ (resp. $G - N_G[v]$) does not contain K_2 as a component.

- $G - v \not\cong D_{n-1,k}$. Then we are to show that $G - v \cong C_8 \uplus \frac{n-2}{2} K_2$, $C_10 \uplus \frac{n-11}{2} K_2$ and $(C_8 \uplus K_2) \uplus \frac{n-11}{2} K_2$ by contradiction.

 If $G - v \cong C_8 \uplus \frac{n-2}{2} K_2$, i.e., $G - v \cong C_8$. Notice that $d(v) = 3$, we have $G - N_G[v] \cong 2K_1 \uplus P_3$. So we obtain that the graph G is depicted in Fig. 3(a). By Lemma 1, we get $mi(G) \leq mi(G - u) + mi(G - N[u]) = 7 + 4 + 5 = 11 < 3r^4 = 12$.

 If $G - v \cong C_10 \uplus \frac{n-11}{2} K_2$, i.e., $G - v \cong C_{10}$. Note that $d(v) = 3$, we have $G - N_G[v] \cong 2K_1 \uplus P_3$ or $P_3 \uplus K_{1,3}$. By Lemma 1, we get $mi(G) \leq mi(G - v) + mi(G - N_G[v]) = 7 + 4 + 5 = 11 < 3r^6 = 24$.

 Hence, we have

 $$G - v \not\cong D_{n-1,k}; C_8 \uplus \frac{n-2}{2} K_2, C_{10} \uplus \frac{n-11}{2} K_2$$

 By induction hypothesis, $mi(G - v) \leq r^{n-3}$. In view of Lemmas 1 and 6, we have

 $$mi(G) \leq mi(G - v) + mi(G - N_G[v]) \leq r^{n-3} + r^{n-4-1} = 3r^{n-5}. \quad (A.1)$$

The equality in (A.1) holds if and only if $G - v \cong H_0(n-1), H_1(n-1), H_2(n-1), H_3(n-1)$ or $H_3(n-1)$ for $n \geq 7, 9, 11$ and $G - v \cong H_1(n-1), H_2(n-1), H_3(n-1)$ or $H_3(n-1)$ for $n \geq 13, G - N_G[v] \cong F_1(n - 4)$, i.e., $G - N_G[v] \cong T_1(n - 4)$.

Note that $G - N_G[v]$ is obtained from $G - v$ by deleting three independent disjoint vertices, but there is no such bipartite graph of order n. Hence $mi(G) < 3r^{n-5}$.
* \(G - v \cong D_{n-1,k} \), i.e., \(G - v \cong B_{n-1} \). In this case, we have \(\text{mi}(G - v) = r^{n-3} + 1 \). Furthermore, \(G - N_G[v] \) is either an acyclic graph which is not isomorphic to \(B_{n-4,k} \) or a bipartite graph containing cycles. It follows from induction hypothesis or Lemma 7 that \(\text{mi}(G - N_G[v]) \leq \max(r^{n-4-1} - 1, 3r^{n-4-5}) = r^{n-5} - 1 \). Together with Lemma 1, we have

\[
\text{mi}(G) \leq \text{mi}(G - v) + \text{mi}(G - N_G[v]) \\
\leq r^{n-3} + 1 + r^{n-5} - 1 \\
= 3r^{n-5}.
\]

(A.2)

The equality in (A.2) holds if and only if \(G - v \cong B_{n-1} \), \(\text{mi}(G - N_G[v]) = r^{n-5} - 1 \). Note that \(G \) is a bipartite graph with \(\delta(G) \geq 2 \), hence \(G - v \) must be the graph as depicted in Fig. 3(b), \(G - N_G[v] \) is obtained from \(G - v \) by deleting three independent vertices. Elementary calculation yields \(\text{mi}(G - N_G[v]) < r^{n-5} - 1 \). Hence, \(\text{mi}(G) < 3r^{n-5} \).

![Fig. 3: Graphs used in the proof of Fact 1.](image)

Now, we consider the case that each vertex of degree \(\geq 3 \) is in all cycles of \(G \). Then \(G \) must be a graph with the structures as depicted in Figs. 3(c) or 3(d). Assume that the vertex \(v \) is in all cycles of \(G \), then \(d(v) \geq 3 \). Note that \(n \) is odd and \(\delta(G) \geq 2 \), hence \(G - u \cong B_{n-1,k} \) and \(G - u \) contains no cycles. By Lemma 7, we get \(\text{mi}(G - u) \leq r^{n-3} \). Thus, we have

\[
\text{mi}(G) \leq \text{mi}(G - u) + \text{mi}(G - N[u]) \quad \text{(by Lemma 1)} \\
\leq r^{n-3} + r^{n-4-1} \quad \text{(by Lemma 6)} \\
= 3r^{n-5}.
\]

(A.3)

The equality in (A.3) holds if and only if \(\text{mi}(G - u) = r^{n-3} \), \(G - N[u] \cong F_1(n - 4) \) or \(F_1(n - 5) \), i.e., \(G - N[u] \cong T_1(n - 4) \) or \(T_1(n - 5) \). Notice that \(\delta(G) \geq 2 \) and \(u \) is in all cycles of \(G \), it is straightforward to check that \(n \in \{7, 9, 11\} \) and \(G - N[u] \cong T_1(n - 5) \). So we get that \(G \) is a graph of the structure in Fig. 3(d). That is to say, \(G \) has exactly two vertices of degree \(\geq 3 \), say \(u \) and \(v \). It follows that \(d(u) = d(v) = d \) and \(G - \{u, v\} = P_n \cup \cdots \cup P_n \) with \(n_1 \geq n_2 \geq \cdots \geq n_k \). If \(n = 7 \), then \(n_1 = 3, n_2 = 1, n_3 = 1 \). By elementary calculation, \(\text{mi}(G) = 5 \leq 6 \). If \(n = 9 \), then \(n_1 = 5, n_2 = 1, n_3 = 1 \). By Lemma 1, \(\text{mi}(G) \leq \text{mi}(G - u) + \text{mi}(G - N[u]) = 4 + 7 = 11 \leq 12 \). If \(n = 11 \), then \(n_1 = n_2 = n_3 = 3 \). By Lemma 1, \(\text{mi}(G) \leq \text{mi}(G - u) + \text{mi}(G - N[u]) = 13 + 8 = 21 < 24 \). Hence, we obtain \(\text{mi}(G) < 3r^{n-5} \). Thus, Fact 1 holds. \(\square \)

Further on we need the following lemma to prove Fact 2.

Lemma A Suppose \(n \geq 6 \) is even. If \(G \) has a path \(P_n = u_1u_2u_3u_4u_5u_6 \) such that \(d(u_3) = 2 \), \(G - \{u_1, u_2, u_3, u_4, u_5\} \) has cycles and \(G - \{u_2, u_3, u_4, u_5\} \cong D_{n-4,k}, C_{k1} \cong \frac{n-12}{2}K_2, C_{10} \cong \frac{n-14}{2}K_2 \) and \((C_8 + K_2) \cong \frac{n-14}{2}K_2 \) then \(\text{mi}(G) < r^{n-2} \).

Proof: From the assumption it follows that \(G_1 := G - \{u_1, u_2, u_3\}, G_2 := G - \{u_2, u_3, u_4\} \) and \(G_3 := G - \{u_2, u_3, u_4, u_5\} \), respectively, has cycles and \(G_3 \cong D_{n-4,k}, C_{k1} \cong \frac{n-12}{2}K_2, C_{10} \cong \frac{n-14}{2}K_2 \) and \((C_8 + K_2) \cong \frac{n-14}{2}K_2 \). Hence, by Lemma 1 we obtain

\[
\text{mi}(G) \leq \text{mi}(G - u_2 - u_4) + \text{mi}(G - u_2 - u_4 - N[u_4]) + \text{mi}(G - N[u_2]) \\
= \text{mi}(G_2) + \text{mi}(G_3) + \text{mi}(G_1) \\
\leq 3r^{n-3-5} + r^{n-4-2} + 3r^{n-3-5} \quad \text{(by induction hypothesis)} \\
= r^{n-2}.
\]

(A.4)
The equality in (A.4) holds if and only if $d(u_2) = d(u_4) = 2$, $G_1 = G_2 \cong (C_6 \ast K_1) \uplus \frac{n-10}{n}K_2$ or $O_1(k) \uplus \frac{n-k-3}{n}K_2$, and $G_3 \cong H_0(6) \uplus \frac{n-10}{n}K_2$, $H_0(8) \uplus \frac{n-12}{n}K_2$, $H_0(10) \uplus \frac{n-14}{n}K_2$, $H_1(k) \uplus \frac{n-10}{n}K_2$, $H_2(k) \uplus \frac{n-12}{n}K_2$, or $H_3(k) \uplus \frac{n-14}{n}K_2$. Since $\delta(G) \geq 2$, G_1, G_2 contains no K_2 as a component, i.e., $G_1 = G_2 \cong C_6 \ast K_1$ or $O_1(n-3)$. If $G_1 = G_2 \cong C_6 \ast K_1$, we get $G \cong H_0(10)$ or the graph depicted in Fig. 4(c). But this implies $G = \{u_1, u_2, u_3, u_4, u_5\}$ has no cycles, a contradiction. If $G_1 = G_2 \cong O_1(n-3)$, we get two such graphs which contain odd cycles, a contradiction. That is to say, the equality in (A.4) does not hold. Hence, $m(G) < r^{n-2}$, as desired.

Proof of Fact 2: We say a vertex v is good if $d(v) = 3$ and $G - v$ has cycles. Since $\delta(G) \geq 2$ and G is bipartite, then $G - N_G[v] \not\cong B_{n-4, k}$ for any good vertex v.

First we consider that G has good vertices by distinguishing the following two possible cases.

Case 1. For all good vertices v, $G - N_G[v] \cong D_{n-4, k}$.

For convenience, let $G_1 = G - N_G[v]$. Note that $\delta(G) \geq 2$ and G is bipartite, hence G_1 must be connected and $G_1 \cong B_{n-4}$. Furthermore, G_1 must be a graph with the structure shown in Fig. 3(b). Clearly, if $t \geq 1$, then $N(w) \cap N(v) = \emptyset$; if $t = 0$, then either $N(w) \cap N(v) = \emptyset$ or $N(u) \cap N(v) = \emptyset$. Hence, without loss of generality, assume $N(w) \cap N(v) = \emptyset$. Note that $d(w) = 3$ and $\delta(G) \geq 2$, hence $G - w$ has cycles. Thus, by the assumption that each vertex of degree ≥ 4 is in all cycles of G, it follows that $2 \leq d(x) \leq 3$ for $x = w$ or $x = N(v)$.

If $d(u) \leq 3$, note that $\delta(G) \geq 2$ and $G - N_G[v] \cong D_{n-4, k}$, for every good vertex v, G must be the graph shown in Figs. 4(a) or 4(b). For Fig. 4(a), $m(G) \leq m(G - v) + m(G - N_G[v]) = 8 + 5 = 13 < 16$. For Fig. 4(b), $m(G) \leq m(G - v) + m(G - N_G[v]) = 6 + 5 = 11 < 16$, they are not the extremal graphs.

If $d(u) \geq 4$, then G has at most one edge between $N(v)$ and $A = \{u_j : 1 \leq j \leq k\} \cup \{u_j : 1 \leq j \leq k\}$. Consequently, we have $d(w) = 2$. Otherwise, w is a good vertex of G, so in $G - N(w)$, there is at least one vertex $y \in N(u)$ such that $d(y) = 1$. Obviously, $G - N[w] \not\cong D_{n-4, k}$, a contradiction. Similarly, we can conclude that each vertex in $N(v)$ has degree 2. Now, let $P_b = u_1w_1w_2u_2$. Obviously, $d(u) = 2$. $G - \{u, u_1, w_1, w_2u_2\}$ has cycles and $G - \{w_1, w_2u_2\} \not\cong D_{n-4, k}$. $C_8 \uplus \frac{n-10}{n}K_2$, $C_{10} \uplus \frac{n-12}{n}K_2$ and $(C_6 \ast K_2) \uplus \frac{n-14}{n}K_2$. By Lemma 1, we get $m(G) < r^{n-2}$.

![Fig. 4: Graphs used in the proof of Fact 2.](image)

Case 2. There exists a good vertex v such that $G - N_G[v] \not\cong D_{n-4, k}$.

In this case, we are to show that $G_1 = G - N_G[v] \not\cong C_8 \uplus \frac{n-10}{n}K_2$, $C_{10} \uplus \frac{n-12}{n}K_2$ and $(C_8 \ast K_2) \uplus \frac{n-14}{n}K_2$. In fact, if $G_1 \cong C_8 \uplus \frac{n-10}{n}K_2$, then there exist eight such graphs, i.e., $G_1^1, G_1^2, \ldots, G_1^8$; if $G_1 \cong C_{10} \uplus \frac{n-12}{n}K_2$, then there exist thirteen such graphs, i.e., $G_1^1, G_1^2, \ldots, G_1^{13}$; if $G_1 \cong (C_8 \ast K_2) \uplus \frac{n-14}{n}K_2$, then there exist twenty-five such graphs, i.e., $G_1^{22}, G_1^{23}, \ldots, G_1^{40}$, where $G_1^{22}, G_1^{23}, \ldots, G_1^{40}$ are depicted in Fig. 5. By direct computation, we get $m(G) < r^{n-2}$. Hence, $G_1 \not\cong C_8 \uplus \frac{n-10}{n}K_2$, $C_{10} \uplus \frac{n-12}{n}K_2$ and $(C_8 \ast K_2) \uplus \frac{n-14}{n}K_2$. By Lemma 7 (if G_1 is acyclic) or by induction hypothesis (if G_1 contains cycles), we obtain that $m(G_1) \leq r^{n-6}$. Thus, we obtain that

\[
m(G) \leq m(G - v) + m(G_1) \quad \text{(by Lemma 1)}
\]

\[
\leq 3r^{n-6} + r^{n-6} \quad \text{(by induction hypothesis)}
\]

\[
= r^{n-6}.
\]
Fig. 5: Graphs G^1, G^2, \ldots, G^{46} used in Case 2 of Fact 2, in which each number below the graph G^i is an upper bound of $\text{mi}(G^i), i = 1, 2, \ldots, 46$.
The equality in (A.6) holds if and only if L_k (see Fig. 3(c)), where $k \leq \frac{d(u)}{2}$. By Lemmas 2 and 3, it follows that

$$mi(G - u - v) = \prod_{j=1}^{k} mi(P_{n_j}) \leq \prod_{j=1}^{k} r_{n_j}^{n-1} \leq r_{n-4}$$

and so

$$mi(G) \leq mi(G - u) + mi(G - N_G[u]) \ (\text{by Lemma 1})$$

$$\leq r_{n-4} + r_{n-8} \ (\text{by Lemma 6})$$

$$= 5r_{n-8} < r_{n-2}.$$

The result holds.

Suppose G is a graph of the structure in Fig. 3(d), then G has exactly two vertices degree ≥ 3, say u, v. It follows that $d(u) = d(v) = d \geq 3$ and $G - \{u, v\}$ consists of d disjoint paths, say $P_{n_1}, P_{n_2}, \ldots, P_{n_k}$ with $n_1 \geq n_2 \geq \ldots \geq n_k$, where $k = \frac{d}{2}$ if u and v are not adjacent and $k = d - 1$ otherwise. Since G is a bipartite graph, either all n_j’s are odd or all n_j’s are even.

If all n_j’s are odd, we have $k = d \geq 4$. By Lemmas 2 and 3, we get

$$mi(G - u - v) = \prod_{j=1}^{k} mi(P_{n_j}) \leq \prod_{j=1}^{k} r_{n_j}^{n-1} \leq r_{n-6}.$$

This gives

$$mi(G) \leq mi(G - u - v) + mi(G - u - v - N_G(v)) + mi(G - N_G[u]) \ (\text{by applying Lemma 1 twice})$$

$$\leq r_{n-6} + r_{n-6} + r_{n-6} \ (\text{by Lemma 6})$$

$$= 3r_{n-6} < r_{n-2}.$$

Now we consider that all n_j’s are even. Let $P_{n_1} = u_1u_2 \ldots u_{n_1}$. By Lemma A, we assume $n_1 \leq 4$. If $n_1 = 4$, then both $L_1 = G - \{u_1, u_2, u_3\}$ and $L_2 = G - \{u_2, u_3, u_4\}$ have cycles and $L_3 = G - \{u_1, u_2, u_3, u_4\}$ is a tree. Furthermore, $L_3 \neq T_1(n - 4)$ unless G is one of the graphs shown in Figures 4(c), 4(d) and 4(f). If $L_3 \neq T_1(n - 4)$, by Lemma 1 we get

$$mi(G) \leq mi(G - u_1 - u_3) + mi(G - u_1 - u_3 - N(u_1)) + mi(G - N[u_4])$$

$$= mi(L_1) + mi(L_3) + mi(L_2)$$

$$\leq 3r_{n-8} + r_{n-6} + 3r_{n-8} \ (\text{by induction hypothesis and Lemma 6}) \quad \text{(A.6)}$$

The equality in (A.6) holds if and only if $L_1 = L_2 \cong C_6 \ast K_1$ or $O_1(n - 3), L_3 \cong H_0(6) \cong \frac{n-10}{2} K_2, H_0(8) \cong \frac{n-12}{4} K_2, H_0(10) \cong \frac{n-14}{4} K_2, H_2(1) \cong \frac{n-4}{4} K_2, H_2(3) \cong \frac{n-6}{4} K_2$, or $H_2(5) \cong \frac{n-8}{4} K_2$. If $L_1 = L_2 \cong C_6 \ast K_1$, then $n = 10$ and $G \cong H_0(10)$. So $mi(G) = mi(H_0(10)) = 16$, hence we get the extremal graph $H_0(10)$. If $L_1 = L_2 \cong O_1(n - 3)$, then $n = 8$ and $G \cong H_0(8)$. So $mi(G) = mi(H_0(8)) = 8$, hence we get the extremal graph $H_0(8)$.

Our result holds.

If $L_3 \cong T_1(n - 4)$, G is one of the graphs shown in Figs. 4(c), 4(d) and 4(f). By direct calculation, we have, for Fig. 4(c), $mi(G) = 13 < 16$; for Fig. 4(d) ($n \geq 8$), $mi(G) = 3r_{n-6} + 2 \leq r_{n-2}$, the equality holds if and only if $n = 8, G \cong H_0(8)$, hence we get extremal graph $H_0(8)$; for Fig. 4(f) ($n \geq 10$), $mi(G) = 3r_{n-6} + 4 \leq r_{n-2}$, the equality holds if and only if $n = 10, G \cong H_0(10)$. Hence, we assume $n_1 \leq 2$, which implies $n_1 = n_2 = \ldots = n_k = 2$. Since $G \cong B_6$, we conclude that v_1 must be adjacent to v_2. So $mi(G) = r_{n-2}$ and $G \cong H_1(n)$.

This completes the proof. \qed