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A word of length n is rich if it contains n nonempty palindromic factors. An infinite word is rich if all of its finite

factors are rich. Baranwal and Shallit produced an infinite binary rich word with critical exponent 2+
√
2/2 (≈ 2.707)

and conjectured that this was the least possible critical exponent for infinite binary rich words (i.e., that the repetition

threshold for binary rich words is 2+
√
2/2). In this article, we give a structure theorem for infinite binary rich words

that avoid 14/5-powers (i.e., repetitions with exponent at least 2.8). As a consequence, we deduce that the repetition

threshold for binary rich words is 2 +
√
2/2, as conjectured by Baranwal and Shallit. This resolves an open problem

of Vesti for the binary alphabet; the problem remains open for larger alphabets.

Keywords: rich word, repetition threshold, critical exponent, palindrome

1 Introduction

A palindrome is a word that is equal to its reversal, i.e., it reads the same forwards and backwards. It

is well-known that a word of length n contains at most n distinct nonempty palindromes [13]. Words

of length n that contain n distinct nonempty palindromes are called palindrome-rich, or simply rich.

An infinite word is rich if all of its factors are rich. Rich words were introduced in [6] (where they

were called full words), were first studied systematically in [15], and have since been studied by many

authors [11, 24, 30, 33, 34].

Let u be a finite nonempty word, and let u = u1 . . . un, where the ui are letters. A positive integer p is

a period of u if ui = ui+p for all 1 ≤ i ≤ n − p. Let e = |u|/p and let z be the prefix of u of length p.

Then we say that e is an exponent of p, and write u = ze. We say that u is primitive if the only integer

exponent of u is 1.

For a real number α ≥ 1, a finite or infinite word w is called α-free if it contains no nonempty factor of

exponent greater than or equal to α. Otherwise, we say that w contains an α-power. The critical exponent

of w is the supremum of the set of all rational numbers α such that w contains an α-power. The repetition

threshold for a language L is the infimum of the set of all real numbers α > 1 such that there is an infinite
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α-free word in L. In other words, the repetition threshold for L is the smallest possible critical exponent

among all infinite words in L.

The repetition threshold for the language of all words on a fixed alphabet of size k, denoted RT(k), was

introduced by Dejean [12], who conjectured that

RT(k) =







2, if k = 2;

7/4, if k = 3;

7/5, if k = 4;

k/(k − 1), if k ≥ 5.

This conjecture was eventually proven through the work of many authors [7–9, 12, 21–23, 29]. Rampersad

et al. [28] recently proposed the problem of determining the repetition threshold for the language of

balanced words over a fixed alphabet of size k. Both Rampersad et al. [28] and Baranwal and Shallit [4]

have made some progress on this problem.

We are concerned with repetitions in rich words. Vesti [34] proposed the problem of determining

the repetition threshold for the language of rich words over k letters, denoted RRT(k). Vesti noted that

2 ≤ RRT(k) ≤ 2 + 1/(ϕk − 1) for all k ≥ 2, where ϕk is the generalized golden ratio. The lower bound

follows from the fact that every infinite rich word contains a square [24]. The upper bound follows from

the fact that the k-bonacci word is rich and has critical exponent 2 + 1/(ϕk − 1) [14]. Baranwal and

Shallit [3] demonstrated that there is an infinite binary rich word with critical exponent 2 +
√
2/2, and

conjectured that this is the smallest possible critical exponent among all infinite binary rich words, i.e.,

that RRT(2) = 2 +
√
2/2. In this article, we prove a structure theorem for infinite 14/5-free binary rich

words. We use this theorem to confirm Baranwal and Shallit’s conjecture.

We use the following notation throughout the paper. Let Σk = {0,1, . . . ,k-1}. Define f : Σ∗
3 → Σ∗

2

and g, h : Σ∗
3 → Σ∗

3 by

f(0) = 0

f(1) = 01

f(2) = 011

g(0) = 011

g(1) = 0121

g(2) = 012121

h(0) = 01

h(1) = 02

h(2) = 022

Note that f(hω(0)) is the infinite binary rich word with critical exponent 2+
√
2/2 constructed by Baran-

wal and Shallit [3]. Also, note that f , g, and h are injective. Furthermore, these three morphisms all

belong to the well-studied family of class P morphisms [16], which are connected to the study of rich

words [2].
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We prove the following structure theorem for infinite 14/5-free binary rich words.(i)

Theorem 1. Let w ∈ Σω
2 be a 14/5-free rich word. For every n ≥ 1, a suffix of w has the form f(hn(wn))

or f(g(hn(wn))) for some word wn ∈ Σω
3 .

We then demonstrate that, like f(hω(0)), the word f(g(hω(0))) has critical exponent 2 +
√
2/2. This

gives the following.

Theorem 2. The repetition threshold for binary rich words is 2 +
√
2/2.

Our structure theorem is somewhat reminiscent of the well-known structure theorem for overlap-free

binary words due to Restivo and Salemi [31, 32], and its extension to 7/3-free binary words by Karhumäki

and Shallit [18]. However, we deal only with infinite words.

2 A structure theorem

In this section, we prove Theorem 1. Throughout, we say that a word w ∈ Σω
2 is good if it is both rich

and 14/5-free. In particular, a good word is cube-free.

We begin by proving several properties of the morphisms f , g, and h. For every φ ∈ {f, g, h}, one

verifies by computer using a straightforward backtracking algorithm that the longest word u ∈ {1,2}∗
such that φ(u) is cube-free has length 6. This gives the following.

Observation 3. Let φ ∈ {f, g, h} and u ∈ Σω
3 . If φ(u) is cube-free, then u contains a 0.

We now show that the morphisms f , g, and h preserve non-richness of ω-words. We require two short

lemmas. The first can be derived from [2, Lemma 5.2], but we give a proof here for completeness.

Lemma 4. Let φ ∈ {f, g, h} and let u, v ∈ Σ∗
3. Suppose φ(u)0 is a palindromic suffix of φ(v)0. Then u

is a palindromic suffix of v.

Proof: Since φ(u)0 is a suffix of φ(v)0 and φ is injective, we have that u is a suffix of v. For any u ∈ Σ∗
3,

we have 0(φ(u))R = φ(uR)0. Since φ(u)0 is a palindrome, (φ(u)0)R = 0(φ(u))R = φ(uR)0. Since φ
is injective, we have u = uR. Thus u is a palindromic suffix of v.

In order to prove the next lemma, we use the fact that a word w is rich if and only if every nonempty

prefix p of w has a nonempty palindromic suffix that appears only once in p [15].

Lemma 5. Let φ ∈ {f, g, h}. Suppose that w ∈ Σ∗
3 is non-rich. Then φ(w)0 is non-rich.

Proof: Let w′ be a prefix of w such that every palindromic suffix of w′ occurs at least twice in w′. We

claim that φ(w′)0 is a prefix of φ(w)0 such that every palindromic suffix of φ(w′)0 occurs at least twice

in φ(w′)0. Any palindromic suffix of φ(w′)0 has the form φ(u)0 for some u. Then by Lemma 4, we

know that u is a palindromic suffix of w′. However, by hypothesis, w′ contains two occurrences of u.

Consequently, φ(w′)0 contains two occurrences of the palindrome φ(u)0. We conclude that φ(w)0 is

non-rich, as required.

The fact that the morphisms f , g, and h preserve non-richness of ω-words now follows as an easy

corollary.

(i) Note that g = g̃ ◦ h, where g̃ : Σ∗
3 → Σ∗

2 is defined by g̃(0) = 01, g̃(1) = 1, and g̃(2) = 21. Thus, in the statement of

Theorem 1, one could replace g with g̃. For convenience, we have elected to work with the morphism g throughout.
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Table row v |vs|
1 00 2
2 0121012 49
3 021 22
4 0221 19
5 11010 24
6 11011 29
7 1102 30
8 112 ∗
9 120 22
10 122 17
11 21010 6
12 2101210 48
13 211 3

Tab. 1: Forbidden factors in every ω-word u such that f(u) is good.

Corollary 6. Let φ ∈ {f, g, h} and u ∈ Σω
3 . If φ(u) is rich, then u is rich.

By straightforward induction arguments using Observation 3 and Corollary 6, we obtain the following.

Lemma 7. Let φ be a morphism of the form f ◦hn or f ◦ g ◦hn for some n ≥ 0. If φ(u) is good for some

u ∈ Σω
3 , then the word u is cube-free, rich, and contains a 0.

We use Lemma 7 frequently throughout this section, sometimes without reference.

If w is good, then w avoids the cube 111, so the following observation is immediate.

Observation 8. If w ∈ Σω
2 is good, then a suffix of w has the form f(u) for some word u ∈ Σω

3 .

So we may now restrict our attention to good words of the form f(u), where u ∈ Σω
3 . By Lemma 7,

if u ∈ Σω
3 is a word such that f(u) is good, then every factor of u is rich, i.e., no non-rich word is a

factor of u. There are a variety of other short factors that cannot appear in such a word u. One checks

by backtracking that for each word v in Table 1, there is a longest right-extension vs ∈ Σ∗
3 of v such that

f(vs) is not good. Table 1 indicates in each case the length of such a longest extension vs. (The notation

∗ indicates that f(v) already fails to be good.) Hence, none of the factors in Table 1 can appear in u ∈ Σω
3

if f(u) is good. We use this fact frequently throughout this section. We also remark that the choice of the

constant 14/5 in the definition of “good” becomes relevant at this backtracking step. If we replace 14/5
with 3 in the definition of “good”, then for certain v the backtracking search runs for a very long time

without finding a longest right-extension vs such that f(vs) is not good.

We will prove that if f(u) is good for some ω-word u, then u either has a suffix of the form g(W ), or a

suffix of the form h(W ). It turns out that if u contains the factor 0110, then we are forced into the former

structure. Otherwise, if h does not contain 0110, then we are forced into the latter structure. We handle

the case that u contains the factor 0110 first. In fact, we show that in this case, a suffix of u must have

the form h(g(U)).

Lemma 9. Suppose f(u) is good, where u ∈ Σω
3 , and u contains the factor 0110. Then

1. The word u has a suffix of the form g(W ) for some word W ∈ Σω
3 .



The repetition threshold for binary rich words 5

2. A suffix of W has the form h(U) for some word U ∈ Σω
3 .

Proof: (1) Replacing u by a suffix if necessary, write u = u1u2u3u4 · · · , where u1 = 011 and each

ui starts with 0 and contains no other 0. To show that u = g(W ) for some W ∈ Σω
3 , it will suffice to

show that every ui is one of 011, 0121 or 012121. The proof is by induction on i. The base case is

immediate since u1 = 011.

Now suppose for some i ≥ 1 that ui ∈ {011,0121,012121}. Consider the tree in Figure 1, which

shows all candidates for ui+10. We explain why the word ending at every unboxed leaf of the tree cannot

be a prefix of ui+10, from which we conclude that ui+1 ∈ {011,0121,012121}. We use the following

facts:

• By Lemma 7, the word u is cube-free and rich.

• No word in Table 1 is a factor of u.

• The word ui must have suffix 11 or 21 by the induction hypothesis; so if neither 11x nor 21x
appears in u, then x cannot be a prefix of ui+10.

We discuss each unboxed leaf of the tree in lexicographic order.

• 00: The word 00 is in Table 1.

• 010: The words 11010 and 21010 are in Table 1.

• 0111: The word 111 is a cube.

• 0112: The word 112 is in Table 1.

• 0120: The word 0120 is not rich.

• 01211: The word 211 is in Table 1.

• 012120: The word 012120 is not rich.

• 0121211: The word 211 is in Table 1.

• 0121212: The word 121212 is a cube.

• 012122: The word 122 is in Table 1.

• 0122: The word 122 is in Table 1.

• 02: The word 1102 is in Table 1, and the word 2102 is not rich.

(2) To begin with, we show that 00, 11, 12, and 21 are not factors of W . If W contains 00, then u
contains g(00) = 011011, but this is impossible since 11011 is in Table 1. If W contains 11 or 12,

then u contains g(11) = 01210121 or g(12) = 0121012121; but this is impossible since 0121012

is in Table 1. Finally, if W contains 21, then u contains g(21)0=01212101210, but this is impossible

since 2101210 is in Table 1.
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Fig. 1: The tree showing all possible prefixes of ui+10.
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Fig. 2: The tree showing all possible prefixes of Wi0.

By Lemma 7, the wordW contains a 0. ReplacingW by a suffix if necessary, write W = W1W2W3W4 · · · ,
where each Wi starts with 0 and contains no other 0. Let i ≥ 1. As above, we enumerate the possible

prefixes of Wi0 in the tree of Figure 2. It is easy to verify that the word ending at every unboxed leaf of the

tree ends in one of the factors 00, 11, 12, 21, or the cube 222, so we conclude that Wi ∈ {01,02,022}
as desired.

We now show that there are several factors that do not appear in relevant preimages of good words.

Define F = {1221,00,10101,212,11}.

Lemma 10. Let u ∈ Σω
3 . Suppose that for some positive integer n, one of f(g(hn(u))) and f(hn(u)) is

good. Then a suffix of u does not contain any of the factors in the set F .

Proof: By Lemma 7, the word u must be cube-free and rich, and we may assume, by taking a suffix if

necessary, that u begins in 0.

1221: Since h(1221) contains a cube, 1221 cannot be a factor of u.

00: For any letter x ∈ {0, 1, 2}, all of f(h(00x)), g(h(00x)), and h2(00x) contain a cube. Suppose

towards a contradiction that 00 is a factor of u. If n = 1, then f(h(u)) and f(g(h(u))) contain factors of
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the form f(h(00x)) and f(g(h(00x))), respectively, giving a cube. Otherwise, if n ≥ 2, then f(hn(u))
and f(g(hn(u))) contain factors of the form f(hn−2(h2(00x))) and f(g(hn−2(h2(00x)))), respectively,

giving a cube. Since u is cube-free, this is impossible, and we conclude that 00 is a not a factor of u.

10101: All of f(h(10101x)), g(h(10101x)), and h2(10101x) contain cubes. By an argument similar

to the one used for 00, we see that the factor 10101 cannot be a factor of u.

212: First note that f(0) is a prefix of f(1), which is a prefix of f(2). It follows that if v ∈ Σ∗
3,

then f(v0v0v1) and f(v1v1v2) contain cubes. Next, note that g(v0v0v2) = (V 1V 1V 2)121, where

V = g(v)01. Since g(1) is a prefix of g(2), we see that g(v1v1v2) contains a cube. Similarly, note

that h(v0v0v2) = (V 1V 1V 2)2, where V = h(v)0. Further, since h(1) is a prefix of h(2), we see

that h(v1v1v2) contains a cube. Finally, note that h(212) = 02202022 ends in a factor of the form

v0v0v2, where v = 2.

Suppose that 212 is a factor of u. It follows by induction that hn(u) contains either a cube, a factor of

the form v0v0v2 (in the case n = 1), or a factor of the form v1v1v2. It follows that g(hn(u)) contains

a factor of the form V 1V 1V 2, or a cube, so that f(hn(u)) and f(g(hn(u))) both contain cubes. This is

impossible.

11: Suppose that 11 is a factor of u. The words 111, h(112), and h(211)0 all contain a cube, hence 11

is preceded and followed by 0. Thus, 0110 is a factor of u. However, all of f(h(0110)), g(h(0110)),
and h2(0110) contain a cube. By an argument similar to the one used for 00, we conclude that 11 is not

a factor of u.

We now prove that any cube-free rich word u ∈ Σω
3 that avoids the finite list of factors from Lemma 10

must have a suffix of the form h(W ). Together, Lemma 10 and the following lemma will form the

inductive step of our structure theorem.

Lemma 11. Suppose that u ∈ Σω
3 is cube-free and rich. If u does not contain any of the factors in the set

F , then u has a suffix of the form h(W ) for some word W ∈ Σω
3 .

Proof: Taking a suffix of u if necessary, write u = u1u2u3u4 · · · , where each ui starts with 0 and contains

no other 0. It will suffice to show that every ui is one of 01, 02 or 022. For an arbitrary i ≥ 1, as in the

proof of Lemma 9, we consider the tree of possible prefixes of ui0, drawn in Figure 3. We explain why

the word ending at every unboxed leaf of the tree cannot be a factor of u.

• 00: The word 00 is in F .

• 011: The word 11 is in F .

• 0120: The word 0120 is not rich.

• 01211: The word 11 is in F .

• 01212: The word 212 is in F .

• 01220: The word 01220 is not rich.

• 01221: The word 1221 is in F .

• 01222: The word 222 is a cube.
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Fig. 3: The tree showing all possible prefixes of ui0.

• 0210: The word 0210 is not rich.

• 0211: The word 11 is in F .

• 0212: The word 212 is in F .

• 02210: The word 02210 is not rich.

• 02211: The word 11 is in F .

• 02212: The word 212 is in F .

• 0222: The word 222 is a cube.

Thus, we conclude from Figure 3 that ui ∈ {01,0121,02,022} for all i ≥ 1. Suppose towards a

contradiction that for some i ≥ 1, we have ui = 0121. Because u does not have the non-rich word 2102

as a factor, we see that ui+1 6= 02,022. Suppose that ui+1 = 01. Then ui+2 ∈ {01,0121,02,022},

forcing u to contain one of 10101, or 210102. However, this is impossible since 10101 is in F , and

210102 is not rich. We conclude that ui+1 = 0121. By the same argument, ui+2 = 0121, and u
contains the cube (0121)3. This is impossible. It follows that we cannot have ui = 0121, so that

ui ∈ {01,02,022}, as desired.

Finally, we still need to handle the case that f(u) is good, but u ∈ Σ∗
3 does not contain the factor 0110.

Lemma 12. Suppose f(u) is good for some word u ∈ Σω
3 that does not contain the factor 0110. Then u

has a suffix of the form h(W ).
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Proof: By Lemma 7, we know that u is cube-free and rich, and by taking a suffix if necessary, we may

assume that u begins in 0. By Lemma 11, it suffices to show that u does not contain any of the words in

F .

1221,00: The words 122 and 00 are in Table 1.

10101: Since f(0) is a prefix of f(1) and f(2), the word f(10101x) begins with a cube. Since f(u)
is cube-free, we conclude that u cannot contain the factor 10101.

212: Backtracking by computer as we did to create Table 1, with the additional restriction that 0110 is

not allowed, one finds that the longest right extension of 212 has length 21. Hence 212 is not a factor of

u.

11: The word 11 cannot be preceded or followed by 1 in u, since u is cube-free. Further, the word 11

cannot be preceded or followed by 2 in u, since 112 and 211 are in Table 1. However, then if 11 is a

factor of u, so is 0110, contrary to assumption.

We are now ready to prove our structure theorem.

Proof Proof of Theorem 1: The proof is by induction on n. We first establish the base case n = 1. By

Observation 8, a suffix of w has the form f(w0) for some word w0 ∈ Σω
3 . If w0 contains the factor 0110,

then by Lemma 9, there is a suffix of w0 that has the form g(h(w1)). Otherwise, if w0 does not contain

the factor 0110, then by Lemma 12, there is a suffix of w0 that has the form h(w1). Therefore, a suffix

of w has the form f(h(w1)) or f(g(h(w1))) for some w1 ∈ Σ∗
3, establishing the base case.

Suppose now that for some n ≥ 1, a suffix of w has the form f(hn(wn)) or f(g(hn(wn))) for some

wn ∈ Σω
3 . By Lemma 10, there is a suffix of wn that does not contain any of the factors in F =

{1221,00,10101,212,11}. By Lemma 7, we know that wn is cube-free and rich. Therefore, by

Lemma 11, a suffix of wn has the form h(wn+1) for some wn+1 ∈ Σω
3 . We conclude that a suffix of w

has the form f(hn+1(wn+1)) or f(g(hn+1(wn+1))).

3 The repetition threshold

Baranwal and Shallit [3] showed that the word f(hω(0)) is rich and has critical exponent 2+
√
2/2. They

showed both properties using the Walnut theorem prover. We show that the word f(g(hω(0))) has the

same properties using a different method, which relies heavily on a connection to Sturmian words; it turns

out that both f(hω(0)) and f(g(hω(0))) are complementary symmetric Rote words(ii).

A word w ∈ Σω
2 is a complementary symmetric Rote word if its factorial language is closed under

complementation and it has factor complexity C(n) = 2n for all n ≥ 1. For any infinite binary word

w = (wn)n≥0, let ∆(w) = ((wn + wn+1) mod 2)n≥0, i.e., ∆(w) is the sequence of first differences of

w modulo 2. We use the fact that a word w ∈ Σω
2 is a complementary symmetric Rote word if and only if

∆(w) is a Sturmian word [27, Theorem 3].

Let u = f(g(hω(0))). We begin by showing that ∆(u) is a certain Sturmian word v, from which we

conclude that u is a complementary symmetric Rote word. In particular, this implies that u is rich [5].

We then relate the repetitions in v to those in u, and use the theory of repetitions in Sturmian words to

establish that the critical exponent of u is 2 +
√
2/2. We note that a similar calculation would provide an

alternate proof of Baranwal and Shallit’s result that the critical exponent of f(hω(0)) is 2 +
√
2/2.

(ii) This very useful observation was communicated to us by Edita Pelantová.
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Define λ, µ : Σ∗
3 → Σ∗

2 by

λ(0) = 0

λ(1) = 11

λ(2) = 101

µ(0) = 01111

µ(1) = 01110111

µ(2) = 0111011110111

We extend the map ∆ to finite binary words in the obvious manner in order to prove the following straight-

forward lemma.

Lemma 13. Let w ∈ Σ∗
3. Then

1. ∆(f(w)0) = λ(w), and

2. ∆(f(g(w))0) = µ(w).

Proof: One checks that ∆(f(a)0) = λ(a) and ∆(f(g(a))0) = µ(a) for all a ∈ Σ3.

For (1), we proceed by induction on the length n of w. When n = 0, we have ∆(f(ε)0) = ε = λ(ε),
so the statement holds. Suppose for some n ≥ 0 that the statement holds for all words w of length n.

Let x be a word of length n + 1. Then x = ya for some y ∈ Σn
3 and a ∈ Σ3. Then ∆(f(x)0) =

∆(f(y)0)∆(f(a)0) = λ(y)λ(a) = λ(x).
The proof of (2) is similar.

Define morphisms ξ, η : Σ∗
2 → Σ∗

2 by

ξ(0) = 011

ξ(1) = 01

η(0) = 011

η(1) = 1.

Note that both ξ and η are Sturmian morphisms (see [19, Section 2.3]). By checking the images of all

letters in Σ3, one verifies that λ ◦ h = ξ ◦ λ and µ = η ◦ ξ ◦ λ.

Lemma 14. 1. ∆(f(hω(0))) = ξω(0)

2. ∆(f(g(hω(0)))) = η(ξω(0))

Proof: For (1), we show that ∆(f(hn(0))0) = ξn(0) for everyn ≥ 0. First of all, we have∆(f(hn(0))0) =
λ(hn(0)) by Lemma 13, so it suffices to show that λ(hn(0)) = ξn(0). We proceed by induction on n.

The statement is easily verified when n = 0. Suppose for some n ≥ 0 that λ(hn(0)) = ξn(0). Using the

fact that λ ◦ h = ξ ◦ λ, we obtain

λ(hn+1(0)) = ξ(λ(hn(0))) = ξ(ξn(0)) = ξn+1(0),
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which completes the proof of (1).

For (2), we show that ∆(f(g(hn(0)))0) = η(ξn+1(0)) for every n ≥ 0. By Lemma 13, we have

∆(f(g(hn(0)))0) = µ(hn(0)), so it suffices to show that µ(hn(0)) = η(ξn+1(0)). Using the facts that

µ = η ◦ ξ ◦ λ and λ(hn(0)) = ξn(0), we obtain

µ(hn(0)) = η(ξ(λ(hn(0)))) = η(ξ(ξn(0))) = η(ξn+1(0)),

which completes the proof of (2).

Since ξω(0) and η(ξω(0)) are Sturmian words, we have proved that f(hω(0)) and f(g(hω(0))) are

complementary symmetric Rote words. Since all complementary symmetric Rote words are rich [5,

Theorem 25], the following is immediate.

Theorem 15. The words f(hω(0)) and f(g(hω(0))) are rich.

Now we analyze the repetitions in u = f(g(hω(0))). Let v = ∆(u) = η(ξω(0)) (by Lemma 14). The

relation between the repetitions in u and those in v is given by the following lemma.

Lemma 16. For any infinite binary word x = (xn)n≥0, let y = (yn)n≥0 = ∆(x). If x contains a

repetition

(xixi+1 · · ·xi+ℓ−1)
exixi+1 · · ·xi+t−1

for some positive integers e ≥ 2, ℓ ≥ 1, and t ≤ ℓ, then y contains a repetition

(yiyi+1 · · · yi+ℓ−1)
eyiyi+1 · · · yi+t−2

where the number of 1’s in yiyi+1 · · · yi+ℓ−1 is even.

Proof: The fact that y contains such a repetition is immediate. To see that the number of 1’s in yiyi+1 · · · yi+ℓ−1

is even, note first that
r∑

j=0

yi+j mod 2 = (xi + xi+r+1) mod 2.

Hence if xi = xi+ℓ, we have

ℓ−1∑

j=0

yi+j mod 2 = (xi + xi+ℓ) mod 2 = 0.

It follows that the number of 1’s in yiyi+1 · · · yi+ℓ−1 is even, as required.

We now analyze the repetitions in v. We first need to review some basic definitions from the theory of

Sturmian words and the theory of continued fractions. Consider a real number α with continued fraction

expansion α = [d0; d1, d2, d3, . . .], where d0 = 0 and di is a positive integer for all i > 0.

The characteristic Sturmian word with slope α (see [1, Chapter 9]) is the infinite word cα obtained as

the limit of the sequence of standard words sn defined by

s0 = 0, s1 = 0d1−11, sn = sdn

n−1sn−2, n ≥ 2.
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For n ≥ 2, we also define the semi-standard words

sn,t = stn−1sn−2,

for every 1 ≤ t < dn. The slope α is the frequency of 1’s in cα. It is known that any Sturmian word with

the same frequency of 1’s has the same set of factors as cα.

We also make use of the convergents of α, namely

pn
qn

= [0; d1, d2, d3, . . . , dn],

where

p−2 = 0, p−1 = 1, pn = dnpn−1 + pn−2 for n ≥ 0;

q−2 = 1, q−1 = 0, qn = dnqn−1 + qn−2 for n ≥ 0.

Note that |sn| = qn for n ≥ 0. We use the well-known fact that qn−1/qn = [0; dn, dn−1, . . . , d1].
We can now prove the main theorem concerning the critical exponent of u.

Theorem 17. The critical exponent of u is 2 +
√
2/2.

Proof: Let ξ̄ : Σ∗
2 → Σ∗

2 be the Sturmian morphism defined by 0 → 01, and 1 → 001. Let η̄ : Σ∗
2 → Σ∗

2

be the Sturmian morphism defined by 0 → 0 and 1 → 001. Let v̄ = η̄(ξ̄ω(0)). The morphisms ξ̄ and η̄
are obtained by conjugating and complementing ξ and η, so the factors of v̄ are exactly the complements

of the factors of v. Clearly, the periods and exponents of the repetitions in v and v̄ are identical, so we

analyze the repetitions in v̄ instead. To analyze the repetitions in v̄ it suffices to consider the repetitions in

the characteristic word with the same slope as v̄.

The matrix of ξ̄ is Mξ̄ =

(
1 2
1 1

)

and the matrix of η̄ is Mη̄ =

(
1 2
0 1

)

. The frequency vector of 0’s

and 1’s in ξω(0) is the normalized eigenvector v of Mξ̄ corresponding to the dominant eigenvalue 1+
√
2.

We have v = (2−
√
2,
√
2− 1)T . We then compute Mη̄v and normalize to find that the frequency of 1’s

in v̄ is α = (3−
√
2)/7. We therefore consider the characteristic word cα with slope α in place of v̄.

Since α = [0; 4, 2], we see that cα is the infinite word obtained as the limit of the sequence of standard

words sk defined by

s0 = 0, s1 = s4−1

0 1, sk = s2k−1sk−2, k ≥ 2

We have s1 = 0001, s2 = 000100010, s3 = 0001000100001000100001, etc. We will also need

the semi-standard words

sk,1 = sk−1sk−2, k ≥ 2.

Note that the number of 0’s in sk is always odd and the number of 0’s in sk,1 is always even. Also note

that by [26, Proposition 4.6.12], the critical exponent of cα is 3 +
√
2. Write cα = (cn)n≥0.

Now suppose that u contains a repetition

yey′ = (uiui+1 · · ·ui+ℓ−1)
euiui+1 · · ·ui+t−1

for some positive integers e ≥ 2, ℓ ≥ 1, and t ≤ ℓ. By Lemma 16, we see that v contains a repetition

(vivi+1 · · · vi+ℓ−1)
evivi+1 · · · vi+t−2,
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where the number of 1’s in vi+1 · · · vi+ℓ−1vℓ is even. It follows that v̄, and hence cα, contains a repetition

zez′ = (cjcj+1 · · · cj+ℓ−1)
ecjcj+1 · · · cj+t−2,

where the number of 0’s in z is even. The remainder of the argument is very similar to that of [28,

Proposition 6].

Suppose that z is not primitive. Since the critical exponent of cα is 3 +
√
2, the exponent of z cannot

be greater than 2. Thus z is a square, and we get that the exponent of zez′ is at most

3 +
√
2

2
< 2 +

√
2

2
.

So we may assume that z is primitive. By [25, Corollary 4.6] (originally due to Damanik and Lenz

[10]), the word z is either a conjugate of one of the standard words sk, or a conjugate of one of the

semi-standard words sk,1. However, sk has an odd number of 0’s, so this case is ruled out.

Thus we may assume that z is a conjugate of sk,1 for some k ≥ 2. Hence |z| = qk−2 + qk−1 for some

k ≥ 2. From [17, Theorem 4(i)], one finds that the longest factor of cα with period qk−2 + qk−1 has

length 2(qk−2 + qk−1) + qk−1 − 2. It follows that zez′ has exponent at most

2(qk−2 + qk−1) + qk−1 − 2

qk−2 + qk−1

for some k ≥ 2. In turn, it must be the case that yey′ has exponent

Ek =
2(qk−2 + qk−1) + qk−1 − 1

qk−2 + qk−1

= 2 +
qk−1 − 1

qk−2 + qk−1

(1)

= 2 +
1− 1/qk−1

1 + qk−2/qk−1

(2)

for some k ≥ 2.

We claim that limk→∞ Ek = 2 +
√
2/2, and that the sequence (Ek)k≥2 is increasing. It follows that

the exponent of yey′ is at most 2 +
√
2/2. Moreover, by the discussion above, the word u has a factor of

exponent Ek for every k ≥ 2. Thus, we conclude from the claim that u has critical exponent 2 +
√
2/2.

We now complete the proof of the claim.

First we show that limk→∞ Ek = 2+
√
2/2. Since qk−2/qk−1 = [0; 2, 2, . . . , 2

︸ ︷︷ ︸

k−2

, 4], we see immediately

that limk→∞ qk−2/qk−1 = [0; 2] =
√
2− 1. From (2), we obtain

lim
k→∞

Ek = 2 +
√
2/2.

Finally, we show that the sequence (Ek)k≥2 is increasing. Let k ≥ 2. Starting from (1), using algebra

and the recursion qk = 2qk−1 + qk−2, one finds that Ek+1 > Ek if and only if

2qk−1 > q2k−1 − qkqk−2. (3)
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When k = 2, we have q2k−1
− qkqk−2 = 42 − 9 · 1 = 7. Suppose for some k ≥ 2 that q2k−1

− qkqk−2 =

7(−1)k. Then

q2k − qk+1qk−1 = (2qk−1 + qk−2)qk − (2qk + qk−1)qk−1 = qk−2qk − q2k−1 = 7(−1)k+1.

Thus, by mathematical induction, we have q2k−1 − qkqk−2 = 7(−1)k for all k ≥ 2. In particular, the

right-hand side of (3) is at most 7 for all k ≥ 2. Since qk−1 ≥ q1 = 4 for all k ≥ 2, we conclude that (3)

is satisfied for all k ≥ 2. Therefore, we have Ek+1 > Ek for all k ≥ 2.

This completes the proof of the claim, and hence the theorem.

Since f(hω(0)) and f(g(hω(0))) both have critical exponent 2 +
√
2/2, Theorem 2 now follows im-

mediately from Theorem 1.

4 Future Prospects

For k ≥ 3, it remains an open problem to determine the repetition threshold RRT(k) for the language of

rich words on k letters. In fact, we even lack a conjecture for the value of RRT(k) in these cases. Baranwal

and Shallit [3] have established that RRT(3) ≥ 9/4, but did not explicitly conjecture that RRT(3) = 9/4.
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are complementary symmetric Rote words. We are very grateful to her for this observation, as it allowed us

to prove some stronger results than were in our original draft. We take this opportunity to refer the reader
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[2] L. Balková, E. Pelantová, Š. Starosta, Infinite words with finite defect, Adv. Appl. Math. 47 (2011),

562–574.

[3] A. Baranwal and J. Shallit, Repetitions in infinite palindrome-rich words, in: R. Mercas and D.

Reidenbach (Eds.), Proc. WORDS 2019, Lecture Notes in Computer Science, Vol. 11682, Springer,

(2019), 93–105.

[4] A. Baranwal and J. Shallit, Critical exponent of infinite balanced words via the Pell number system,

in: R. Mercas and D. Reidenbach (Eds.), Proc. WORDS 2019, Lecture Notes in Computer Science,

Vol. 11682, Springer, (2019), 80–92.
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