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It is commonly believed that real networks are scale-free and the fraction of nodes P (k) with degree k satisfies the
power-law P (k) ∝ k−γ for k > kmin > 0. Preferential attachment is the mechanism that has been considered
responsible for such organization of these networks. In many real networks, degree distribution before the kmin
varies very slowly to the extent of being uniform as compared to the degree distribution for k > kmin. In this paper,
we propose a model that describes this particular degree distribution for the whole range of k > 0. We adopt a two
step approach. In the first step, at every time stamp we add a new node to the network and attach it to an existing
node using preferential attachment method. In the second step, we add edges between existing pairs of nodes with the
node selection based on the uniform probability distribution. Our approach generates weakly scale-free networks that
closely follow the degree distribution of real-world networks. We perform a comprehensive mathematical analysis of
the model in the discrete domain and compare the degree distribution generated by this model with that of real-world
networks.
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1 Introduction
Complex Networks have a wide variety of applications in many domains including economics, business,
transportation, and natural, social and computer sciences, to name a few. Examples of such networks
include online social networks, biological networks, technological networks, scientific collaboration net-
works, citation networks and many more. The complex structure of these networks has remained the main
focus of studies in the past. Many studies claim that these networks are scale-free networks. However,
contrary to this common belief, recent studies show that scale-freeness is rare in real-world networks
Broido and Clauset (2018). Generally, a network is scale-free if the fraction of nodes with degree k fol-
lows a power-law distribution k−γ , where γ > 1. Typically, it is believed that the γ ∈ [2, 3] or in other
words the degree distribution of such networks follows a preferential attachment, i.e., the rich-get-richer
mechanism. In order to understand these networks in detail, many generative models have been proposed
to artificially generate such networks. In a recent study Broido and Clauset (2018) the authors test the uni-
versality of the scale-free structure by applying different statistical tools to a large corpus of nearly 1000
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network data sets drawn from social, biological, technological, and informational sources. They observe
that only 4% of real-world networks show strong evidence of scale-free structure. Furthermore, they find
that social networks are at best weakly scale-free, while only a handful of technological and biological
networks can be called strongly scale-free.

There are several studies, e.g., Barabasi and Albert (1999); Berger et al. (2004); Collevecchio et al.
(2013); Cooper and Frieze (2003); Deijfen et al. (2009); Lansky et al. (2014) to generate scale-free net-
works such that the value of γ ∈ [2, 3]. However, to the best of our knowledge, there has been no work
to generate weakly scale-free networks. We define a weakly scale-free network as a network that has the
power-law exponent γ > 3 for k > kmin and a flattish distribution of degree of nodes for k < kmin.
In this paper, we aim to generate weakly scale-free networks with a two step approach. In the first step,
named node-step, a new node enters the network and connects to an existing node using the preferential
attachment method. While in the second step, named edge-step, we iteratively add a certain number of
edges between existing nodes at random. This adds the desired flatness in the network before kmin and the
generated network follows the scale-free structure after kmin with γ > 3. Two mechanisms for creating
edges are discussed. In the first mechanism, a fixed number of edges are created during the edge-step and
the resulting model generates weakly scale-free network having the distribution satisfying the power-law
with exponent γ ∈ (3,∞) corresponding to this fixed number in the range [1,∞). While in the second
mechanism, the number of edges to be added is proportional to the fraction of the total number of existing
edges by the number of nodes, we getm(t) ∝ tβ (see Appendix B). Moreover, we choose β > 1 to further
investigate network evolution when a large number of edges are added at random in each time step. The
growth of the resultant network is accelerated growth. We have found a non-stationary degree distribution
for this case. The average degree, in this case, is proportional to tβ−1 and grows over time t.

For each method of adding edges, we have performed a fully detailed analysis in the discrete domain (k
and t as discrete variables). During the edge-step, edges are added iteratively and we update the number of
nodes marked by degree k after each iteration. A detailed formulation for each step derived in this paper
depicts the process fully. An exact recurrence relation is formulated that models the network transition
from one state to another. It describes the change in degree distribution from the node-step to the edge-
step. It also models the transition from the state at the previous time stamp to the next time stamp when
both the node- and edge- steps have been accomplished.

The idea of adding edges between existing nodes for the network evolution is not a new one. The
authors in the paper Dorogovtsev and Mendes (2000) extended the Barabasi-Albert (BA) model and
presented the undirected network evolution based on this idea. They proposed the model in which a
new incoming node preferentially connects to m existing nodes of the network. Then, simultaneously
cm, c > 0 edges appear between existing nodes. The selection of nodes for these new edges is also
made preferentially. For a new edge, a pair of nodes is selected with the probability proportional to the
product of their degrees. They used the continuous approximation (considering t and k as continuous
variables, Dorogovtsev and Mendes (2002b)) and found that the degree-distribution satisfies the power-
law k−γ with γ = 2 + 1

1+2c . This approach was proved to describe quite well the degree distributions
of networks growing under the mechanism of preferential linking. Dorogovtsev and Mendes (2002b))
discussed another method of growing directed networks through mixing preferential and random linking.
A new vertex with n incoming edges enters the network, at each time step. The target ends of m new
edges are simultaneously distributed among vertices through the preferential linking rule. The probability
to select a node is proportional to q + A, with q is the in-degree of the nodes and A is a constant with
value A > −n − nr. Besides, the target ends of nr new edges are attached to randomly chosen vertices
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with source ends of each edge may be anywhere. The in-degree P (q) of these nodes satisfies the relation
q−γ with γ = 2 + nr+n+A

m . These were kind of non-equilibrium growing networks. The average degree
for networks having the exponent γ > 2 tends to some constant value. The total degree of the network is
a linear function of the number of nodes at time t. When the average degree does not approach a constant
value but grows over time(total degree grows at least super-linearly), these networks are called networks
with accelerated growthDorogovtsev and Mendes (2002c). In general, the total number of edges in net-
works with accelerated growth is m(t) ∝ tβ for β > 1. In Dorogovtsev and Mendes (2002a) authors
present a network with acceleration growth in which ct number of edges emerge among old vertices at
each time step. This behavior is found in the Internet, collaboration networks, the World Wide Web, and
many other networks.

The rest of the paper is organized as follows. In section 2, we present a two-step model for generating
weakly scale-free networks. In section 3, we provide a comprehensive mathematical analysis of our model
and drive recurrence relation for both the node- and edge- steps. In section 4, we compare the graphs
generated by our model with real-world networks. In section 5, we discuss related work and conclude the
paper in section 6.

2 Weakly Scale-free Model
In this section, we formally present our model called Weakly Scale-free Model (WSM). WSM generates
undirected graphs and can be run for any period of time t(t > 0), given an initiator graph at t = 0, that
could be any connected graph, e.g., a connected triplet. We represent a network as an undirected graph
G = (V,E) where V is the set of nodes and E is the set of edges. We represent nodes in the graph as
{v1, v2, v3, ..., vn} and edges as {e1, e2, e3, ..., em}, furthermore, |V | = n and |E| = m. In this model, a
network evolves over time and at any instant of time t, there are |Vt| = nt nodes and |Et| = mt edges in
the network. Let Gt(Vt, Et) be the graph at time t . In a single time stamp, we perform two steps namely
node-step and edge-step.
Node Step: A new node x arrives and connects to an existing node y via one edge such that

nt+1 = nt + 1 (1)

we call it the node equation. The probability Py of selecting node y is proportional to its degree dy i.e.,

Py =
dy∑n
i=1 di

(2)

This equation suggests that a high degree node attracts more nodes and helps the network to follow a
power-law for its degree distribution.
Edge Step: In the edge-step, we add ∆mt number of edges in the network at each time stamp such that

mt+1 = mt + ∆mt + 1 (3)

We call it the edge equation. Here, +1 corresponds to the edge added in the node-step. We add edges
between existing nodes at random. In order to add an edge, we select two nodes x and y uniformly at
random from the graph Gt and adds an edge between them. we repeat this process ∆mt times. Here,
∆mt is a natural number that can have any positive values, ∆mt ∈ [0, 1, 2, 3, ...]. In other words, we
add a fixed number of edges in the edge-step. However, a formulation for the variable number of edges
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is also presented in the appendix. To account for both of these two cases, we used a more generic term
∆mt to represent the number of added edges during the edge-step. When ∆mt = 0, our model generates
a standard Barabasi-Albert network and when ∆mt > 0, we add random links in the network and as a
result we generate weakly scale-free networks.

3 Mathematical Analysis
In this section, we present the mathematical analysis of WSM in detail. For analysis, let’s assume that
the network starts with a single node at time t = 1. It grows over time through two steps, namely the
node-step and edge-step as described above. During the edge-step, ∆mt number of edges are created. For
the creation of each edge, two nodes from the network are selected according to the uniform probability
distribution function. A recurrence relation for degree distribution is formulated that incorporates both
node and edge steps and describes overall network evolution through time.

More formally, let {v1, v2, v3, ..., vn} represents nodes in the network and {e1, e2, e3, ..., em} edges.
The network evolves from a single node at time t = 1. For ease of analysis, time t also refers to the total
number of nodes in the network, i.e., at time t there are a total of t nodes in the network. The degree of
a node is represented as k. The network evolves in two steps. In the first step, a new node is added that
connects with an existing node via one edge. In the second step, we add an edge between two randomly
selected nodes. This step is repeated until ∆mt new edges are created in the network. For creating edges,
we consider a simple scenario in which ∆mt is a fixed positive integer α. Formulation keeps a record
of the number of nodes of degree k at each time step t. Nk,t is the number of nodes in a group marked
by degree k at the completion of time step t. After the node-step, wherein (t + 1)th node connects to
the network, number of nodes in the group becomes Nk,t+1,0. Nk,t+1,l represents nodes count of k − th
degree during the edge-step. The subscript l ∈ [1,∆mt] tells that l number of edges have been added
during the edge-step. The network state at the completion of both steps is represented by Nk,t+1,∆mt ,
which is also the initial configuration Nk,t+1 for the next time step. The same process is repeated for the
next time step. To analyze the network behavior over time, the rank of nodes marked by degree k, define
as Pk,t =

Nk,t
t , is more helpful than just keeping a record of actual count of these nodes. Pk,t represents

fraction of nodes of degree k. Briefly, two consecutive stages through which network grows, for each time
step,

1. (Node-step): At time t+ 1, (t+ 1)-th node arrives and connects to an member node via one edge.
The older node is picked with probability proportional to its degree k.

2. (Edge-step): At time (t + 1), after the node-step, two nodes are selected randomly (with uniform
probability) and an edge is created between them. This step is repeated ∆mt number of times.
∆mt edges are added during the edge-step.

First, we describe the model that incorporates the node-step only, and later we extend it to include the
edge-step.

3.1 The Standard BA Model
Our network is an undirected graph. In an undirected graph,

∑t
n=1 kn = 2mt where kn is the degree of

n-th node and mt is the total number of edges in the graph at the completion of time step t. In the case
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where network evolution does not include the edge-step, it is described by the BA model. The network
has t− 1 edges at time step t.

The standard BA model gives following recurrence relation for the degree distribution,

P1 =
2

3
(4)

and

Pk = Pk−1.
k − 1

k + 2
(5)

In a closed form,

Pk =
4

k(k + 1)(k + 2)
≈ c

k3
( for large k’s) (6)

3.2 Edge Equation
In our work, the network configuration changes through two steps. First, through the node-step when a
new node is added to the network as described above. Secondly, through the edge-step, when new edges
are added between existing pairs of nodes in the network. During the edge-step, we select two nodes at
random with uniform probability from the network and create an edge between them. This step is repeated
to add a total of ∆mt number of edges at the time step t+ 1. Following events may occur during the edge
creation:

1. Ek,t+1,l
1 is the event that exactly one node is selected from the group marked by the degree k.

p(Ek,t+1,l
1 ) is the probability of this event. The occurrence of this event reduces the population of

nodes of degree k by 1.

2. Ek,t+1,l
2 is the event that exactly two node are selected from the group of nodes marked by the

degree k. p(Ek,t+1,l
2 ) is the probability of this event. The occurrence of this event reduces the

population of nodes of degree k by 2.

3. Ek−1,t+1,l
1 is the event that exactly one node is selected from the group of nodes marked by the

degree k − 1. p(Ek−1,t+1,l
1 ) is the probability of this event. The occurrence of this event increases

the population of nodes of degree k by 1.

4. Ek−1,t+1,l
2 is the event that exactly two nodes are selected from the group of nodes marked by the

degree k − 1. p(Ek−1,t+1,l
2 ) is the probability of this event.The occurrence of this event increases

the population of nodes of degree k by 2.

Nk,t describes the network state at the completion of time step t. Each time step consists of the node-
step and edge-step, in order. Nk,t is also the initial configuration for the next time step t + 1. We call
Nk,t+1,0 the expected number of nodes of degree k after the completion of the node-step and prior to the
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edge-step. The network at this stage has t+ 1 nodes. Nk,t+1,1 be the expected number of nodes of degree
k after adding one edge in the edge-step. The two network configurations could be related as, for k > 1,

Nk,t+1,1 = Nk,t+1,0 − 1.p(Ek,t+1,0
1 )− 2.p(Ek,t+1,0

2 ) + 1.p(Ek−1,t+1,0
1 )

+2.p(Ek−1,t+1,0
2 )− 0.p(Ek−1,t+1,0

1 ∩ Ek,t+1,0
1 ).

(7)

And, in general,

Nk,t+1,l = Nk,t+1,l−1 − 1.p(Ek,t+1,l−1
1 )− 2.p(Ek,t+1,l−1

2 ) + 1.p(Ek−1,t+1,l−1
1 )

+2.p(Ek−1,t+1,l−1
2 )− 0.p(Ek−1,t+1,l−1

1 ∩ Ek,t+1,l−1
1 ).

(8)

For the sake of brevity, Nk,t+1,∆mt will be represented as Nk,t+1.
Since, during the edge-step no node enters into the group marked by the degree 1, in the above relation

(8) truncating terms involving k−1 and replacing k by 1, we get following recurrence relation forN1,t+,l,

N1,t+1,l = N1,t+1,l−1 − 1.p(E1,t+1,l−1
1 )− 2.p(E1,t+1,l−1

2 ). (9)

The total number of edges in the network varies during the node- and edge- steps. At the completion
of t-th time step when the t-th nodes is connected to the network and α edges have been created, total
number of edges of the network are mt = (t − 1) + α(t − 1) = (α + 1)(t − 1). When (t + 1)th nodes
arrives and connects, the number is increased by 1, i.e. mt + 1. And during the edge-step, when l edges
have been created, number of edges becomemt+1+ l. During edge creation, each node has equal chance
of selection.

p(Ek,t+1,l
1 ) = 2

(Nk,t+1,l

t+ 1

)( t+ 1−Nk,t+1,l

t

)
=

2(Nk,t+1,l)(t+ 1−Nk,t+1,l)

t2 + t
(10)

and

p(Ek,t+1,l
2 ) =

(Nk,t+1,l

t+ 1

)(Nk,t+1,l − 1

t

)
=

(Nk,t+1,l)
2 −Nk,t+1,l

t2 + t
(11)

This probability formula is valid for all l’s and for all k’s. Next, we formulate the edge- and node- steps.

Edge-step
For k > 1,
Substituting probability functions given by (10) and (11) in (7) and simplifying the expression, we get

Nk,t+1,1 = Nk,t+1,0 +
2

t+ 1
[Nk−1,t+1,0 −Nk,t+1,0].

This relation describes addition of the first edge, i.e. l = 1. Rewriting it in the following form,

Nk,t+1,1 =
(
1− 2

t+ 1

)
Nk,t+1,0 +

2

t+ 1
Nk−1,t+1,0,

Similarly for general l,

Nk,t+1,l =
(
1− 2

t+ 1

)
Nk,t+1,l−1 +

2

t+ 1
Nk−1,t+1,l−1. (12)
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For k = 1

Nk,t+1,l =
(
1− 2

t+ 1

)
Nk,t+1,l−1. (13)

Node-step
The node step is carried through preferential attachment and is given by following relationships,
For k > 1,

Nk,t+1,0 = Nk,t +Nk−1,t
k − 1

2mt
−Nk,t

k

2mt
,

or re-writing in the form

Nk,t+1,0 =
(
1− k

2mt

)
Nk,t +Nk−1,t

k − 1

2mt
. (14)

And for k = 1

Nk,t+1,0 =
(
1− k

2mt

)
Nk,t + 1 (15)

3.3 Derivation of the Recurrence relation for ∆mt = α

A general form of the recurrence relation describing the network evolution through time, incorporating
both the node- and edge- steps, is presented. (See appendix A for the detailed formulation and derivation).

For k = 1, the recurrence relations gives Pk,t+1 in term of Pk,t,

(t+ 1)Pk,t+1 =
(
1− 2

t+ 1

)∆mt[
tPk,t + 1− k

2mt
tPk,t

]
. (16)

For k > 1, the recurrence relations gives Pk,t+1 in term of Pk−n,t’s with n = 0, 1, . . . ,

(t+ 1)Pk,t+1 =

q∑
n=0

tCk−n,∆mtPk−n,t (17)

Coefficients Ck−n,∆mt ’s and q are defined in the appendix A.

The stationary degree distribution for nodes is obtained on replacing ∆mt by α and applying the limit
t→∞, .

For k = 1

P1 =
2(α+ 1)

4α2 + 6α+ 3
. (18)

In general, for k > 1

Pk =
k + 4α2 + 4α− 1

k + 4α2 + 6α+ 2
Pk−1. (19)

Pk can also be written in the closed form:

Pk =
(4α2 + 6α+ 3)(4α2 + 6α+ 2) . . . (4α2 + 4α+ 1)

(k + 4α2 + 6α+ 2)(k + 4α2 + 6α+ 1) . . . (k + 4α2 + 4α)

2(α+ 1)

4α2 + 6α+ 3
,
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or

Pk =
(4α2 + 6α+ 2) . . . (4α2 + 4α+ 1)

(k + 4α2 + 6α+ 2)(k + 4α2 + 6α+ 1) . . . (k + 4α2 + 4α)
2(α+ 1). (20)

If α is replaced with 0 in the equation (19), equation (5) is obtained which is the recurrence relation
when only the node-step is used. Similarly, equation (18) reduces to equation (4). The degree distribution
Pk follows the power-law k−(2α+3), but only for very large values of k. For large α and small k’s,
distribution is almost uniform, i.e., Pk ≈ Pk−1. Also, the expression for P1 approaches to 0 as α becomes
large and large. To prove the claim about distribution slopes formally, let δα,k for k > 1 represents the
slope of the log(Pk) vs. log(k) graph, then

δα,k =
logPk − logPk−1

log k − log (k − 1)
=

log (k + 4α2 + 4α− 1)− log (k + 4α2 + 6α+ 2)

log k − log (k − 1)

=
log (1− 2α+3

k+4α2+6α+2 )

log (1 + 1
k−1 )

(21)

For further analysis, let’s expand log terms to the first order,

δα,k ≈ −
(2α+ 3)(k − 1)

k + 4α2 + 6α+ 2
.

Now, as α is a fixed constant value, for very large k, say, k � 4α2 + 6α+ 2, expression becomes,

δα,k ≈ −
(2α+ 3)(k − 1)

k
≈ −(2α+ 3). (22)

For small k’s, we get,

δα,k ≈ −
(2α+ 3)(k − 1)

4α2 + 6α+ 2
≈ −ε(k − 1) (23)

where ε very small positive quantity of orderO( 1
α ). Informally, in the beginning when k is small, slope

is very small.
We compare theoretical equations and practical results in Figure 1. For theoretical results, we imple-

ment equation 19 for different values of α = 1, 3, 5. For practical results, we implement the node- and
edge- steps of the WS model. We draw the degree of nodes again their frequency. We see in Figure 1 that
both the graphs overlap and this proves the correctness of our mathematical analysis.

4 Experimental Results
In this section, we provide an overview of real datasets or graphs that we will use for comparison with the
networks generated by our model. All the real networks are publicly available at KONECT (2017). We
use the following six citation networks, two peer-to-peer networks and four social networks. An overview
of these datasets is available in Table 1.

• DBLP: This is the citation network of DBLP, a database of scientific publications such as papers
and books. Each node in the network is a publication, and each edge represents a citation of a
publication by another publication.
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Fig. 1: Theoretical vs. Practical Degree Distribution for α = 1, 3, 5

• HepTh: This is a citation network of authors of scientific papers from the arXiv’s High Energy
Physics (Theory) section.

• Cora: This is the cora citation network. Nodes represent scientific papers. An edge between two
nodes indicates that the one node cites the other node.

• HepPh: This is a citation network of scientific papers from the arXiv’s High Energy Physics (Phe-
nomenology) section.

• CiteSeer: This is the citation network extracted from the CiteSeer digital library. Nodes are publi-
cations and the edges denote citations.

• Patents: This is the citation network of patents registered with the United States Patent and Trade-
mark Office. Each node is a patent and an edge represents a citation.

• Gnutella1: This is a network of Gnutella hosts from 2002. The nodes represent Gnutella hosts, and
the edges represent connections between them.

• Gnutella2: This is a network of Gnutella hosts from 2002. The nodes represent Gnutella hosts and
the edges represent connections between them.

• Facebook: This is a friendship network of facebook. The nodes are users and an edge between two
users shows a friendship relation between them.

• Prosperloans: These are loans between users of the Prosper.com website. The network denotes who
loaned money to whom.

• Amazon: This is the network of items on Amazon that have been mentioned by Amazon’s ”People
who bought X also bought Y” function. Nodes in the network are products, and an edge from A to
B denotes that product A is frequently co-purchased with product B.

• Pokec: This is the friendship network from the Slovak social network Pokec. Nodes are users of
Pokec and directed edges represent friendships.
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Tab. 1: Real-world datasets used in the experiments
Datasets Total

Nodes
Total
Edges

Value of
α (see
section 4)

DBLP 12,591 49,620 4
HepTh 22,908 2,444,798 106
Cora 23,166 89,157 4
HepPh 28,093 3,148,447 112
CiteSeer 384,413 1,736,145 4
Patents 3,774,768 16,518,947 4
Gnutella1 36,682 88,328 2
Gnutella2 62,586 147,892 2
Facebook 63,731 817,035 12
Prosperloans 89,269 3,330,022 237
Amazon 403,394 2,443,408 6
Pokec 1,632,803 22,301,964 13

For comparison, we compare our model with the standard Barabasi–Albert Model Barabasi and Albert
(1999). The Barabasi–Albert (BA) Model is a method for generating scale-free networks using a pref-
erential attachment mechanism. Since our model also applies preferential attachment mechanism so it
would be interesting to compare it with the basic BA Model. In the very basic form of the BA Model, the
network begins with a small connected network of w0 nodes. New nodes are added one-by-one at each
time stamp and connect to w < w0 existing nodes with a probability that is proportional to the number
of links that the existing nodes already have. In our implementation, we start with a small connected
network and connect the new nodes with w number of existing nodes using the preferential attachment
method described in Barabasi and Albert (1999) where the value of w is adjusted such that the resulting
graph has nearly the same number of edges as that of an original graph.

We implement our model and generate networks corresponding to each real-network of Table 1. We
set the value of ∆mt = α such that we have nearly the same number of edges in our network as that of in
the original graph. It would be interesting to mention that if we apply the formula mt = (α + 1)(t − 1)
to find α, where, t is the number of nodes and mt is the number of edges, then the number of nodes and
edges will be same for theoretical and practical networks. We generate networks and plot the Cumulative
Distribution Function (CDF) of the degree of the original networks along with the networks generated by
our model and Barrabasi-Albert model. The results are presented in Figure 2. First, these real-networks
do not strictly follow the power-law degree distribution as clear from the initial part of the curve for small
degree nodes. Second, we see that our model fits better than the BA model as we follow the distribution
curve more than the BA model. It shows that we need to add some randomness in the graph for generating
a weakly scale-free network. However, we believe that this randomness should be limited so that the
degree distribution of the generated graph follows the original graph more precisely.

We apply the method presented in Clauset et al. (2009) and give the values of power-law exponent and
kmin of original and generated graphs in Table 2. We also calculate the slope before kmin for the original
and generated graphs of WSM. We see that γ > 3 for all the networks. It has already been observed in
Ortuño et al. (2011); Brzezinski (2015) that γ for citation networks fall in the range [3, 4], i.e., γ ∈ [3,4]
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Tab. 2: Values of power-law exponent γ and kmin of original and generated graphs.

Dataset Original WSM BA
γ kmin Slope

before
kmin

γ kmin Slope
before
kmin

γ kmin

DBLP 3.35 25 1.14 5.23 22 1.12 2.97 11
HepTh 3.41 1244 0.97 5.46 895 0.77 2.95 109
Cora 3.32 30 1.48 7.58 32 1.57 3.01 11
HepPh 4.04 3226 0.91 5.48 953 0.72 2.96 111
CiteSeer 3.05 74 1.95 7.47 51 1.75 3.07 19
Patents 4.01 49 1.71 6.97 47 1.66 3.09 29
Gnutella1 4.92 11 1.44 5.89 18 1.39 3.32 15
Gnutella2 4.82 13 1.12 7.28 24 1.23 3.25 14
Facebook 4.39 157 1.35 6.56 112 1.27 2.99 38
Pros.loans 3.07 445 1.08 5.91 323 1.15 2.97 61
Amazon 3.39 53 0.89 7.01 66 1.05 3.06 31
Pokec 5.06 291 0.77 6.84 144 0.53 3.03 73

for citation networks. The table shows that γ is almost equal to 3 for all the networks for the BA model
whereas WSM can generate networks with varying values of γ.

The degree distribution over logarithm scales (log(Nk,t) versus log(k)) of chosen weakly scale-free
networks starts with small slope (in magnitude) for low-degree nodes and becomes more and more sharp
for high-degree nodes. After a particular degree value, say kmin, the distribution almost acquires a fixed
sharp slope. Our model for a small choice of α, generates weakly scale-free networks and the distribution
given by the proposed model behaves similarly. The model gives degree distribution starting with a small
slope, which becomes sharper, until at the kmin(α), it almost acquires a sharp fixed slope−(2α+3). Slope
variation of the distribution is depicted in the Figure 3. In the beginning, the slope is small (in magnitude),
which gradually becomes sharper and finally acquires the fixed value of −9. The BA model does not fit
the first portion of the curve corresponding to low degrees. This initial section of the distribution is more
uniform and cannot be obtained through preferential attachment alone. One possible solution to obtain
this uniformity lies in blending randomness to preferential attachment, which can be obtained through the
edge-step described in the model. When we apply the edge-step to the network which initially follows
the power-law distribution, there is a high probability of nodes being chosen from groups marked by low
degrees (see Figure 4). This is because each node has the same probability of selection and low-degree
nodes are more in number. As a result, these chosen nodes will move into the next higher degree node
group, increasing the rank of next higher-degree nodes and making the degree distribution more uniform.
The portion of the curve which tends to have uniform distribution depends on the number α. When ’α’
increases, kmin shifts towards the right and the slope of portion after kmin sharpens more, while the first
portion characterized by flatness stretches rightwards. For generating these networks, the value of α is
chosen as a small integer fixed for all time steps. Constant value gives the desired result and makes the
formulation simple. A larger value makes a larger portion of the degree distribution uniform. So, choosing
an appropriate value of α is desired.
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Fig. 2: Degree distribution of generated and original graphs. The value of α used for each dataset is given in the last
column of Table 1.

4.1 Discussion

We have implemented a two step approach to network evolution. The preferential attachment used in
the node-step tends to make the nodes distribution follow the power-law. The edge creation probability
function gives uniform probability to each node, which tends the network to acquire uniform degree
distribution, especially the portion for low-degree nodes. In the case when ∆mt varies during each time
step t, the edge-step dominates the node-step and the distribution becomes uniform, implying that the
network is no longer a scale-free network, rather, is a random network. We see in Figure 2 that our model
closely follows the original networks, better than the BA model but not perfectly. We argue that our model
fits the overall trend of the degree distribution, however, it needs tweaking for matching the fine details of
a distribution. In the future, we would like to invest in this direction and also consider other metrics for
comparing our model with the real networks.
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Fig. 3: Model generated slopes for α = 3. Settling slope for (log(Pk) versus log(k)) distribution is −9.

5 Related Work
There have been many studies H. Strogatz (2001); Broder et al. (2000); Vazquez et al. (2002); Amaral
et al. (2000); Newman (2001); Ahn et al. (2007); Mislove et al. (2007); Golder et al. (2007); Kumar
et al. (2006) to explore the structure of complex online networks. For example, the authors in Ahn et al.
(2007); Mislove et al. (2007) study the properties of real networks by analyzing large scale Online Social
Networks (OSNs) and discover link symmetries, scale-free degree distributions, clustering phenomena,
and community formations. Golder et al. Golder et al. (2007) analyze the Facebook network by studying
the messaging pattern between friends and report that the degree distribution of the Facebook network
follows a power-law. Kumar et al. Kumar et al. (2006) study the structure and dynamics of Online Social
Networks over time and proposes a generative model for OSNs. However, a very recent study Broido and
Clauset (2018) analyzes many real-world networks and concludes that scale-free networks are rare and
only a small number of real-world graphs follow a power-law degree distribution. The study also finds that
a majority of real networks are weakly scale-free. In Dorogovtsev and Mendes (2002b) authors presented
a method of growing directed networks through mixing preferential and random linking. Preferential
linking is used to connect a new node to the network. Then, the edges emerge in the network and nodes
for these edges are chosen through the preferential attachment method. In the last step, the edges are
created with end-nodes selected at random.

Generative models for complex networks produce graphs that typically satisfy the scale-free degree
distribution. For example, the preferential attachment model Barabasi and Albert (1999), one of the best-
known models for scale-free networks, simulates this property. Real-world modeling instances motivated
the proposal of generalizations of the preferential attachment model, e.g., Berger et al. (2004); Collevec-
chio et al. (2013); Cooper and Frieze (2003); Deijfen et al. (2009); Krapivsky et al. (2000); Lansky et al.
(2014, 2016); Ostroumova et al. (2013); Rudas et al. (2007); Dorogovtsev et al. (2000); Pachón et al.
(2016); Albert and Barabási (2000). A common characteristic of many of these models is the presence of
the same attachment rule for all the nodes of the network. However, this hypothesis is not always realistic
and the graphs generated by these models do not follow a weakly scale-free degree distribution. In Mag-
ner et al. (2014), Magner et al. introduced a model in which new vertices choose the nodes for their links
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Fig. 4: Network is evolved using BA model first and then different number of edges edges added using the edge-step.
Number of nodes used are 10000. A portion of the graph is truncated. Graph marked by 0, shows the distribution
obtained by BA model. Graphs marked by 2000, 4000 and 8000 are distributions obtained through adding differ-
ent number of edges. Addition of edges flattens the first part of the degree distribution.(log(Pk) versus log(k))
distribution.

within time-based windows. Inspired by the idea of introducing windows, the authors in Pachón et al.
(2017) formulate their idea. They apply the preferential attachment rule to any node but re-enforce this
rule with a uniform choice for the most recent nodes added to the network.

6 Conclusion
In this paper, we propose a generative model for generating weakly scale-free networks. The model
generated degree distribution is similar in trend with real network data for the whole range of degree
values k > 0. We provide a comprehensive mathematical analysis of the model in the discrete domain.
We compare the model with real networks and find that our graphs closely match with the original graphs
in their degree distribution.
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A General form of Recurrence Relation for degree distribution
A general form of the recurrence relation for degree distribution will be derived here. Recurrence formula
writes Pk,t+1, rank of nodes of degree k at time t + 1, in terms of Ph,t for h = k, k − 1, . . . . Network
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evolution is based on both the node- and edge- steps. The formulation is valid whether ∆mt is constant
for all time steps or varies by the rule (given in B).

The relation for k = 1.

Using Equation (13) repeatedly for l = 1, 2, . . . ,∆mt, we get

Nk,t+1 =
(
1− 2

t+ 1

)∆mt
Nk,t+1,0.

Now using the equation (15), Nk,t+1 after the execution of the node and edge-step:

Nk,t+1 =
(
1− 2

t+ 1

)∆mt[(
1− k

2mt

)
Nk,t + 1

]
,

and writing the equation in terms of ranks Pk,t’s, following form is obtained

(t+ 1)Pk,t+1 =
(
1− 2

t+ 1

)∆mt[
tPk,t + 1− k

2mt
tPk,t

]
. (A.1)

The derivation of recurrence relation for k > 1.
We will write general form of the recurrence relation for k > 1. Let Φ = 2

t+1 and Ψ = 1− 2
t+1 .

Then rewriting the recurrence relation (12), for for l = 1 and general l, in the following form:

Nk,t+1,1 = ΨNk,t+1,0 + ΦNk−1,t+1,0,

Nk,t+1,l = ΨNk,t+1,l−1 + ΦNk−1,t+1,l−1.

Next we will write Nk,t+1,l in terms of Nh,t+1,0 for h = k, k − 1, . . . , k − l

Nk,t+1,2 = ΨNk,t+1,1 + ΦNk−1,t+1,1, for k ≥ 2,

Nk,t+1,2 = Ψ2Nk,t+1,0 + 2ΨΦNk−1,t+1,0 + Φ2Nk−2,t+1,0, for k ≥ 3,

Nk,t+1,3 = Ψ3Nk,t+1,0 + 3Ψ2ΦNk−1,t+1,0 + 3ΨΦ2Nk−2,t+1,0 + Φ3Nk−3,t+1,0, for k ≥ 4.

Define q = min(k − 1,∆mt) and write Nk,t+1 in a brief form,

Nk,t+1 =

q∑
n=0

C
′

k−n,∆mtNk−n,t+1,0.

Now, using the relation (14)

Nk,t+1,0 =
(
1− k

2mt

)
Nk,t +Nk−1,t

k − 1

2mt
,

we get Nk,t+1 in terms of Nk−n,t’s which represent network configuration at previous sampling time.

Nk,t+1 =

q∑
n=0

C
′

k−n,∆mt
(
1− k − n

2mt

)
Nk−n,t +

q−1∑
n=0

C
′

k−n,∆mt
k − n− 1

2mt
Nk−n−1,t

+
[
C
′

k−q,∆mt
k − q − 1

2mt
Nk−q−1,t

]
.
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Last term in square brackets occurs only when q = ∆mt < k − 1. During the application of the limit,
lim t → ∞, this situation can occur only when ∆mt is a fixed number. In the other case, where ∆mt

varies, ∆mt →∞, this term does not appear in the recurrence relation. Simplifying further,we get

Nk,t+1 = C
′

k,∆mt

(
1− k − n

2mt

)
Nk,t +

q∑
n=1

C
′

k−n,∆mt
(
1− k − n

2mt

)
Nk−n,t,

=

q−1∑
n=0

C
′

k−n,∆mt
k − n− 1

2mt
Nk−n−1,t + C

′

k−q,∆mt
k − q − 1

2mt
Nk−q−1,t.

=⇒ Nk,t+1 =
(
1− k

2mt

)
C
′

k,∆mtNk,t +

q∑
n=1

[(
1− k − n

2mt

)
C
′

k−n,∆mt +
k − n
2mt

C
′

k−n+1,∆mt

]
Nk−n,t

+
[k −∆mt − 1

2mt
C
′

k−∆mt,∆mtNk−∆mt−1

]
.

Using the relation Pk,t =
Nk,t
t ,we get

(t+ 1)Pk,t+1 =
(
1− k

2mt

)
C
′

k,∆mttPk,t +

q∑
n=1

[(
1− k − n

2mt

)
C
′

k−n,∆mt +
k − n
2mt

C
′

k−n+1,∆mt

]
tPk−n,t

+
k −∆mt − 1

2mt
C
′

k−∆mt,∆mttPk−∆mt−1.

In the brief form,

(t+ 1)Pk,t+1 =

q∑
n=0

tCk−n,∆mtPk−n,t, (A.2)

where coefficients Ck−n,∆mt are defined as
for n = 0, we get

Ck,∆mt =
(
1− k

2mt

)
C
′

k,∆mt .

For 1 < n ≤ q, expression becomes as:

Ck−n,∆mt =
(
1− k − n

2mt

)
C
′

k−n,∆mt +
k − n
2mt

C
′

k−n+1,∆mt ,

and if ∆mt < k − 1, we get

Ck−∆mt,∆mt =
k −∆mt − 1

2mt
C
′

k−∆mt,∆mt .

Next we derive formulas for C
′

k−n,l’s and Ck−n,l’s.
Key observations: Before deriving exact form of these coefficients, we list few key points about these
coefficients.

C
′

k,l = ΨC
′

k,l−1 for l = 1, 2, . . . .
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It can be seen that C
′

k−n,l for n = 1, 2, . . . term appears first time in the expression after the addition
of l = n edges. For l < n, Ck−n,l = 0. Putting in the mathematical form, for n = 1, 2... and n < k,

C
′

k−n,l = 0, for l < n,

C
′

k−n,n = Φn.

Recurrence relation for coefficients is

C
′

k−n,l = ΨC
′

k−n,l−1 + ΦC
′

k−n+1,l−1 for l > n. (A.3)

Now we derive exact form of each coefficient Ck−n,∆mt for n = 0, 1, 2, . . .
Ck,∆mt

C
′

k,l = Ψl for l = 1, 2, ...,∆mt,

=⇒ Ck,∆mt =
(
1− k

2mt

)(
1− 2

t+ 1

)∆mt
. (A.4)

Ck−1,∆mt for k > 1

Ck−1,∆mt =
(
1− k − 1

2mt

)
C
′

k−1,∆mt +
k − 1

2mt
C
′

k,∆mt .

First we find an expression for C
′

k−1,∆mt
.

C
′

k−1,l = bk−1
l Ψl−1Φ with bk−1

l = l, for l = 1, 2, ...,∆mt, using the relation A.3

=⇒ C
′

k−1,∆mt = ∆mtΨ
∆mt−1Φ,

=⇒ Ck−1,∆mt =
(
1− k − 1

2mt

)
∆mtΨ

∆mt−1Φ +
k − 1

2mt
Ψ∆mt .

Finally,

Ck−1,∆mt =
(
1− k − 1

2mt

)
∆mt

(
1− 2

t+ 1

)∆mt−1 2

t+ 1
+
k − 1

2mt

(
1− 2

t+ 1

)∆mt
. (A.5)

Ck−2,∆mt for k > 2

Ck−2,∆mt =
(
1− k − 2

2mt

)
C
′

k−2,∆mt +
k − 2

2mt
C
′

k−1,∆mt ,
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C
′

k−2,1 = 0, C
′

k−2,l = bk−2
l Ψl−2Φ2 for l = 2, 3, ....∆mt,

with bk−2
2 = 1, bk−2

l+1 = bk−2
l + bk−1

l for l = 2, 3, . . . , using the relation A.3.

=⇒ bk−2
l+1 = bk−2

l + l for l = 2, 3, . . .

=⇒ bk−2
l =

l(l − 1)

2
,

Now C
′

k−2,l =
l(l − 1)

2
Ψl−2Φ2 for l = 2, 3, . . .∆mt,

=⇒ C
′

k−2,∆mt =
∆mt(∆mt − 1)

2
Ψ∆mt−2Φ2.

Finally we get,

Ck−2,∆mt =
(
1− k − 2

2mt

)
C
′

k−2,∆mt +
k − 2

2mt
C
′

k−1,∆mt . (A.6)

Ck−n,∆mt for k > n, for n = 3,4...

C
′

k−n,∆mt = bk−n∆mt
Ψ∆mt−nΦn. (A.7)

Determination of orders of these terms is sufficient. bk−n∆mt
is of O(∆mt

n). Order of Ck−n,∆mt and
C
′

k−n,∆mt are the same. Order of Ck−n,∆mt is O(∆mt
n)×O( 1

tn ) = O((∆mt
t )n).

A.1 ∆mt = α

This section derives recurrence relation for ranks Pk’s when number of edges is a fixed constant α for
each time step t.
k = 1

Consider eqn. (A.1) for ∆mt = α

(t+ 1)Pk,t+1 =
(
1− 2

t+ 1

)α[(
1− k

2(α+ 1)(t− 1)

)
tPk,t + 1

]

=⇒ tPk,t+1 + Pk,t+1 =
(
1− 2

t+ 1

)α[
tPk,t −

kt

2(α+ 1)(t− 1)
Pk,t + 1

]
,

=⇒ tPk,t+1 + Pk,t+1 =
(
1− 2α

t+ 1
+ . . .

)[
tPk,t −

kt

2(α+ 1)(t− 1)
Pk,t + 1

]
,

=⇒ tPk,t+1 + Pk,t+1 = tPk,t −
kt

2(α+ 1)(t− 1)
Pk,t + 1− 2α

t+ 1
tPk,t + . . . .

On applying limit lim t→∞ this equation acquires the form

Pk = − k

2(α+ 1)
Pk + 1− 2αPk,
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or
Pk = 1−

[
2α+

k

2(α+ 1)

]
Pk.

=⇒ P1 =
2(α+ 1)

4α2 + 6α+ 3
. (A.8)

k > 1

We will find expressions for coefficients Ck−n,∆mt n = 0, 1, 2 . . . for ∆mt = α and evaluate the
recurrence relation eqn. (A.2).

Ck,α

Ck,α =
(
1− 2

t+ 1

)α(
1− k

2mt

)
,

=⇒ tCk,α =
(
1− 2

t+ 1

)α(
t− k t

2(α+ 1)(t− 1)

)
,

=⇒ tCk,α =
(
1− 2α

t+ 1
+ . . .

)(
t− k t

2(α+ 1)(t− 1)

)
.

=⇒ tCk,αPk,t = tPk,t − k
t

2(α+ 1)(t− 1)
Pk,t −

2αt

t+ 1
Pk,t + . . . .

tPk,t will be cancelled out by the term on L.H.S.(A.2). tCk,αPk,t approaches to −
(

k
2(α+1) + 2α

)
Pk.

Ck−1,α

Ck−1,α = α
(
1− k − 1

2mt

)(
1− 2

t+ 1

)α−1 2

t+ 1
+
k − 1

2mt

(
1− 2

t+ 1

)α
,

=⇒ tCk−1,α = α
(
1− k − 1

2mt

)(
1− 2

t+ 1

)α−1 2t

t+ 1
+ (k − 1)

t

2(α+ 1)(t− 1)

(
1− 2

t+ 1

)α
Term tCk−1,αPk−1,t approaches to (2α+ k−1

2(α+1) )Pk−1.

Ck−2,α for k > 2

C
′

k−2,α =
α(α− 1)

2
Ψα−2Φ2,

=⇒ C
′

k−2,α =
α(α− 1)

2

(
1− 2

t+ 1

)α−2( 2

t+ 1

)2
,

with already determined C
′

k−1,α = ak−1
l Ψα−1Φ,

=⇒ tCk−2,α =
(
1− k − 2

2(α+ 1)(t− 1)

)
tC
′

k−2,α +
k − 2

2(α+ 1)(t− 1)
tC
′

k−1,α.
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Maximum order term in the tCk−2,α is of order O( 1
t ) .The term tCk−2,α vanishes to 0 on taking limit

limt→∞.

Ck−n,α for k > n for n = 3, 4, ...
tCk−n,α is of order 1

tn−1 . tCk−n,α for n = 3, 4, ... vanishes on applying the limit.
Now we have all limits limt→∞ tCk−n,α required to determine limiting value of the equation (A.2).

Equation (A.2) on applying limit becomes

Pk =
[
2α+

k − 1

2(α+ 1)

]
Pk−1 −

[
2α+

k

2(α+ 1)

]
Pk,

=⇒ Pk =
k + 4α2 + 4α− 1

k + 4α2 + 6α+ 2
Pk−1. (A.9)

B Variable ∆mt

Here, for the sake of completion, we will discuss the case when ∆mt varies with time t and find recurrence
relation. It varies at each time step t, with ∆mt + 1 is proportional to the fraction of the total number of
edges by the number of nodes. Recurrence relation will be derived only formally.

B.1 The number of edges in edge-step at time step t
The number of edges at the completion of time step t (both node and edge-step completed ) is mt. ∆mt

is the number of edges to be added during the edge-step. As mentioned earlier, this number is determined
by the fraction of edges by number of nodes. ∆mt = dβmtt e − 1, with parameter β as a real number
greater than 1. For the current analysis, β ∈ (1, 2). After the node-step, total number of number of edges
are mt+1. mt+1, the total number of edges after the completion of both node- and edge- steps, is given
by the relation

mt+1 = mt + ∆mt + 1,

We select β such that βmtt >> 1, ∆mt ≈ βmt
t .

It implies that,

mt+1 ≈ mt(1 +
β

t
)

=⇒ mt+1 ≈ m1(1 +
β

t
)(1 +

β

t− 1
)...(1 +

β

1
),

=⇒ mt+1 ≈ m1
(β + t)(β + t− 1)(β + t− 2)...(β + 1)

t!
,

=⇒ mt+1 ≈ m1
Γ(β + t+ 1)

Γ(t+ 1)Γ(β + 1)
.

Stirling’s formula,

Γ(t+ 1) ≈
√

2πt
( t
e

)t
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which gives good approximation for the factorials of large number, can be used here to get simplified form
of the above expression. Using this approximation, expression for mt+1 reduces to

mt+1 ≈
1√

2πβ3β

(β + t)β+t+ 1
2

tt+
1
2

,

or

mt+1 ≈
(
1 + β

t

)β+t+ 1
2√

2πβ3β
tβ ,

mt+1 ≈ m∗1tβ . (B.1)

where m∗1 = m1e
β√

2πβ3β
.

Thus,
lim
t→∞

mt = lim
t→∞

m∗1t
β . (B.2)

This formulation is valid only for ∆mt >> 1. It implies that β > 1.

B.2 Recurrence relation for degree distribution
k = 1

Consider the equation A.1 once again.

(t+ 1)Pk,t+1 =
(
1− 2

t+ 1

)∆mt[
tPk,t + 1− k

2mt
tPk,t

]
.

Formally speaking, if equation is divided by t+ 1 and limit limt→∞ is applied, we get Pk,t+1 → Pk,t.
Let us write equation into the form where we can cancel the highest order terms.

[
(t+ 1)−

(
1− 2

t+ 1

)∆mt(
1− k

2mt

)
t
]
Pk,t+1 =

(
1− 2

t+ 1

)∆mt[
1− k

2mt
tPk,t

]
.

The limt→∞
(
1− 2

t+1

)∆mt
= limt→∞ exp(∆mt ln

(
1− 2

t+1

)
) = 1 for β < 2. On applying the limit,

R.H.S. becomes 1. Let us now evaluate L.H.S. limit.

lim
t→∞

[
(t+ 1)−

(
1− 2

t+ 1

)∆mt(
1− k

2mt

)
t
]

= lim
t→∞

[
(t+ 1)−

(
1− 2

t+ 1

)∆mt
t
]

= lim
t→∞

[
(t+ 1)−

(
1− 2∆mt

t+ 1
+ . . .

)
t
]

= lim
t→∞

[
1 + 2∆mt + . . .

]
is the reduced form of the L.H.S. limit.
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Equating both limits,
=⇒ lim

t→∞

[
1 + 2∆mt + . . .

]
Pk,t+1 = 1.

It can be seen that for β ∈ (1, 2), the highest order term in the expression
[
(t+1)−

(
1− 2

t+1

)∆mt(
1−

k
2mt

)
t
]

is tβ−1, whereas the R.H.S. of the equation has order 1.
This implies that

P1 → 0.

Now consider the case for k > 1 . We will evaluate limiting values of coefficients tCk−n,∆mt , n =
0, 1, . . .

Ck,∆mt

Ck,∆mt =
(
1− k

2mt

)(
1− 2

t+ 1

)∆mt
.

Gathering terms with k on L.H.S, coefficient of Pk,t in (A.2) for very large t becomes ((t + 1) −
tCk,∆mt), with

(t+ 1)− tCk,∆mt =
[
(t+ 1)−

(
1− 2

t+ 1

)∆mt(
1− k

2mt

)
t
]

=
[
(t+ 1)−

(
1− 2

t+ 1

)∆mt
t
]

=
[
(t+ 1)−

(
1− 2∆mt

t+ 1
+ . . .

)
t
]

=
[
1 +

2t∆mt

t+ 1
+ . . .

]
Limiting value of the [(t+ 1)− tCk,∆mt ]Pk,t becomes:

lim
t→∞

[
1 +

2t∆mt

t+ 1
+ . . .

]
Pk,t = lim

t→∞

[
1 + 2∆mt + . . .

]
Pk.

The highest order term in the expression
[
(t+ 1)−

(
1− 2

t+1

)∆mt(
1− k

2mt

)
t
]

is of order O(∆mt) or
of order tβ−1. Thus the coefficient of is of Pk,t has order O(∆mt).

Ck−1,∆mt

This coefficient exists for k > 1.

Ck−1,∆mt =
(
1− k − 1

2mt

)
∆mt

(
1− 2

t+ 1

)∆mt−1 2

t+ 1
+
k − 1

2mt

(
1− 2

t+ 1

)∆mt
.
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Consider tCk−1,∆mt ,

tCk−1,∆mt =
(
1− k − 1

2mt

)
∆mt

(
1− 2

t+ 1

)∆mt−1 2t

t+ 1
+

(k − 1)t

2mt

(
1− 2

t+ 1

)∆mt
.

As already shown that
(
1 − 2

t+1

)∆mt → 1, second term in the sum will approach to 0. The first term
contains 2∆mt as a maximum order term. Thus 2∆mt is maximum order coefficient of Pk−1,t. In short,
O(tβ−1) is the order of tCk−1,∆mtPk−1,t.

Ck−2,∆mt for k > 2

This coefficient exists for k > 2.

Ck−2,∆mt =
(
1− k − 2

2mt

)
C
′

k−2,∆mt +
k − 2

2mt
C
′

k−1,∆mt .

Consider tCk−2,∆mt . Highest order term in the expression is of O(∆mt(∆mt−1)
2 tΦ2) = O(t2β−3).

Thus maximum order coefficient of Pk−2,t has the order O(t2β−3). This term when divided by the term
of the order O(tβ−1), results into a term of order tβ−2, which will approach to 0 for β < 2.

Ck−n,∆mt for k > n for n = 3, 4, ...

Ck−n,∆mt = ak−n∆mt
Ψ∆mt−nΦn with ak−n∆mt

is of O(∆mt
n).

It is sufficient to find only orders of these terms. Order of tCk−n,∆mt is O(tn(β−1)−1). On dividing
the equation by tβ−1, we get coefficients of Pk−n,t of order t(n−1)(β−2) that vanishes to 0 for β < 2 on
applying the limit limt→∞. Thus, on applying limt→∞ to (A.2), following expression is obtained:

lim
t→∞

[
1 + 2∆mt + . . .

]
Pk = lim

t→∞
[2∆mt]Pk−1.

Pk = lim
t→∞

[
2∆mt

2∆mt + 1
]Pk−1.

Thus for k = 2, 3, . . .
Pk = Pk−1.

or
Pk = P1.

At each time step Pk,t must satisfy the constraint
∑∞
k=1 Pk,t = 1. For a moment, assume that Pk is

a stationary degree distribution. Then the above relationship shows that limt→∞ Pk,t → Pk and results
into Pk ≡ 0 ∀k, which contradicts the constraint. It means that we do not get a stationary distribution
and it is a time dependent satisfying the constraint

∑Kt
k=1 Pk,t = 1, with Kt as the maximum degree of

the network node, growing at each time step. The network is no longer a scale-free network but converts
to a network with uniform degree distribution. We can estimate the value of Kt. For large t, and for all
k > 1,
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Pk,t ≈ P1,t

Now,

Kt∑
k=1

P1,t = 1

Kt =
1

P1,t

Thus if P1,t is of order 1
tβ−1 , Kt is of order tβ−1.
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