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A morphic word is obtained by iterating a morphism to generate an infinite word, and then applying a coding. We
characterize morphic words with polynomial growth in terms of a new type of infinite word called a zigzag word. A
zigzag word is represented by an initial string, followed by a finite list of terms, each of which repeats for each n ≥ 1

in one of three ways: it grows forward [t(1) t(2) · · · t(n)], backward [t(n) · · · t(2) t(1)], or just occurs once [t].
Each term can recursively contain subterms with their own forward and backward repetitions. We show that an infinite
word is morphic with growth Θ(nk) iff it is a zigzag word of depth k. As corollaries, we obtain that the morphic words
with growth O(n) are exactly the ultimately periodic words, and the morphic words with growth O(n2) are exactly
the multilinear words.

Keywords: morphic word, polynomial growth, zigzag word, multilinear word

1 Introduction
Morphic words [AS03] are a well-studied class of infinite words obtained by iterating a morphism h
on a letter c, and then applying a coding (letter-to-letter mapping) τ . The morphism h is required to be
prolongable on c, meaning that h(c) = cx for some string x such that hi(x) is nonempty for all i. Such a
word has the form

τ(hω(c)) = τ(c x h(x) h2(x) h3(x) · · · )

We call the triple (h, c, τ) a “representation” of the morphic word α = τ(hω(c)). In this paper we
characterize morphic words with polynomial growth, i.e. those having a representation (h, c, τ) whose
growth function f(n) = |hn(c)| = |τ(hn(c))| is bounded by a polynomial in n.

Our characterization involves a new type of infinite word which we call a zigzag word. A zigzag word is
represented by an initial string (which may be empty), followed by a finite list of terms. Each term repeats
for each n ≥ 1 according to one of three functions, denoted F , B, and S. The function F causes forward
growth, B causes backward growth, and S causes stasis (no growth). Each F or B term can recursively
contain subterms with their own instances of the three functions, while each S term contains only a string.
For example, the list

l = [(B, [(S, a), (F, [(S, b)])])]
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represents the zigzag word

α =
∏
n≥1

i=n∏
1

(a

n∏
j=1

b)

= ab abb ab abbb abb ab abbbb abbb abb ab · · ·

Here,
∏

denotes concatenation, and we use
∏n

i=1 f(i) to mean f(1)f(2) · · · f(n), and
∏i=n

1 f(i) to mean
f(n)f(n−1) · · · f(1). Thus, the outermost

∏
corresponds to the increasing bound n which is always

present, the middle
∏

corresponds to the B and indicates backwards growth from n down to 1, and the
innermost

∏
corresponds to the F and indicates forwards growth from 1 up to n. The net effect is that the

number of as in each block remains stationary at 1, while the number of bs “zigzags” with the pattern 1, 2,
1, 3, 2, 1, 4, 3, 2, 1, . . . A formal definition of zigzag words appears in Section 3, along with the notion of
the depth of a zigzag representation as the level of nesting of its terms.

As our main result, we show that an infinite word has a morphic representation with growth Θ(nk) iff it
has a zigzag representation of depth k. Our proof makes use of the notion of “rank” due to Ehrenfeucht
and Rozenberg [ER79]. Notice that whereas a morphic representation makes use of a coding, a zigzag
representation does not: the letters in the zigzag representation are just those that appear in the word.

We use our result to make connections with two other classes of infinite words: ultimately periodic
words and multilinear words. Ultimately periodic words have the form qrrr · · · for strings q, r, while
multilinear words [Smi13, EHK11] have the form

q
∏
n≥0

ra1n+b1
1 ra2n+b2

2 · · · ramn+bm
m

where
∏

denotes concatenation, q, ri are strings, and ai, bi are nonnegative integers. For example,∏
n≥0

an+1b = abaabaaab · · · is a multilinear word. We show that the morphic words with growth O(n)

are exactly the ultimately periodic words, and that the morphic words with growth O(n2) are exactly the
multilinear words. Thus, ultimately periodic words and multilinear words can be seen as the first two levels
of the hierarchy of morphic words with polynomial growth, or equivalently, of the hierarchy of zigzag
words.

1.1 Related work
A previous characterization of morphisms with polynomial growth is due to Ehrenfeucht and Rozenberg
[ER79], who introduce the notion of the “rank” of letters under a morphism. They show that a string
x has rank k under a morphism h iff k is the minimal degree of a polynomial p such that for every n,
p(n) ≥ |hn(x)|. We make use of this result in proving the equivalence between morphic words with
polynomial growth and zigzag words.

Other topics studied in connection with morphisms with polynomial growth include questions of sequence
equivalence [Kar77, Hon03b], ω-equivalence [Hon03a], the relationship between these types of equivalence
[Hon02], language equivalence [Hon04], length sets [EKR78], codes [HW85], and boundedness [HL87].

The class of multilinear words appears in [Smi13] as the infinite words determined by one-way stack
automata, and also in [EHK11] (as the reducts of the “prime” stream Π). In [Smi16], prediction of periodic
words and multilinear words is studied in an automata-theoretic setting.
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1.2 Outline of the paper
The rest of the paper is organized as follows. Section 2 gives preliminary definitions. Section 3 defines
zigzag words and gives examples. Section 4 proves our main result, the correspondence between zigzag
words and morphic words with polynomial growth. Section 5 applies this correspondence in connection
with ultimately periodic and multilinear words. Section 6 gives our conclusions.

2 Preliminaries
We denote the positive integers by Z+. When X is a set, we denote the cardinality of X by |X|. We use
square brackets to denote a list: e.g. [x1, . . . , xm] is the list containing the elements x1, . . . , xm in that
order. The number of elements in a list v is denoted by |v|. For lists v1, . . . , vn, we let append(v1, . . . , vn)
denote the list of length |v1|+ · · ·+ |vn| consisting of the elements of v1, followed by the elements of v2,
. . . , followed by the elements of vn.

An alphabet A is a finite set of letters. A word is a concatenation of letters from A. We denote the set
of finite words by A∗ and the set of infinite words by Aω. We call finite words strings. The length of a
string x is denoted by |x|. We denote the empty string by λ. We write A+ to mean A∗ − {λ}. A language
is a subset of A∗. For a finite or infinite word S, a prefix of S is a string x such that S = xS′ for some
word S′. The ith letter of S is denoted by S[i]; indexing starts at 1. We denote the set of letters occurring
in S by alph(S).

Periodic and multilinear words For a nonempty string x, xω denotes the infinite word xxx · · · . Such a
word is called purely periodic. An infinite word of the form xyω , where x and y are strings and y 6= λ, is
called ultimately periodic. An infinite word is multilinear if it has the form

q
∏
n≥0

ra1n+b1
1 ra2n+b2

2 · · · ramn+bm
m

where
∏

denotes concatenation, q is a string, m is a positive integer, and for each 1 ≤ i ≤ m, ri is a
nonempty string and ai and bi are nonnegative integers such that ai + bi > 0. For example,

∏
n≥0

an+1b

= abaabaaab · · · is a multilinear word. Clearly the multilinear words properly include the ultimately
periodic words. Any multilinear word that is not ultimately periodic we call properly multilinear.

Morphic words A morphism on an alphabet A is a map h from A∗ to A∗ such that for all x, y ∈ A∗,
h(xy) = h(x)h(y). Notice that h(λ) = λ. The morphism h is a coding if for all c ∈ A, |h(c)| = 1. For
x ∈ A∗, we let L(x, h) denote the set of strings {hi(x) | i ≥ 0}. The letter c is recursive (for h) if for
some i ≥ 1, hi(c) contains c. A string x ∈ A∗ is mortal (for h) if there is an m ≥ 0 such that hm(x) = λ.
The morphism h is prolongable on a letter c if h(c) = cx for some x ∈ A∗, and x is not mortal. If h is
prolongable on c, hω(c) denotes the infinite word c x h(x) h2(x) · · · . We call such an infinite word pure
morphic. An infinite word α is morphic if there is a morphism h, coding τ , and letter c such that h is
prolongable on c and α = τ(hω(c)). For example, let

h(c) = cbaa τ(c) = a

h(a) = aa τ(a) = a

h(b) = b τ(b) = b
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Then τ(hω(c)) = a1ba2ba4ba8ba16b · · · is a morphic word. See Allouche and Shallit [AS03] for more
on morphic words.

A morphism h has growth f(n) on a string x if |hn(x)| = f(n) for all n ≥ 0. We say that h is
polynomially bounded on x if |hn(x)| is in O(nk) for some k ≥ 0. The following proposition says that
if h is polynomially bounded on x (and x is not mortal), its growth on x must be in Θ(nk) for some k ≥ 0,
and so cannot be an “in-between” function like n log n.

Proposition 1. For every morphism h and string x, if h is polynomially bounded on x and x is not mortal
under h, then |hn(x)| is in Θ(nk) for some k ≥ 0.

Proof: Take any morphism h and string x such that h is polynomially bounded on x and x is not mortal
under h. Take the lowest k such that |hn(x)| is in O(nk). By [ER79, Theorem 3], x has rank k under h.
Then by [ER79, Corollary 1], we have that |hn(x)| is in Θ(nk).

We say that a morphic word α has growth f(n) if for some morphism h, coding τ , and letter c, h is
prolongable on c, α = τ(hω(c)), and h has growth f(n) on c. We say that α has polynomial growth if it
has growth Θ(nk) for some k.

Note that a morphic word with polynomial growth may have alternative representations in which growth
is exponential. For example, aω has polynomial growth (take c = s, h(s) = sa, h(a) = a, τ(s) = a,
τ(a) = a), notwithstanding the existence of exponential representations (e.g. c = a, h(a) = aa, τ(a) = a).
In conjunction with Proposition 1 above, [DK09, Theorem 25] shows that for every aperiodic pure morphic
word α, either (1) every representation (h, c) of α has exponential growth, or (2) for some k ≥ 1, every
representation (h, c) of α has growth Θ(nk). We do not know whether the same holds for (not necessarily
pure) morphic words and representations (h, c, τ).

3 Zigzag words
We now introduce zigzag words, define a notion of depth for these words, and give some examples. Below,∏

denotes concatenation, and we use
∏n

i=1 f(i) to mean f(1)f(2) · · · f(n), and
∏i=n

1 f(i) to mean
f(n)f(n−1) · · · f(1). In this section and all following ones, let A be an alphabet. Let F , B, and S be
functions, to be defined below.

Let L be the set of all nonempty lists over ({F,B} × L) ∪ ({S} ×A+). That is, L consists of all lists
of the form

[(f1, x1), . . . , (fm, xm)]

with m ≥ 1, such that for each 1 ≤ i ≤ m,

fi is in {F,B} and xi is in L, or

fi = S and xi is in A+.

Define R : L× Z+ → A+ as follows:

R([(f1, x1), . . . , (fm, xm)], i) =

m∏
j=1

fj(xj , i)
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Define F : L× Z+ → A+ as follows:

F (l, n) =

n∏
i=1

R(l, i)

Define B : L× Z+ → A+ as follows:

B(l, n) =

i=n∏
1

R(l, i)

Define S : A+ × Z+ → A+ as follows:

S(r, n) = r

A zigzag word is an infinite word α such that for some q ∈ A∗ and l ∈ L,

α = q
∏
i≥1

R(l, i)

3.1 Depth of a zigzag word
For a list l = [(f1, x1), . . . , (fm, xm)] ∈ L, we define

depth(l) = max{depth(i) | 1 ≤ i ≤ m}

where in the context of l, for each 1 ≤ i ≤ m, we define

depth(i) =

{
1 if fi = S

depth(xi) + 1 if fi = F or B

A zigzag word α has depth k if for some q ∈ A∗ and l ∈ L,

α = q
∏
i≥1

R(l, i)

and depth(l) = k.

3.2 Examples of zigzag words
Below we give examples of zigzag words α of the form q

∏
i≥1R(l, i) for various values of q and l. For

each word, we also give a shorthand notation of the form q : r, where r is a string obtained as follows. For
clarity, we enclose string literals in quotes in the following definitions. Define r = short(l), where

short([(f1, x1), . . . , (fm, xm)]) =
∏

1≤i≤m

short(fi, xi)
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and where

short(fi, xi) =


xi if fi = S

“(” short(xi) “)” if fi is in {F,B} and depth(xi) = 1

“F(” short(xi) “)” if fi = F and depth(xi) > 1

“B(” short(xi) “)” if fi = B and depth(xi) > 1

We write the shorthand q : r as just r if q = λ.

Example 1. (depth 1, ultimately periodic)

q = a, l = [(S, bc)]

α = a(bc)ω = abcbcbc · · ·
shorthand: a : bc

Example 2. (depth 2, multilinear)

q = λ, l = [(S, a), (F, [(S, b)])]

α =
∏
n≥1

abn = ababbabbb · · ·

shorthand: a(b)

Example 3. (depth 3)

q = λ, l = [(F, [(S, a), (F, [(S, b)])]), (B, [(S, c), (F, [(S, d)])])]

α =
∏
n≥1

(

n∏
i=1

abi)(

i=n∏
1

cdi)

= abcd ababbcddcd ababbabbbcdddcddcd · · ·
shorthand: F(a(b)) B(c(d))

4 Equivalence of morphic words with polynomial growth and zigzag
words

In this section we establish that an infinite word is morphic with growth Θ(nk) iff it is a zigzag word of
depth k (Theorem 3). We first show that every zigzag word of depth k is a morphic word with growth
Θ(nk) (Theorem 1), and then that every morphic word with growth Θ(nk) is a zigzag word of depth k
(Theorem 2).

4.1 From zigzag words to morphic words
Lemma 1. For every l ∈ L, there is a string w, morphism h, and coding τ such that for all n ≥ 0,
τ(hn(w)) = R(l, n+ 1), and h has growth Θ(ndepth(l)−1) on w.
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Proof: The list l has the form [(f1, x1), . . . , (fm, xm)].

We proceed by induction on the depth k of l.

If k = 1, then every fi = S, so for all n ≥ 1, R(l, n) = x1 · · ·xm. Then we can take w = x1 · · ·xm,
and for every letter c in w, set h(c) = τ(c) = c. The morphism h has growth Θ(n0) = Θ(1) on w as
desired.

If k > 1, suppose for induction that the claim is true for every list of depth < k.

For each (fj , xj) with 1 ≤ j ≤ m, we will describe how to construct a string wj , morphism hj , and
coding τj so that hj has growth Θ(1) on wj if fj = S and growth Θ(ndepth(xj)) on wj if fj is in {F,B},
and further that for all n ≥ 0, τj(hnj (wj)) = fj(xj , n+ 1).

If fj = S, then xj is a string. So set wj = xj , and for all c in xj , set hj(c) = τj(c) = c. Then hj has
growth Θ(1) on wj as desired.

If fj = F , then since depth(xj) < depth(l), we can apply the induction hypothesis, obtaining
w′j , h

′
j , τ
′
j such that for all n ≥ 0, τ ′j(h

′n
j (w′j)) = R(xj , n+1), and h′j has growth Θ(ndepth(xj)−1) on w′j .

For all c in the alphabet of h′j , set hj(c) = h′j(c) and for all c in the alphabet of τ ′j , set τj(c) = τ ′j(c). Now,
let a be a new letter. Set wj = a w′j [2] · · ·w′j [|w′j |]. Set hj(a) = wj hj(w

′
j [1]) and set τj(a) = τ ′j(w

′
j [1]).

Then hj(wj) = wj hj(w
′
j), so we have for all n ≥ 0,

τj(h
n
j (wj)) = τj(wj

n∏
i=1

hij(w
′
j))

= τ ′j(w
′
j

n∏
i=1

h′ ij (w′j))

=

n∏
i=0

τ ′j(h
′ i
j (w′j))

=

n+1∏
i=1

R(xj , i)

= F (xj , n+ 1)

as desired. From above, we have that for all n ≥ 0, |hnj (wj)| = |
∏n

i=0 h
′ i
j (w′j)| =

∑n
i=0 |h′ ij (w′j)|. We

know that h′j has growth Θ(ndepth(xj)−1) on w′j , so |h′nj (w′j)| is bounded above and below by polynomials
of degree depth(xj)− 1. Therefore hj has growth Θ(ndepth(xj)) on wj , since for any polynomial p(n) of
degree k, the sum

∑n
i=0 p(i) equals a polynomial p′(n) of degree k + 1.

If fj = B, we proceed as in the case fj = F , but this time set wj = w′j [1] · · ·w′j [|w′j | − 1] a, set
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hj(a) = hj(w
′
j [|w′j |]) wj , and set τj(a) = τ ′j(w

′
j [|w′j |]). Then hj(wj) = hj(w

′
j) wj , so for all n ≥ 0,

τj(h
n
j (wj)) = τj(

i=n∏
1

hij(w
′
j) wj)

= τ ′j(

i=n∏
1

h′ ij (w′j) w′j)

=

i=n∏
0

τ ′j(h
′ i
j (w′j))

=

i=n+1∏
1

R(xj , i)

= B(xj , n+ 1)

as desired. Further, by the same reasoning as for the case fj = F , hj has growth Θ(ndepth(xj)) on wj .
We now have wj , hj , τj for each j, and we want to make a unified w, h, τ for the whole list l. First, we

rename certain letters to avoid conflicts. We say that a conflict occurs when there are j1 6= j2 and a letter c
such that c belongs to the alphabet of both hj1 and hj2 . If there is a conflict, take any such c, j1, j2. Let d
be a new letter not appearing in any wj , hj , or τj . Replace all occurrences of c in wj1 , hj1 , and the lefthand
side of τj1 with d. Repeat this process until no conflicts remain.

With all conflicts resolved, we set w = w1 · · ·wm, and create a morphism h and coding τ such that for
every 1 ≤ j ≤ m, for every c in the alphabet of hj , h(c) = hj(c) and τ(c) = τj(c). Now we have that for
all n ≥ 0,

τ(hn(w)) =

m∏
j=1

fj(xj , n+ 1) = R(l, n+ 1)

as desired. Now, since depth(l) = k and k > 1, we have by definition that for every j with fj in {F,B},
depth(xj) ≤ k − 1, and for at least one such j, depth(xj) = k − 1. Then by our construction, every
hj has growth O(nk−1) on wj , and at least one hj has growth Θ(nk−1) on wj . Therefore h has growth
Θ(nk−1) on w.

Theorem 1. Every zigzag word of depth k is a morphic word with growth Θ(nk).

Proof: Take any zigzag word α of depth k. Then for some q ∈ A∗ and l ∈ L with depth(l) = k,

α = q
∏
i≥1

R(l, i)

By Lemma 1, there are w, h, τ such that for all n ≥ 0, τ(hn(w)) = R(l, n+1), and h has growth Θ(nk−1)
on w. Let a, b, c1, . . . , c|q|, d1, . . . , d|w| be new letters. Let s = c1 · · · c|q| d1 · · · d|w| h(w). Since w and
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h(w) are nonempty, |s| ≥ 2. Set

h(ci) = λ τ(ci) = q[i]
h(di) = λ τ(di) = τ(w[i])
h(a) = a b s[3] · · · s[|s|] τ(a) = τ(s[1])
h(b) = h(s[1]s[2]) τ(b) = τ(s[2])

Then for all n ≥ 1, we have

τ(hn(a)) = τ(

n−1∏
i=0

hi(s))

= τ(s

n−1∏
i=1

hi(s))

= τ(s

n∏
i=2

hi(w))

= q τ(w h(w)

n∏
i=2

hi(w))

= q

n∏
i=0

τ(hi(w))

= q

n+1∏
i=1

R(l, i)

and therefore h is prolongable on a and τ(hω(a)) = α. Now, h has growth Θ(nk−1) on w, and w is not
mortal under h. So |h(w)| is bounded above and below by polynomials of degree k − 1 ≥ 0. Therefore h
has growth Θ(nk) on a, since for any polynomial p(n) of degree k, the sum

∑n
i=0 p(i) equals a polynomial

p′(n) of degree k + 1. Therefore α is a morphic word with growth Θ(nk).

4.2 From morphic words to zigzag words
We begin by defining the rank and level of a string under a morphism, as well as the concept of a normalized
morphism.

Rank and level Let h be a morphism. Following [ER79], we now define the rank of a letter c under h,
denoted rank(c, h). Informally, the rank 0 letters are those that are finite under h, the rank 1 letters are
those that are finite under h once the rank 0 letters have been removed, the rank 2 letters are those that are
finite under h once the rank 0 and rank 1 letters have been removed, and so on. Formally, for an alphabet
B, let ϕ(h,B) be the morphism such that for all d ∈ A, ϕ(h,B)(d) is the string resulting from h(d) by
erasing all letters in h(d) that are not in B. We define rank(c, h) as follows:

• If L(c, h) is finite, then rank(c, h) = 0.

• For n ≥ 1, let An = A− {d | rank(d, h) < n} and let hn = ϕ(h,An). If c ∈ An and L(c, hn) is
finite, then rank(c, h) = n.



10 Tim Smith

Note that some letters may have no rank under h. A string x has rank under h if x 6= λ and every letter
in x has rank under h. The rank of x under h, denoted rank(x, h), is max{rank(c, h) | the letter c occurs
in x}. In [ER79] it is shown that x has rank k under h iff k is the minimal degree of a polynomial p such
that for every n, p(n) ≥ |hn(x)|.

We now introduce a more fine-grained concept of rank, called level. For each letter c with rank under h,
we define level(c, h) as follows. If c is mortal, level(c, h) = 0. Otherwise, if c is recursive (reachable from
itself), level(c, h) = rank(c, h) · 2 + 1. Otherwise, level(c, h) = rank(c, h) · 2 + 2.

Thus, a rank 0 letter may have level 0, 1, or 2, a rank 1 letter may have level 3 or 4, a rank 2 letter may
have level 5 or 6, and so on.

A string x has level under h iff it has rank under h. The level of x under h, denoted level(x, h), is
max{level(c, h) | the letter c occurs in x}.

If the intended morphism is clear from context, we write rank(c) instead of rank(c, h), level(x) instead
of level(x, h), etc.

Normalized morphism Below we make use of the concept of a normalized morphism from [DK09]. A
normalized morphism h has the following properties (among others which we omit):

• alph(h(c)) = alph(h2(c)) for all c ∈ A

• h(c) = h2(c) for all c ∈ A such that rank(c, h) = 0

By [DK09, Lemma 17], for every morphism h, there is a power h′ = ht with t ≥ 1 such that h′ is
normalized.

Lemma 2. Let h be a morphism and let c be a letter with rank under h. Then rank(h(c)) = rank(c).

Proof: Let i = rank(c). For n ≥ 1, let An = A− {b | rank(b, h) < n} and let hn = ϕ(h,An). Suppose
h(c) contains a letter d of rank > i. Since rank(c) = i, L(c, hi) is finite. Since rank(d) > i, L(d, hi) is
infinite. But hi(c) contains d, making L(c, hi) infinite, a contradiction. So every letter in h(c) has rank
≤ i. Then if i = 0, we have rank(h(c)) = 0. So say i > 0. If every letter in h(c) has rank < i, then
every letter in hi−1(c) has rank i − 1. Then for every letter d in hi−1(c), L(d, hi−1) is finite. But then
L(hi−1(c), hi−1) is finite; hence L(c, hi−1) is finite, and therefore rank(c) = i− 1, a contradiction. So at
least one letter in h(c) has rank i, and therefore rank(h(c)) = i.

Lemma 3. Let h be a morphism, let c be a letter with rank under h, and suppose rank(c) ≥ 1 and
h(c) = sct for some s, t ∈ A∗. Then rank(st) = rank(c)− 1.

Proof: For n ≥ 1, let An = A − {b | rank(b, h) < n} and let hn = ϕ(h,An). Let i = rank(c) and
j = rank(st). Suppose j < i− 1. Then hi−1(c) = c, so L(c, hi−1) is finite. But then rank(c) = i− 1, a
contradiction. So j ≥ i− 1. Now, since L(c, hi) is finite, st must be mortal under hi. So for some k ≥ 0,
hki (st) = λ. Then hki−1(st) consists entirely of letters of rank i− 1. But then L(hki−1(st), hi−1) is finite;
hence L(st, hi−1) is finite. Therefore since j ≥ i− 1, applying the definition of rank gives j = i− 1.

Lemma 4. Let h be a normalized morphism and let c be a letter that has rank under h and is not mortal
under h. Suppose h(c) does not include c. Then level(h(c)) = level(c)− 1.
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Proof: Since h is normalized, alph(h(c)) = alph(h2(c)). Then for all i ≥ 1, alph(hi(c)) = alph(h(c)).
So since h(c) does not include c, there is no i ≥ 1 such that hi(c) includes c. Therefore c is not recursive.
Hence since c is not mortal, level(c) = rank(c) · 2 + 2. Now, by Lemma 2, rank(h(c)) = rank(c), so
h(c) contains at least one letter d such that rank(d) = rank(c). Take any such d that is not mortal. Then
since h is normalized, d appears in h|A|+2(c). So d can be reached from c via a chain of |A|+ 1 ancestor
letters, each of rank(c). Some letter e appears twice in this chain. Therefore e is recursive. Then since h is
normalized, h(e) = set for some s, t ∈ A∗. If rank(e) = 0, then st is mortal, and if rank(e) ≥ 1, then by
Lemma 3, rank(st) = rank(c) − 1. In either case, d cannot appear in st or be descended from st, and
therefore d = e. Hence d is recursive. This holds for every letter d with rank(c) in h(c) that is not mortal.
Therefore level(h(c)) = rank(c) · 2 + 1 = level(c)− 1.

Lemma 5. Let h be a normalized morphism and let x be a string with rank 0 and level > 0 under h. Take
any v ≥ level(x). Then there is an l ∈ L of depth 1 such that for all i ≥ 1, R(l, i) = hv+i(x).

Proof: Since rank(x) = 0, L(x, h) is finite. Let s = h(x). Since level(x) > 0, x is not mortal under h,
so s 6= λ. Further, since h is normalized, hi(x) = s for all i ≥ 1. So let l = [(S, s)]. Then l has depth 1
and for all i ≥ 1, R(l, i) = s = hv+i(x).

Lemma 6. Let h be a normalized morphism and let x be a string with rank under h such that level(x) > 0.
Let r = rank(x) and take any v ≥ level(x). Then there is an l ∈ L of depth r + 1 such that for all i ≥ 1,
R(l, i) = hv+i(x).

Proof:
We proceed by induction on v. For the base case of v = 1, we have level(x) = 1. Then r = 0, so the

claim holds by Lemma 5.
So say v ≥ 2. Suppose for induction that for all v′ < v, for every string x′ with rank under h such that

v′ ≥ level(x′) > 0, there is an l′ ∈ L of depth rank(x′) + 1 such that for all i ≥ 1, R(l′, i) = hv
′+i(x′).

For each j from 1 to |x| such that x[j] is not mortal, we will construct an lj ∈ L of depth rank(x[j]) + 1
such that for all i ≥ 1, R(lj , i) = hv+i(x[i]).

To construct lj , proceed as follows. Let c = x[j]. Suppose h(c) does not include c. Since c is not mortal,
we have level(h(c)) > 0. Further, we can apply Lemma 4, obtaining level(h(c)) = level(c) − 1. Let
v′ = v − 1 and x′ = h(c). Then v′ ≥ level(x′) > 0, so we can apply the induction hypothesis, obtaining
an l′ ∈ L of depth rank(h(c)) + 1 such that for all i ≥ 1, R(l′, i) = hv−1+i(h(c)). Then for all i ≥ 1,
R(l′, i) = hv+i(c) as desired. Further, by Lemma 2, rank(h(c)) = rank(c), so depth(l′) = rank(c) + 1
as desired. So set lj to l′.

So say h(c) includes c. Then h(c) = sct for some s, t ∈ A∗. If rank(c) = 0, then the claim holds by
Lemma 5. So say rank(c) ≥ 1. Then we can apply Lemma 3, obtaining rank(st) = rank(c)− 1. Suppose
that neither s nor t is mortal. Then by the induction hypothesis, taking v′ = v − 1 and x′ = s, there is an
ls ∈ L of depth rank(s) + 1 such that for all i ≥ 1, R(ls, i) = hv−1+i(s). Similarly, taking x′ = t, there
is an lt ∈ L of depth rank(t) + 1 such that for all i ≥ 1, R(lt, i) = hv−1+i(t). Now set

lj = [(B, ls), (S, h
v(c)), (F, lt)]



12 Tim Smith

We have for all n ≥ 1,

R(lj , n) = B(ls, n) hv(c) F (lt, n)

=

i=n∏
1

R(ls, i) hv(c)

n∏
i=1

R(lt, i)

=

i=n∏
1

hv−1+i(s) hv(c)

n∏
i=1

hv−1+i(t)

=

i=v+n−1∏
v

hi(s) hv(c)

v+n−1∏
i=v

hi(t)

=

i=v+n−1∏
v

hi(s)

i=v−1∏
0

hi(s) c

v−1∏
i=0

hi(t)

v+n−1∏
i=v

hi(t)

=

i=v+n−1∏
0

hi(s) c

v+n−1∏
i=0

hi(t)

= hv+n(c)

Further, depth(lj) = max(depth(ls),depth(lt)) + 1 = (rank(st) + 1) + 1 = rank(c) + 1, as desired.
Now, we supposed above that neither s nor t was mortal. They cannot both be mortal, since that would
make rank(c) = 0, and we are considering the case rank(c) ≥ 1. So suppose that s is mortal and t is not.
Since h is normalized, h(s) = λ. So construct lt as above and set

lj = [(S, hv(c)), (F, lt)]

Then following the derivation above, we have for all n ≥ 1,

R(lj , n) = hv(c)

v+n−1∏
i=v

hi(t)

=

i=v−1∏
0

hi(s) c

v−1∏
i=0

hi(t)

v+n−1∏
i=v

hi(t)

= s c

v+n−1∏
i=0

hi(t)

= hv+n(c)

and depth(lj) = depth(lt) + 1 = (rank(t) + 1) + 1 = rank(c) + 1 as desired. Similarly, if t is mortal
and s is not, then h(t) = λ. So construct ls as above and set

lj = [(B, ls), (S, h
v(c))]
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Then following the original derivation, we have for all n ≥ 1,

R(lj , n) =

i=v+n−1∏
v

hi(s) hv(c)

=

i=v+n−1∏
v

hi(s)

i=v−1∏
0

hi(s) c

v−1∏
i=0

hi(t)

=

i=v+n−1∏
0

hi(s) c t

= hv+n(c)

and depth(lj) = depth(ls) + 1 = (rank(s) + 1) + 1 = rank(c) + 1 as desired.
We have now constructed an lj for each j from 1 to |x| such that x[j] is not mortal. Since h is normalized,

h(x[j]) = λ if x[j] is mortal. So for each j from 1 to |x| such that x[j] is mortal, set lj = [ ], the empty
list. Now let l = append(l1, . . . , l|x|). We have that for all i ≥ 1, R(l, i) = hv+i(x), as desired. Further, l
has depth

max{depth(lj) | 1 ≤ j ≤ |x| and xj is not mortal}
= max{rank(x[j]) + 1) | 1 ≤ j ≤ |x|}
= rank(x) + 1

as desired.

Theorem 2. Every morphic word with growth Θ(nk) is a zigzag word of depth k.

Proof: Take any morphic word α with growth Θ(nk). There exist a morphism h, coding τ , and letter c
such that h is prolongable on c, α = τ(hω(c)), and h has growth Θ(nk) on c.

By [DK09, Lemma 17], there is a power h′ = ht with t ≥ 1 such that h′ is normalized. Because h has
growth Θ(nk) on c and h′ is a power of h, h′ also has growth Θ(nk) on c. Since h is prolongable on c, h′

is prolongable on c. So h′(c) = cx for some x ∈ A∗. Then

α = τ(c x h′(x) h′ 2(x) · · · )

Let v = level(x, h′). Let

q = τ(h′ v+1(c)) = τ(c

v∏
i=0

h′ i(x))

By [ER79, Theorem 3], rank(c, h′) = k. Since α is infinite, we know k ≥ 1. Hence by Lemma 3,
rank(x, h′) = k − 1. Again since α is infinite, level(x, h′) > 0. Then we can apply Lemma 6, obtaining
an l ∈ L of depth k such that for all i ≥ 1, R(l, i) = h′ v+i(x). Let l′ be l with every string s replaced with
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τ(s). Then for all i ≥ 1, R(l′, i) = τ(h′ v+i(x)). Then

q
∏
i≥1

R(l′, i) = τ(h′ v+1(c))
∏
i≥1

τ(h′ v+i(x))

= τ(c

v∏
i=0

h′ i(x))
∏

i≥v+1

τ(h′ i(x))

= τ(c
∏
i≥0

h′ i(x))

= α

Therefore α is a zigzag word of depth k.

4.3 Main result
Finally, we obtain our main result.

Theorem 3. An infinite word is morphic with growth Θ(nk) iff it is a zigzag word of depth k.

Proof: Immediate from Theorems 1 and 2.

5 Applications
In this section we apply the equivalence between zigzag words and morphic words with polynomial growth
obtained in the previous section to the first two orders of growth. We show an exact correspondence
between morphic words with growthO(n) and ultimately periodic words, and between morphic words with
growth O(n2) and multilinear words. As far as we are aware, these results have not previously appeared in
the literature.

Theorem 4. An infinite word is morphic with growth O(n) iff it is ultimately periodic.

Proof: =⇒: Take any morphic word α with growth O(n). By Proposition 1, α has growth Θ(n). (Since α
is infinite, it cannot have growth Θ(1).) Then by Theorem 3, α is a zigzag word of depth 1. Then there are
q ∈ A∗ and l ∈ L such that

α = q
∏
i≥1

R(l, i)

and l has depth 1. Then l has the form [(S, r1), . . . , (S, rm)]. It follows that α = q(r1 · · · rm)ω . Thus α is
ultimately periodic.

⇐=: Take any ultimately periodic word α = qrω . Let l = [(S, r)]. Then

α = q
∏
i≥1

R(l, i)

So α is a zigzag word of depth 1. Then by Theorem 3, α is a morphic word with growth O(n).
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Theorem 5. An infinite word is morphic with growth O(n2) iff it is multilinear.

Proof: =⇒: Take any morphic word α with growth O(n2). By Proposition 1, α has growth Θ(n) or
Θ(n2). If α has growth Θ(n), then by Theorem 4, it is ultimately periodic and hence multilinear. So say α
has growth Θ(n2). Then by Theorem 3, α is a zigzag word of depth 2. Then there are q ∈ A∗ and l ∈ L
such that

α = q
∏
i≥1

R(l, i)

and l has depth 2. Now, l has the form [(f1, x1), . . . , (fm, xm)]. For each 1 ≤ i ≤ m, we create a term
ti = [ri, ai, bi] as follows. If fi = S, then xi is a string, so let ti = [xi, 0, 1]. If fi = F or B, then xi has
depth 1, and therefore has the form [(S, s1), . . . , (S, sk)]. So let ti = [s1 · · · sk, 1, 0]. Now the multilinear
word [q, [t1, . . . , tm]] equals

q
∏
n≥1

m∏
i=1

rn·ai+bi
i = q

∏
n≥1

m∏
i=1

fi(xi, n)

= q
∏
n≥1

R(l, i)

= α

as desired.

⇐=: Take any multilinear word α. If α is ultimately periodic, then by Theorem 4, α is a morphic word
with growth O(n). Otherwise, α is properly multilinear, so by [Smi16, Theorem 7], we can write α as

q
∏
n≥1

m∏
i=1

pis
n
i

for some m ≥ 1, q ∈ A∗, and pi, si ∈ A+. Let

l = [(S, p1), (F, [(S, s1)]), . . . , (S, pm), (F, [(S, sm)])].

Then l has depth 2 and

α = q
∏
n≥1

R(l, i)

So α is a zigzag word of depth 2. Then by Theorem 3, α is a morphic word with growth O(n2).

6 Conclusion
In this paper we characterized morphic words with polynomial growth in terms of zigzag words, showing
that an infinite word is morphic with growth Θ(nk) iff it is a zigzag word of depth k. We then applied
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this characterization to show that the morphic words with growth O(n) are exactly the ultimately periodic
words, and the morphic words with growth O(n2) are exactly the multilinear words.

Some open problems involving the above characterization arise in connection with automata. We say
that an automaton M determines an infinite word α if L(M) is infinite and every string in L(M) is a
prefix of α. In [Smi13] it is shown that ultimately periodic words are exactly those determined by finite
automata, and multilinear words are exactly those determined by one-way stack automata (a generalization
of pushdown automata). It would be interesting to know what kind of automaton determines exactly the
zigzag words.

It is further shown in [Smi13] that every multilinear word can be determined by a one-way 2-head DFA.
(These automata can also determine infinite words that are not multilinear.) It would be interesting to know
whether or not the following statement holds: every zigzag word of depth k (morphic word with Θ(nk)
growth) can be determined by a one-way k-head DFA.
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