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Let k be an integer and k ≥ 3. A graph G is k-chordal if G does not have an induced cycle of length greater than

k. From the definition it is clear that 3-chordal graphs are precisely the class of chordal graphs. Duchet proved

that, for every positive integer m, if Gm is chordal then so is Gm+2. Brandstädt et al. in [Andreas Brandstädt, Van

Bang Le, and Thomas Szymczak. Duchet-type theorems for powers of HHD-free graphs. Discrete Mathematics,

177(1-3):9-16, 1997.] showed that if Gm is k-chordal, then so is Gm+2.

Powering a bipartite graph does not preserve its bipartitedness. In order to preserve the bipartitedness of a bipartite

graph while powering Chandran et al. introduced the notion of bipartite powering. This notion was introduced to

aid their study of boxicity of chordal bipartite graphs. The m-th bipartite power G[m] of a bipartite graph G is the

bipartite graph obtained from G by adding edges (u, v) where dG(u, v) is odd and less than or equal to m. Note that

G[m] = G[m+1] for each odd m.

In this paper we show that, given a bipartite graph G, if G is k-chordal then so is G[m], where k, m are positive

integers with k ≥ 4.
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1 Introduction

A hole is a chordless (or an induced) cycle in a graph. The chordality of a graph G, denoted by C(G), is

defined to be the size of a largest hole in G, if there exists a cycle in G. If G is acyclic, then its chordality

is taken as 0. A graph G is k-chordal if C(G) ≤ k. In other words, a graph is k-chordal if it has no

holes with more than k vertices in it. Chordal graphs are exactly the class of 3-chordal graphs and chordal

bipartite graphs are bipartite, 4-chordal graphs. k-chordal graphs have been studied in the literature in

[2], [5], [6], [8], [9] and [16]. For example, Chandran and Ram [5] proved that the number of minimum

cuts in a k-chordal graph is at most
(k+1)n

2 − k. Spinrad[16] showed that (k − 1)-chordal graphs can be

recognized in O(nk−3M) time, where M is the time required to multiply two n by n matrices.

Powering and its effects on the chordality of a graph has been a topic of interest. The m-th power of a

graph G, denoted by Gm, is a graph with vertex set V (Gm) = V (G) and edge set E(Gm) = {(u, v) | u 6=
v, dG(u, v) ≤ m}, where dG(u, v) represents the distance between u and v in G. Balakrishnan and
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Paulraja [1] proved that odd powers of chordal graphs are chordal. Chang and Nemhauser [7] showed

that if G and G2 are chordal then so are all powers of G. Duchet [10] proved a stronger result which says

that if Gm is chordal then so is Gm+2. Brandstädt et al. in [3] showed that if Gm is k-chordal then so

is Gm+2, where k ≥ 3 is an integer. Studies on families of graphs that are closed under powering can

also be seen in the literature. For instance, it is known that interval graphs, proper interval graphs [14],

strongly chordal graphs [13], circular-arc graphs [15][12], cocomparability graphs [11] etc. are closed

under taking powers.

Subclasses of bipartite graphs, like chordal bipartite graphs, are not closed under powering since the

m-th power of a bipartite graph need not be even bipartite. Chandran et al. in [4] introduced the notion of

bipartite powering to retain the bipartitedness of a bipartite graph while taking power. The m-th bipartite

power G[m] of a bipartite graph G is the bipartite graph obtained from G by adding edges (u, v) where

dG(u, v) is odd and less than or equal to m. Note that G[m] = G[m+1] for each odd m. It was shown

in [4] that the m-th bipartite power of a tree is chordal bipartite. The intention there was to construct

chordal bipartite graphs of high boxicity. The fact that the chordal bipartite graph under consideration

was obtained as a bipartite power of a tree was crucial for proving that its boxicity was high. Since trees

are a subclass of chordal bipartite graphs, a natural question that came up was the following: is it true that

the m-th bipartite power of every chordal bipartite graph is chordal bipartite? In this paper we answer this

question in the affirmative. In fact, we prove a more general result.

Our Result

Let m, k be positive integers with k ≥ 4. Let G be a bipartite graph. If G is k-chordal, then so is G[m].

Note that the special case when k = 4 gives us the following result: chordal bipartite graphs are closed

under bipartite powering.

2 Graph Preliminaries

Throughout this paper we consider only finite, simple, undirected graphs. For a graph G, we use V (G)
to denote the set of vertices of G. Let E(G) denote its edge set. For every x, y ∈ V (G), dG(x, y)
represents the distance between x and y in G. For every u ∈ V (G), NG(u) denotes its open neighborhood

in G, i.e. NG(u) = {v | (u, v) ∈ E(G)}. A path P on the vertex set V (P ) = {v1, v2, . . . , vn}
(where n ≥ 2) has its edge set E(P ) = {(vi, vi+1) | 1 ≤ i ≤ n − 1}. Such a path is denoted by

v1v2 . . . vn. If vi, vj ∈ V (P ), viPvj is the path vivi+1 . . . vj . The length of a path P is the number of

edges in it and is denoted by ||P ||. A cycle C with vertex set V (C) = {v1, v2, . . . , vn}, and edge set

E(C) = {(vi, vi+1) | 1 ≤ i ≤ n − 1} ∪ {(vn, v1)} is denoted as C = v1v2 . . . vnv1. We use ||C|| to

denote the length of cycle C.

3 Holes in Bipartite Powers

Let H be a bipartite graph. Let B(H) be a family of graphs constructed from H in the following manner:

H ′ ∈ B(H) if corresponding to each vertex v ∈ V (H) there exists a nonempty bag of vertices, say Bv ,

in H ′ such that (a) for every x ∈ Bu, y ∈ Bv , (x, y) ∈ E(H ′) if and only if (u, v) ∈ E(H), and (b)

vertices within each bag in H ′ are pairwise non-adjacent. Below we list a few observations about H and

every H ′ (, where H ′ ∈ B(H)):

Observation 1. H ′ is bipartite.
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Observation 2. H is an induced subgraph of H ′.

Observation 3. Let k be an integer such that k ≥ 4. If H is k-chordal, then so is H ′.

Proof: Any hole of size greater than 4 in H ′ cannot have more than one vertex from the same bag, say

Bv , as such vertices have the same neighborhood. Hence, the vertices of a hole (of size greater than 4) in

H ′ belong to different bags and thus there is a corresponding hole of the same size in H .

Theorem 4. Let m, k be positive integers with k ≥ 4. Let G be a bipartite graph. If G is k-chordal, then

so is G[m].

Proof: We prove this by contradiction. Let p denote the size of a largest induced cycle, say C =
u0u1 . . . up−1u0, in G[m]. Assume p > k. Then, p ≥ 6 (since k ≥ 4 and G[m] is bipartite). Be-

tween each ui−1 and ui, where i ∈ {0, . . . , p− 1}, there exists a shortest path of length not more than m
in G (i). Let Pi be one such shortest path between ui−1 and ui in G.

Let H be the subgraph induced on the vertex set
⋃p−1

i=0 V (Pi) in G. As mentioned in the beginning

of this section, construct a graph H ′ from H , where H ′ ∈ B(H), in the following manner: for each

v ∈ V (H), let |Bv| = |{Pi | 0 ≤ i ≤ p− 1, v ∈ V (Pi)}| i.e., let Bv have as many vertices as the number

of paths in {P0 . . . Pp−1} that share vertex v in H . For each i ∈ {0, . . . , p − 1}, let Q′

i = ui−1Qi be a

shortest path between ui−1 and ui in H ′ such that no two paths Qi and Qj (where i 6= j) share a vertex (i)

. From our construction of H ′ from H it is easy to see that such paths exist. Let Qi = vi,1vi,2 . . . vi,riui,

where ri = ||Qi|| ≥ 0. Thus, Q′

i = ui−1vi,1vi,2 . . . vi,riui. Clearly, ||Q′

i|| = ||Pi|| ≤ m. The reader

may also note that the cycle C (= u0u1 . . . up−1u0) which is present in G[m] will be present in H [m] and

thereby in H ′[m] too.

In order to prove the theorem, it is enough to show that there exists an induced cycle of size at least

p in H ′. Then by combining Observation 3 and the fact that H is an induced subgraph of G, we get

k ≥ C(G) ≥ C(H) ≥ C(H ′) ≥ p contradicting our assumption that p > k. Hence, in the rest of the proof

we show that C(H ′) ≥ p.

Consider the following drawing of the graph H ′. Arrange the vertices u0, u1, . . . , up−1 in that order on

a circle in clockwise order. Between each ui−1 and ui on the circle arrange the vertices vi,1, vi,2, . . . , vi,ri
in that order in clockwise order. Recall that these vertices are the internal vertices of path Q′

i.

Claim 4.1. In this circular arrangement of vertices of H ′, each vertex has an edge (in H ′) with both its

left neighbor and right neighbor in the arrangement.

Let x1, x2 ∈ V (H ′), where x1 ∈ V (Qi), x2 ∈ V (Qj). We define the clockwise distance from x1 to x2,

denoted by clock dist(x1, x2), as the minimum non-negative integer s such that j = i+ s. Similarly, the

clockwise distance from x2 to x1, denoted by clock dist(x2, x1), is the minimum non-negative integer s′

such that i = j + s′. Let x, y, z ∈ V (H ′). We say y <x z if scanning the vertices of H ′ in clockwise

direction along the circle starting from x, vertex y is encountered before z. Let x ∈ V (Qi). Vertex y is

called the farthest neighbor of x before z if y ∈ NH′(x), y ∈ V (Qi)∪V (Qi+1)∪V (Qi+2), y <x z, and

for every other w ∈ NH′(x) either z <x w or w /∈ V (Qi) ∪ V (Qi+1) ∪ V (Qi+2) or both.

Claim 4.2. There always exists a vertex which is the farthest neighbor of x before z, unless (x, z) ∈
E(H ′) and z ∈ V (Qi) ∪ V (Qi+1) ∪ V (Qi+2).

(i) throughout this proof expressions involving subscripts of u, P , Q, and Q′ are to be taken modulo p. Every such expression

should be evaluated to a value in {0, . . . , p− 1}. For example, consider a vertex ui, where i < p Then, p+ i = i.
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Let {A,B} be the bipartition of the bipartite graph H ′. We categorize the edges of H ′ as follows: an

edge (x, y) ∈ E(H ′) is called an l-edge, if l = min(clock dist(x, y), clock dist(y, x)).

b2

a1 b1

a2

ui

ui−1

ui+l−1

ui+l

y

x

Fig. 1: x ∈ V (Qi), y ∈ V (Qi+l) and let (x, y) ∈ E(H ′) be an l-edge, where l > 2. The dotted line between ui−1

and ui indicate the path Qi. Similarly, the dotted line between ui+l−1 and ui+l indicate the path Qi+l.

Claim 4.3. H ′ cannot have an l-edge, where l > 2.

Proof: Suppose H ′ has an l-edge, where l > 2, between x ∈ Qi and y ∈ Qi+l (see Fig. 1). Let

a1 = ||ui−1Q
′

ix||, b1 = ||xQ′

iui||, a2 = ||ui+l−1Q
′

i+ly|| and b2 = ||yQ′

i+lui+l||. We consider the

following two cases:

Case 1: l is even

In this case ui−1 and ui+l−1 will be on the same side of the bipartite graph H ′. Without loss of generality,

let ui−1, ui+l−1 ∈ A. Then, ui, ui+l ∈ B. We know that, for every w1, w2 ∈ V (H ′[m]) with w1 ∈ A
and w2 ∈ B, if (w1, w2) /∈ E(H ′[m]) then dH′(w1, w2) ≥ m + 2 (recalling m and dH′(w1, w2) are

odd integers). Therefore, we have a1 + 1 + b2 ≥ dH′(ui−1, ui+l) ≥ m + 2. Similarly, b1 + 1 + a2 ≥
dH′(ui, ui+l−1) ≥ m + 2. Summing up the two inequalities we get, (a1 + b1) + (a2 + b2) ≥ 2m + 2.

This implies that either ||Q′

i|| or ||Q′

i+l|| is greater than m which is a contradiction.

Case 2: l is odd

(proof is similar to the above case and hence omitted).

Hence we prove the claim.

We find a cycle C ′ = z0z1 . . . zqz0 in H ′ using Algorithm 3.1 (i). Please read the algorithm before

proceeding further. .

(i) throughout this proof expressions involving subscripts of z are to be taken modulo q + 1. Every such expression should be

evaluated to a value in {0, . . . , q}. For example, consider a vertex za, where a < q + 1. Then, q + 1 + a = a.
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Algorithm 3.1 Finding Cycle C ′ in H ′ such that ||C ′|| ≥ ||C||

1. l← maxl′(H
′has an l′-edge). Without loss of generality assume that this l-edge is between a vertex

in Q0 and a vertex in Ql

2. Scan the vertices of Q0 in clockwise direction to find the first vertex z0, where z0 ∈ V (Q0), which

has an l-edge to a vertex in Ql.

3. Scan the vertices of Ql in clockwise direction to find the last vertex in Ql which is a neighbor of z0
in H ′. Call it z1.

4. Find the farthest neighbor of z1 before z0. Call it z2. /* refer proof of Claim 4.4 for a proof of

existence of such a z2*/

5. s← 2.

while (zs, z0) /∈ E(H ′) do

6. Find the farthest neighbor of zs before z0. Call it zs+1. /* such a neighbor exists by Claim 4.2*/

7. s← s+ 1.

end while

8. q ← s.

9. Return cycle C ′ = z0z1 . . . zqz0.

Claim 4.4. There always exists a farthest neighbor of z1 before z0.

Proof: Note that z0 ∈ Q0 and z1 ∈ Ql, where l ≤ 2 (by Claim 4.3). Recalling that ||C|| = p ≥ 6, we

have z0 /∈ V (Ql) ∪ V (Ql+1) ∪ V (Ql+2). Hence by Claim 4.2, the claim is true.

Claim 4.5. The while loop in Algorithm 3.1 terminates after a finite number of iterations.

Proof: From Claim 4.1, we know that each vertex has an edge (in H ′) with both its left neighbor and

right neighbor in the circular arrangement. Each time when Step 6 of Algorithm 3.1 is executed, a vertex

zs+1 is chosen such that zs+1 is the farthest neighbor of zs before z0. Since H ′ is a finite graph, there will

be a point of time in the execution of the algorithm when in Step 6 it picks a zs+1 such that (zs+1, z0) ∈
E(H ′).

From Claim 4.5, we can infer that C ′ is a cycle.

Claim 4.6. C ′ is an induced cycle in H ′.

Proof: Suppose C ′ is not an induced cycle. Then there exists a chord (za, zb) in C ′. Since (za, zb)
is a chord, we have b 6= a − 1 or b 6= a + 1. Let l = maxl′(H

′ has an l′-edge). Let za ∈ V (Qi),
zb ∈ V (Qj). We know that min(clock dist(za, zb), clock dist(zb, za)) ≤ l. Without loss of generality,

assume clock dist(za, zb) ≤ l ≤ 2 (from Claim 4.3). That is, j− i ≤ l ≤ 2 and (za, zb) is a (j− i)-edge.

If za = z0, then zb 6= z1 and the algorithm exits from the while loop, when q = b, thus returning a

cycle z0 . . . zbz0. But in such a cycle (zb, z0) is not a chord. Therefore, za 6= z0. Similarly, zb 6= z0.

We know that za+1 6= zb, za+1 <za zb, and za+1 ∈ V (Qi) ∪ V (Qi+1) ∪ V (Qi+2). Since j − i ≤ 2,

zb ∈ V (Qi) ∪ V (Qi+1) ∪ V (Qi+2). If zb <za z0, then it contradicts the fact that za+1 is the farthest

neighbor of za before z0. Therefore, z0 <za zb. Then, either zb = z1 or z1 <za zb. Recall that

l = maxl′(H
′has an l′-edge), and (z0, z1) is an l-edge with z0 ∈ V (Q0) and z1 ∈ V (Ql). Since (i)

(za, zb) is a (j − i)-edge, where j − i ≤ l, (ii) z0 <za zb, and (iii) zb = z1 or z1 <za zb, we have

l ≥ j − i = clock dist(za, zb) ≥ clock dist(z0, zb) ≥ clock dist(z0, z1) = l. Hence, j − i = l and
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Fig. 2: Figure illustrates the case when path P defined in Claim 4.8 is a trivial path. The dotted lines between each

ui−1 and ui indicate the path Q′
i. Each continuous arc corresponds to an edge in the cycle C′ = z0 . . . zqz0.

(za, zb) is an l-edge. We know that (z0, z1) is also an l-edge with z0 ∈ V (Q0) and z1 ∈ V (Ql). Since

z0 <za zb and zb = z1 or z1 <z0 zb, we get za ∈ V (Q0) and zb ∈ V (Ql). From Step 2 of the algorithm

we know that z0 is the first vertex (in a clockwise scan) in Q0 which has an l-edge to a vertex in Ql. This

implies that, since z0 <za zb, za = z0 which is a contradiction. Hence we prove the claim.

What is left now is to show that q + 1 ≥ p, i.e., ||C ′|| ≥ ||C||, where C ′ = z0 . . . zqz0 and C =
u0 . . . up−1u0. In order to show this, we state and prove the following claims.

Claim 4.7. For every j ∈ {0, . . . , p− 1}, (V (Qj) ∪ V (Qj+1)) ∩ V (C ′) 6= ∅.

Proof: Suppose the claim is not true. Find the minimum j that violates the claim. Clearly, j 6= 0
as z0 ∈ V (Q0). We claim that zq ∈ V (Qj−1). Suppose zq /∈ V (Qj−1). Let a = max{i | zi ∈
V (Qj−1)} (note that, since j 6= 0, by the minimality of j, (V (Qj−1)∪V (Qj))∩V (C ′) 6= ∅ and therefore

V (Qj−1) ∩ V (C ′) 6= ∅). Since za 6= zq , by the maximality of a, we have za+1 /∈ V (Qj−1). From our

assumption, (V (Qj) ∪ V (Qj+1)) ∩ V (C ′) = ∅ and therefore za+1 /∈ V (Qj−1) ∪ V (Qj) ∪ V (Qj+1).
Thus za 6= zq and za+1 is not the farthest neighbor of za before z0. This is a contradiction to the

way za+1 is chosen by Algorithm 3.1. Hence, zq ∈ V (Qj−1). We know that (zq, z0) ∈ E(H ′) with

zq ∈ V (Qj−1) and z0 ∈ V (Q0). Since l = maxl′(H
′ has an l′-edge), we have min(clock dist(zq, z0),

clock dist(z0, zq)) ≤ l . That is, j ≥ p+1− l or j ≤ 1+ l. As l ≤ 2 (by Claim 4.3), we have j = p− 1
or j ≤ 1 + l. Since z0 ∈ V (Q0), (V (Qp−1) ∪ V (Q0)) ∩ V (C ′) 6= ∅ and hence j 6= p − 1. Therefore,

j ≤ 1 + l. Since z0 ∈ V (Q0) and z1 ∈ V (Ql) (recall l ≤ 2), we get j = 1 + l. We know that, for every

za, zb ∈ V (C ′), if a < b then za <z0 zb. Therefore, z1 <z0 zq . We have z1 ∈ V (Ql). Since j = 1 + l,
we also have zq ∈ V (Ql). Thus, we have z1, zq ∈ V (Ql) and z1 <z0 zq . But this contradicts the fact that

z1 is the last vertex in Ql encountered in a clockwise scan that has z0 as its neighbor.

Claim 4.8. Let (za, za+1), (zb, zb+1) ∈ E(C ′) be two 2-edges, where a < b. Let P , P ′ denote the

clockwise za+1 − zb, zb+1 − za paths respectively in C ′. Both P and P ′ contain at least one 0-edge.
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Fig. 3: Figure illustrates the case when path P defined in Claim 4.8 is P = za+1za+2 . . . za+1+s, where s ≥ 1 and

za+1+s = zb. The dotted lines between each ui−1 and ui indicate the path Q′
i. Each continuous arc corresponds to

an edge in the cycle C′ = z0 . . . zqz0.

Proof: Consider the path P (proof is similar in the case of path P ′). Path P is a non-trivial path only

if za+1 6= zb. Suppose za+1 = zb (see Fig. 2). Let za ∈ V (Qf ). For the sake of ease of notation,

assume f = 1 (the same proof works for any value of f ). Let a1 = ||u0Q
′

1za||, b1 = ||zaQ
′

1u1||,
a2 = ||u2Q

′

3zb||, b2 = ||zbQ
′

3u3||, a3 = ||u4Q
′

5zb+1||, and b3 = ||zb+1Q
′

5u5||. We know that, for every

w1, w2 ∈ V (H ′[m]) with w1 ∈ A and w2 ∈ B, if (w1, w2) /∈ E(H ′[m]) then dH′(w1, w2) ≥ m + 2.

Since (u0, u3) /∈ E(H ′[m]), (u1, u4) /∈ E(H ′[m]) and (u2, u5) /∈ E(H ′[m]), we have a1 + b2 ≥ m+ 1,

b1 + a3 ≥ m, and a2 + b3 ≥ m + 1. Adding the three inequalities and by applying an easy averaging

argument we can infer that either a1 + b1 = ||Q1|| > m, a2 + b2 = ||Q3|| > m, or a3 + b3 = ||Q5|| > m
which is a contradiction. Therefore P is a non-trivial path i.e., za+1 6= zb. Assume P does not contain any

0-edge. Let P = za+1za+2 . . . za+1+s, where s ≥ 1, a+ 1 + s = b, and (za+1, za+2) . . . (za+s, za+1+s)
are 1-edges (see Fig. 3). Since (u0, u3) /∈ E(H ′[m]), (u1, u4) /∈ E(H ′[m]), we have ca + da+1 ≥ m+ 1
and da + da+2 ≥ m (please refer Fig. 3 for knowing what ca, da, . . . , cb+1, db+1 are). Summing up the

two inequalities, we get da+1 + da+2 ≥ 2m+ 1− (ca + da). We know that, for each i ∈ {0, . . . p− 1},
||Q′

i|| ≤ m. Therefore, we have ca + da ≤ m. Hence, da+1 + da+2 ≥ m + 1. Since (ca+1 + da+1) +
(ca+2 + da+2) ≤ 2m, we get

ca+1 + ca+2 ≤ m− 1 (1)

Since (us+2, us+5) /∈ E(H ′[m]), (us+1, us+4) /∈ E(H ′[m]), we have,

cb + db+1 ≥ m+ 1

ca+s + cb+1 ≥ m
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Summing up the two inequalities, we get

cb + ca+s ≥ 2m+ 1− (cb+1 + db+1)

Since b = a+ s+ 1 and cb+1 + db+1 ≤ m, we get

ca+s+1 + ca+s ≥ m+ 1 (2)

Substituting for s = 1 in Inequality 2, we get ca+2 + ca+1 ≥ m + 1. But this contradicts Inequality 1.

Hence s > 1. Suppose s = 2. Since (u2, u5) /∈ E(H ′[m])), we have ca+1 + da+3 ≥ m. Adding this

with Inequality 2, we get ca+1 + ca+2 ≥ (2m + 1) − (ca+3 + da+3) ≥ m + 1. But this contradicts

Inequality 1. Hence s > 2. Since (us, us+3) /∈ E(H ′[m])), . . . , (u2, u5) /∈ E(H ′[m])), we have the

following inequalities:-

ca+s−1 + da+s+1 ≥ m

...
...

...

ca+1 + da+3 ≥ m

Adding the above set of inequalities and applying the fact that ci + di ≤ m, ∀i ∈ {0, . . . q}, we get

ca+1 + ca+2 + da+s + da+s+1 ≥ 2m. Adding this with Inequality 2, we get ca+1 + ca+2 ≥ (3m+ 1)−
(ca+s+1 + da+s+1) − (ca+s + da+s) ≥ m + 1. But this contradicts Inequality 1. Hence we prove the

claim.

Claim 4.9. For every j, j′ ∈ {0, . . . , p − 1}, where j < j′ and (V (Qj) ∪ V (Qj′)) ∩ V (C ′) = ∅, there

exist i, i′ ∈ {0, . . . , p − 1}, where only i satisfies j < i < j′, such that |V (Qi) ∩ V (C ′)| ≥ 2 and

|V (Qi′) ∩ V (C ′)| ≥ 2.

Proof: By Claim 4.7, (i) j′ 6= j + 1 or j′ 6= j − 1, and (ii) there exist r, r′ ∈ {0, . . . , q} such that

(zr, zr+1) is a 2-edge with its endpoints on Qj−1 and Qj+1 and (zr′ , zr′+1) is a 2-edge with its endpoints

on Qj′−1 and Qj′+1. By Claim 4.8, we know that if P , P ′ denote the clockwise zr+1 − zr′ , zr′+1 − zr
paths respectively in C ′, then both P and P ′ contains at least one 0-edge. This proves the claim.

In order to show that the size of cycle C ′ (= z0 . . . zqz0) is at least p, we consider the following three

cases:-

Case |{Qj ∈ {Q0 . . . Qp−1} | V (Qj) ∩ V (C ′) = ∅}| = 0: In this case, for every j ∈ {0, . . . p− 1}, Qj

contributes to V (C ′) and therefore ||C ′|| ≥ p = ||C||.

Case |{Qj ∈ {Q0 . . . Qp−1} | V (Qj)∩V (C ′) = ∅}| = 1: Let Qj be that only path (among Q0 . . . Qp−1)

that does not contribute to V (C ′). Then we claim that there exists a Qj′ , where j′ 6= j, such that

V (C ′) ∩ V (Qj′) ≥ 2. Suppose the claim is not true then it is easy to see that ||C ′|| = p− 1 which is an

odd number thus contradicting the bipartitedness of H ′. Hence the claim is true. Now, by applying the

claim it is easy to see that ||C ′|| =
∑

j |V (C ′) ∩ V (Qj)| ≥ p = ||C||.

Case |{Qj ∈ {Q0 . . . Qp−1} | V (Qj) ∩ V (C ′) = ∅}| > 1: Scan vertices of H ′ starting from any vertex

in clockwise direction. Claim 4.9 ensures that between every Qj and Qj′ , which do not contribute to

V (C ′), encountered there exists a Qi which compensates by contributing at least two vertices to V (C ′).
Therefore, ||C ′|| ≥ p = ||C||.
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4 Discussion

An interesting open question that naturally follows from our result is the following: given a graph G and

positive integers k,m where k ≥ 4, if G[m] is k-chordal, then is G[m+2] also k-chordal? As mentioned

earlier, Brandstädt et al. in [3] showed a similar result in the context of ordinary graph powering. They

showed that, for every graph G, if Gm is k-chordal, then so is Gm+2, where k, m are positive integers

with k ≥ 3. A straightforward extension of their proof technique doesn’t seem to work in our context due

to the bipartite nature of the powering that we consider.
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