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The resolving number of a graph
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We study a graph parameter related to resolving sets and metric dimension, namely the resolving number, introduced

by Chartrand, Poisson and Zhang. First, we establish an important difference between the two parameters: while

computing the metric dimension of an arbitrary graph is known to be NP-hard, we show that the resolving number

can be computed in polynomial time. We then relate the resolving number to classical graph parameters: diameter,

girth, clique number, order and maximum degree. With these relations in hand, we characterize the graphs with

resolving number 3 extending other studies that provide characterizations for smaller resolving number.
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1 Introduction

Let G = (V (G), E(G)) be a finite, simple, undirected and connected graph of order n = |V (G)|. The

distance d(u, v) between two vertices u, v ∈ V (G) is the length of a shortest u-v path in G. A vertex

u ∈ V (G) resolves a pair {x, y} ⊂ V (G) if d(u, x) 6= d(u, y). A set of vertices S ⊆ V (G) is a

resolving set of G if every pair of vertices of G is resolved by some vertex in S. The metric dimension

of G, denoted by dim(G), is the minimum cardinality of a resolving set of G. The resolving number,

written as res(G), is the minimum k such that every k-subset of V (G) is a resolving set of G. Obviously,

every set S ⊆ V (G) with |S| ≥ res(G) is a resolving set of G.

Resolving sets and metric dimension were first introduced by Slater (1975), and independently by

Harary and Melter (1976). Much latter, Chartrand et al. (2000b) defined the resolving number. There

exists by now an extensive literature on resolving sets and the resolving parameters related to them, in-

cluding applications to several areas such as coin weighing problems, pharmaceutical chemistry, robot

navigation, network discovery and verification, and problems of pattern recognition and image process-

ing. See for instance Beerliova et al. (2006); Cáceres et al. (2007); Chartrand et al. (2000a,b); Garijo et al.

(2013); Hernando et al. (2010); Khuller et al. (1996); Melter and Tomescu (1984).
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Although the metric dimension and the resolving number are closely related by their definitions, there

are significant differences between them. For instance, one can easily find infinite families of graphs

with the same metric dimension, whereas in Garijo et al. (2013) we showed that the set of graphs with

fixed resolving number a ≥ 4 is finite. This paper establishes another important difference between these

parameters: while computing the metric dimension of an arbitrary graph is NP-hard (see Khuller et al.

(1996)), we prove that the resolving number can be computed in polynomial time.

We also deal with two types of problems typically studied for resolving parameters. First, we relate

the resolving number to classical graph parameters: diameter, girth, clique number, order and maximum

degree. Concretely, we provide bounds (most of which are tight) on the girth, the order, and the maximum

degree of a graph in terms of its resolving number. We also determine the graphs G with clique number

equal to res(G), and restrict ourselves to trees to give bounds on the diameter, the order and the maximum

degree, characterizing also the extremal cases. Our study follows the same spirit as several papers that

treat analogous problems for the metric dimension. See Chartrand et al. (2000a); Hernando et al. (2010);

Khuller et al. (1996); Yushmanov (1987) for relations with the order and the diameter, and Chappell et al.

(2008); Tomescu (2008) for relations with the chromatic number and the partition dimension. Further, as

it will be specified later, most of our results either improve relations obtained in other papers or continue

with the studies developed in them.

Our second main problem is to characterize the graphs with given resolving number. As a consequence

of some results in Chartrand et al. (2000b) and Jannesari and Omoomi (2011b), one can easily prove

that the only graphs G with res(G) ≤ 2 are paths and odd cycles. As a next step, we determine all

graphs with resolving number 3 using as main tools our relations between the resolving number and the

graph parameters mentioned above. Similar results have been obtained for the metric dimension, and also

combining metric dimension with resolving number: Chartrand et al. (2000a) characterized the graphs

with metric dimension equal to 1, n− 2 and n− 1, and the graphs G such that dim(G) = res(G) = k are

obtained in Garijo et al. (2013) (see also Jannesari and Omoomi (2011a)).

The paper is organized as follows. Section 2 provides some notation, definitions and a series of technical

results. One of these results leads to Corollary 2.2 which states that res(G) can be computed in polyno-

mial time. In Section 3, we present the above described relationships between the resolving number and

classical graph parameters. As it was said before, besides their independent interest, these relations are

the main tool to characterize the graphs with resolving number 3, which is done in Section 4. We conclude

the paper in Section 5 with some remarks and open problems.

2 Preliminaries. Computational complexity of res(G)

We begin by introducing some more notation and definitions. For u ∈ V (G), we shall denote by N(u)
and N [u] the open and closed neighbourhoods of u, respectively. As usual, δ(u) is the degree of u, ∆(G)
is the maximum degree of G, and 〈A〉 is the induced subgraph by a subset A ⊆ V (G).

Let Pn and Cn denote, respectively, the path and the cycle on n vertices. When no confusion can arise,

we shall use P (respectively, C or K) to denote a path (respectively, cycle or clique) and also its vertex

set.

The girth g(G) is the minimum length of a cycle in G. Note that the girth of a tree is defined to

be infinity. The clique number ω(G) is the maximum size of a clique in G, and the diameter of G,

written as d(G), is the maximum distance between any two vertices of G. The distance between a

vertex u ∈ V (G) and a subset A ⊆ V (G) is d(u,A) = minv∈A d(u, v), and the diameter of A is
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d(A) = maxu,v∈A d(u, v). The set of pairs of elements of A is denoted by P2(A).
Let R(x, y) be the set of vertices of G that resolve the pair {x, y} ⊂ V (G), and let R(x, y) = V (G) \

R(x, y). Note that for every pair {x, y}, the set R(x, y) is not a resolving set of G.

The following proposition is the key tool to obtain the previously mentioned difference on the com-

putational complexity of the resolving number and the metric dimension: res(G) is polynomial-time

computable while computing dim(G) is NP-hard (see Khuller et al. (1996)).

Proposition 2.1 The resolving number of a graph G is given by

res(G) = max
x,y∈V (G)

|R(x, y)|+ 1.

Proof: Let us denote m = maxx,y∈V (G) |R(x, y)|. Clearly, every set S ⊆ V (G) with |S| > m is a

resolving set of G (otherwise there would be a pair {x, y} such that S ⊆ R(x, y) and so m < |S| ≤
|R(x, y)| ≤ m). Hence, res(G) ≤ m + 1. On the other hand, there is at least one pair {x, y} for which

|R(x, y)| = m, and R(x, y) is not a resolving set of G. Then, res(G) ≥ m+ 1. ✷

Corollary 2.2 The resolving number res(G) can be computed in polynomial time in the order of G.

Proof: First, we preprocess the distance matrix of G in O(n3) time (see Floyd (1962)). Thus, for each

pair {x, y} ∈ P2(V (G)) the set R(x, y) can be obtained in O(n) time by comparing the corresponding

rows of x and y in the distance matrix. By Proposition 2.1, we can compute res(G) in O(n3) time since

|P2(V (G))| is O(n2). ✷

We now provide three results which will be useful in the proofs of this paper.

Lemma 2.3 Let P ⊆ P2(V (G)) and let V1, V2, . . . , Vℓ be a partition of V (G). If every vertex of Vi, for

i = 1, . . . , ℓ, does not resolve at least ki ≥ 0 pairs of P , then

ℓ
∑

i=1

|Vi| · ki ≤ |P| · (res(G)− 1).

Proof: Every vertex u ∈ Vi belongs to at least ki different sets of the form R(x, y) with {x, y} ∈ P .

Moreover, by Proposition 2.1, we have |R(x, y)| ≤ res(G)− 1. Hence

ℓ
∑

i=1

|Vi| · ki ≤
∑

{x,y}∈P

|R(x, y)| ≤ |P| · (res(G)− 1).

✷

Khuller et al. (1996) showed that d(u,w) ∈ {d − 1, d, d + 1} for u, v, w ∈ V (G) such that {v, w} ∈
E(G) and d(u, v) = d. The following straightforward lemma provides a version of this result for subsets

of V (G).

Lemma 2.4 Let u ∈ V (G) and A ⊆ V (G). If d(u,A) = d then d(u, v) ∈ {d, d+ 1, . . . , d+ d(A)} for

every v ∈ A.
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A resolving set S of G is minimal if no proper subset of S is a resolving set. The maximum cardinality

of a minimal resolving set is the upper dimension dim+(G) (see Chartrand et al. (2000b)). Clearly, every

(n−1)-subset of V (G) is a resolving set and every resolving set contains a minimal resolving set. Hence,

1 ≤ dim(G) ≤ dim+(G) ≤ res(G) ≤ n− 1.

This relation and several results in Chartrand et al. (2000b) and Jannesari and Omoomi (2011b) give all

graphs G with res(G) ≤ 2. Indeed, by Theorem 1 of Jannesari and Omoomi (2011b), the paths P1 and P2

are the only graphs with resolving number equal to 1. By Proposition 2.1 of Chartrand et al. (2000b) we

have res(Pn) = 2 for n ≥ 3 and res(Cn) = 2 if n is odd. Theorem 2.4 of Chartrand et al. (2000b) says

that dim+(G) = res(G) = 2 if and only if G is a path of order at least 4 or an odd cycle. If dim+(G) = 1
and res(G) = 2 then dim(G) = 1 and, by Theorem A of Chartrand et al. (2000b), one obtains that G is a

path. Thus, we have proved the following result.

Theorem 2.5 res(G) ≤ 2 if and only if G is a path or an odd cycle.

3 Relationships between res(G) and other graph parameters

3.1 Diameter

In Garijo et al. (2013), we showed that d(G) ≤ 3res(G) − 5 for a graph G (not being a cycle) with

res(G) ≥ 3. Here, we improve this bound for trees characterizing also the extremal case.

For positive integers a, b, c, let Sa,b,c be a spider with three legs of lengths a, b, c, respectively (i.e., a

tree formed by three paths of lengths a, b, c attached at a single vertex).

Proposition 3.1 If T is a tree that is not a path then d(T ) ≤ 2res(T )− 4, and equality holds if and only

if T ∼= Sa,b,b with b = res(T )− 2 and a ≤ b.

Proof: For simplicity, let us denote r = res(T ). By Theorem 2.5 we have r ≥ 3. Suppose on the contrary

that d(T ) ≥ 2r−3. Assume, without loss of generality, that d(T ) = 2r−3 and let P = (u1, u2, ..., u2r−2)
be a shortest path of length d(T ). Clearly, δ(u1) = δ(u2r−2) = 1. Further, since T is not a path then

there is a vertex u ∈ N [ui] \ P with 1 < i < 2r − 2. If i ≥ r (analogous for i < r) then no vertex of

S = {u1, u2, ..., ui} resolves the pair {u, ui+1} and so S is not a resolving set of G; a contradiction with

|S| = i ≥ r. Therefore, d(T ) ≤ 2r − 4.

One can easily check that d(Sa,r−2,r−2) = 2res(Sa,r−2,r−2)− 4 for a ≤ r− 2. Consider now a tree T
such that d(T ) = 2r − 4, and let P = (u1, ..., u2r−3) be a shortest path of length d(T ). Next, we prove

that T ∼= Sa,r−2,r−2 with a ≤ r − 2.

Arguing as above, we obtain δ(u1) = 1, δ(u2r−3) = 1, and there is a vertex u ∈ N [ui] \ P with

1 < i < 2r − 3. Moreover, the sets {u1, ..., ur} and {ur−2, ..., u2r−3} are not resolving sets when

i ≥ r and i ≤ r − 2, respectively. This implies ui = ur−1, and so δ(ur−1) ≥ 3 and δ(uj) = 2 for

j 6= 1, r − 1, 2r − 3. That δ(ur−1) = 3 follows from the fact that P is a resolving set, and the same

argument shows that the induced subgraph 〈V (T ) \P 〉 is a path. Thus, T ∼= Sa,r−2,r−2 for some positive

integer a. Further, no vertex of the set (V (T ) \ P ) ∪ {ur−1} resolves the pair {ur−2, ur} and so it is not

a resolving set. Hence, a = |V (T ) \ P | ≤ r − 2. ✷



The resolving number of a graph 159
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G7 G8 G9 G10

Fig. 1: The set of graphs F1.

3.2 Girth

We now provide a tight bound on the girth of a graph in terms of its resolving number.

Proposition 3.2 If G is neither a tree nor a cycle then g(G) ≤ 2res(G)− 1, and this bound is tight.

Proof: Let r = res(G). Suppose on the contrary that g(G) ≥ 2r. Assume, without loss of generality, that

g(G) = 2r and consider a cycle of minimum length C = (u1, ..., u2r). Since G is not a cycle then there is

a vertex u adjacent to some vertex of C, say ur. Further, C has minimum length and so (u1, u2, . . . , ur+1)
is a shortest u1-ur+1 path. Thus, the pair {u, ur+1} is resolved by no vertex of S = {u1, ..., ur}, and so

S is not a resolving set; a contradiction with |S| = r.

The graph obtained by attaching a pendant edge to any vertex of an odd cycle C2a+1 with a ≥ 3 has

girth 2a+ 1 and resolving number a+ 1. This proves that the bound is tight. ✷

3.3 Clique number

Jannesari and Omoomi (2011b) proved that ω(G) ≤ res(G)+1 for a graph G such that dim(G) = res(G),
and that equality holds only for complete graphs. However, their proof does not use the hypothesis

dim(G) = res(G) but only the fact that every set S ⊆ V (G) with |S| ≥ res(G) is a resolving set of G.

Thus, their result can be extended to every graph G.

Proposition 3.3 For every graph G, ω(G) ≤ res(G)+1 and equality holds if and only if G is a complete

graph.

As a next step, we determine all graphs G such that ω(G) = res(G). Let F1 denote the set of 14 graphs

depicted in Figure 1. For positive integers a, b with b < a, let Ga,b be the graph obtained by attaching a



160 Delia Garijo, Antonio González, Alberto Márquez

vertex to any b vertices of a complete graph on a vertices (note that res(Ga,b) = a); see Figure 2(right)

for a small example. Let G1, G2, G3 and G4 be the other four graphs illustrated in Figure 2.

G
1

G
2

G
3

G
4

G5,3

Fig. 2: The graphs G1, G2, G3, G4 and G5,3.

Proposition 3.4 For every graph G, the following statements hold.

(i) ω(G) = res(G) = 1⇐⇒ G ∼= K1.

(ii) ω(G) = res(G) = 2⇐⇒ G ∼= Pn for some n ≥ 3 or G ∼= Cn for some odd n ≥ 5.

(iii) ω(G) = res(G) = 3⇐⇒ G ∈ F1.

(iv) ω(G) = res(G) = 4⇐⇒ G ∈ {G1, G2, G3, G4} or G ∼= G4,b for some b < 4.

(v) ω(G) = res(G) ≥ 5 ⇐⇒ G ∼= Ga,b for some b < a and 5 ≤ a = res(G).

Proof: Statement (i) is straightforward, and Statement (ii) follows immediately from Theorem 2.5 (note

that res(P2) = 1). As a consequence of the study developed in Section 4 (see Theorem 4.4) one can easily

prove Statement (iii).

Finally, we prove Statements (iv) and (v) at the same time. If G is isomorphic to either G1, G2, G3,

G4, or Ga,b with res(G) = a ≥ 4 and b < a, then the corresponding statements can be easily checked.

Consider now a graph G such that ω(G) = res(G) = r ≥ 4. Let K be a maximum clique in G. By

Proposition 3.3, the graph G is not a complete graph and so there is a vertex u ∈ V (G) \ K adjacent

to some vertex of K. If n = r + 1 then G ∼= Gr,b for some b < r. Otherwise, there is a vertex

v ∈ V (G) \ (K ∪ {u}) such that either v ∈ N(u) or v is adjacent to some vertex of K.

Let A1 = (N(u) \ N(v)) ∩ K, A2 = (N(v) \ N(u)) ∩ K, A3 = N(u) ∩ N(v) ∩ K and A4 =
K \ (N(u) ∪ N(v)). Note that any set Ai may be empty, and K is the disjoint union of the four sets.

We claim that |Ai| ≤ 1 for every 1 ≤ i ≤ 4. Indeed, suppose on the contrary that there are two different

vertices x, y in, say A1. Clearly, d(v, x) = d(v, y) = 2 and so the set S = (K \ {x, y}) ∪ {u, v} is

not a resolving set; a contradiction with |S| = r. Hence, |A1| ≤ 1 and a similar argument applies to the

remaining sets Ai.

Since
∑4

i=1 |Ai| = |K| = r ≥ 4 and |Ai| ≤ 1 then |K| = r = 4 and |Ai| = 1 for every 1 ≤ i ≤ 4.

Hence, we can assume that N(u) ∩K = {u1, u2} and N(v) ∩K = {u2, u3} for K = {u1, u2, u3, u4}.

Note that, in particular, we have proved that if n 6= r + 1 then r = 4. Thus, the graphs G obtained in

Statement (v) are only those for the case n = r + 1.

If n = 6 then G is isomorphic to either G1 or G2 (depending on whether u and v are adjacent or not).

Suppose now that n ≥ 7 and let w ∈ V (G) \ (K ∪ {u, v}). Considering the analogous sets Ai but for the

vertices u,w and v, w, we deduce that either N(w)∩K = {u1, u3} or N(w)∩K = {u2, u4}. This implies
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n = 7 (otherwise there is a vertex z ∈ V (G) \ (K ∪ {u, v, w}) such that A3 = N(w) ∩N(z) ∩K = ∅
and A4 = K \ (N(w) ∪N(z)) = ∅).

We next show that it cannot be the case that N(w)∩K = {u1, u3} by providing a set S with |S| = 4 that

is not a resolving set. Consider the induced subgraph H = 〈{u, v, w}〉. If |E(H)| ∈ {0, 1}, say E(H) =
{{u, v}} for |E(H)| = 1, then no vertex of S = {u1, u3, u, v} resolves the pair {u4, w}. If |E(H)| ∈
{2, 3} (assume E(H) = {{u, v}, {v, w}} for |E(H)| = 2) then no vertex of S = {u2, u3, u, w} resolves

the pair {u1, v}.

When N(w) ∩ K = {u2, u4}, we obtain the graphs G3 and G4 for |E(H)| = 0 and |E(H)| = 3,

respectively. If |E(H)| ∈ {1, 2}, say E(H) = {{u, v}} or E(H) = {{u, v}, {v, w}}, then either

{u2, u3, u, w} or {u1, u2, v, w} is not a resolving set; a contradiction with r = 4. ✷

3.4 Order

The following proposition gives bounds on the order of a graph in terms of its resolving number, and also

provides an alternative proof for Theorem 3.7 of Garijo et al. (2013) which states that the set of graphs

with resolving number a ≥ 4 is finite.

Proposition 3.5 If G is neither a path nor a cycle then

res(G) + 1 ≤ n ≤























3res(G)− 3 if g(G) = 3,

4res(G)− 4 if g(G) = 4,

5res(G)− 5 if g(G) = 5,

5res(G)− 9 if g(G) > 5 and ∆(G) > 3,
6res(G)− 8 if g(G) > 5 and ∆(G) = 3.

Moreover, the lower bound and the upper bounds for g(G) ∈ {3, 5} are tight.

Proof: By definition res(G) + 1 ≤ n for every graph G, and the complete graph Kn attains the bound

(see Chartrand et al. (2000b)). For the upper bound, we distinguish several cases.

Case 1. g(G) = 3: Let C = (u1, u2, u3) be a 3-cycle in G, and u ∈ V (G). Since d(C) = 1, by

Lemma 2.4, d(u, ui) ∈ {d(u,C), d(u,C) + 1} for every 1 ≤ i ≤ 3. Hence, there is at least one pair

{ui, uj} ∈ P2(C) which is not resolved by vertex u. Lemma 2.3 gives the expected bound by setting

P = P2(C), V1 = V (G) (ℓ = 1) and k1 = 1.

The graph consisting of a 3-cycle with one path of length r− 2 attached to each vertex of the cycle has

resolving number r and 3(r − 1) vertices. This shows that the bound is tight.

Case 2. g(G) = 4: Let C = (u1, u2, u3, u4) be a cycle of minimum length in G, V1 = R(u1, u3) ∩
R(u2, u4) and V2 = V (G) \ V1. We now distinguish two cases.

Case 2.1. |V1| ≤ |V2|: Every vertex u ∈ V2 does not resolve at least one pair of P = {{u1, u3}, {u2, u4}}.

By Lemma 2.3, taking k1 = 0 and k2 = 1 (ℓ = 2) we have 2(res(G)− 1) ≥ |V2| ≥ n/2.

Case 2.2.: |V1| > |V2|: Let u ∈ V1 and d(u,C) = d. Assume that d(u, u1) = d. Then d(u, u2), d(u, u4) ∈
{d, d+ 1}. Since u ∈ R(u2, u4) then either d(u, u2) = d or d(u, u4) = d. Moreover, u ∈ R(u1, u3) and

so d(u, u3) = d+1. Therefore, there are at least two pairs of P = {{u1, u2}, {u2, u3}, {u3, u4}, {u4, u1}}
which are not resolved by vertex u. By Lemma 2.3, setting k1 = 2 and k2 = 0 (ℓ = 2) we have

4(res(G)− 1) ≥ 2|V1| > n.
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Case 3. g(G) = 5: A 5-cycle C = (u1, u2, u3, u4, u5) has diameter 2 and so Lemma 2.4 gives

d(u, ui) ∈ {d(u,C), d(u,C) + 1, d(u,C) + 2} for every u ∈ V (G) and 1 ≤ i ≤ 5. Hence, there are at

least two pairs of P2(C) which are not resolved by vertex u. The result follows by Lemma 2.3, taking

P = P2(C), V1 = V (G) (ℓ = 1) and k1 = 2. The graph G14 depicted in Figure 3 (see Section 4) shows

that the bound is tight.

Case 4. g(G) > 5 and ∆(G) > 3: Let u0 ∈ V (G) with δ(u0) ≥ 4, and consider four of its neighbours,

say u1, u2, u3, u4. Let A = {u0, u1, u2, u3, u4}. Arguing as in Case 3, since d(A) = 2 then every vertex

u ∈ V (G) does not resolve at least two pairs of P2(A). Moreover, u0 resolves no pair of P2(A \ {u0}),
and ui resolves no pair of P2(A \ {u0, ui}) for every 1 ≤ i ≤ 4. By Lemma 2.3, setting P = P2(A),
V1 = V (G) \ A, V2 = {u0}, V3 = A \ {u0} (ℓ = 3), k1 = 2, k2 = 6 and k3 = 3, we have

10(res(G)− 1) ≥ 2(n− 5) + 6 + 12 = 2n+ 8.

Case 5. g(G) > 5 and ∆(G) = 3: Let u0 ∈ V (G) with δ(u0) = 3 and neighbours u1, u2, u3.

Reasoning as above, every vertex u ∈ V (G) does not resolve at least one pair of P2(N [u0]). Further,

u0 resolves no pair of P2(N(u0)). Lemma 2.3 gives the expected bound by taking P = P2(N [u0]),
V1 = V (G) \ {u0}, V2 = {u0} (ℓ = 2), k1 = 1 and k2 = 3. ✷

We now provide a tight bound for trees, characterizing those that attain the bound.

Proposition 3.6 If T is a tree of order n that is not a path then n ≤ 3res(T ) − 5, and equality holds if

and only if T ∼= Sa,a,a with a = res(T )− 2 ≥ 1.

Proof: Let u ∈ V (T ) such that δ(u) ≥ 3 and consider three of its neighbours, say u1, u2, u3. We can

partition V (T ) into four subsets U,Ui with 1 ≤ i ≤ 3, where Ui contains all vertices v ∈ V (T ) such

that ui belongs to the u-v path, and U = V (T ) \ ∪3
i=1Ui. Note that ui ∈ Ui and u ∈ U . Clearly, no

vertex of Ui resolves the pair {uj , uk} for i 6= j 6= k. Moreover, every vertex of U resolves no pair of

P2({u1, u2, u3}). Since every subset of vertices with cardinality at least res(T ) is a resolving set of T we

can conclude that for 1 ≤ i ≤ 3,

|Ui|+ |U | ≤ res(T )− 1. (1)

Hence,
∑3

i=1 |Ui|+ 3|U | ≤ 3(res(T )− 1) and so

n ≤ 3(res(T )− 1)− 2|U | ≤ 3(res(T )− 1)− 2. (2)

If T is isomorphic to Sa,a,a with a = res(T ) − 2 then n = 3res(T ) − 5. Consider now a tree T such

that n = 3res(T )−5. Proceeding as above, one can partition V (T ) into the subsets U,Ui with 1 ≤ i ≤ 3.

Since T satisfies expression (2) then n attains its maximum value when |U | = 1, i.e., U = {u}. Therefore,

3res(T )− 5 = n =

3
∑

i=1

|Ui|+ 1.

By expression (1) we have |Ui|+ 1 ≤ res(T )− 1 which leads to |Ui| = res(T )− 2 for 1 ≤ i ≤ 3.

Clearly, the induced subgraph 〈Ui〉 is a path in T for every 1 ≤ i ≤ 3. Indeed, if it were the case that

two vertices x, y ∈ Ui verify that d(u, x) = d(u, y), then the set Uj ∪ Uk ∪ {u} for i 6= j 6= k would

not be a resolving set; a contradiction with |Uj | + |Uk| + 1 = 2res(T ) − 3 ≥ res(T ) since, by Theorem

2.5, res(T ) ≥ 3. Hence, T is a tree which consists of three paths of length res(T )− 2 attached at a single

vertex, i.e., T ∼= Sa,a,a with a = res(T )− 2 ≥ 1. ✷
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3.5 Maximum degree

Jannesari and Omoomi (2011a) proved that ∆(G) ≤ 2r−1 + r+1 for r = res(G). Here, we improve this

exponential bound providing a linear bound.

Proposition 3.7 If G is neither a path nor a cycle then

∆(G) ≤

{

3res(G)− 4 if g(G) = 3,
res(G) if g(G) > 3,

and both bounds are tight.

Proof: Proposition 3.5 gives the bound for g(G) = 3 since ∆(G) ≤ n − 1. The wheel graph W1,5 (see

Figure 1) attains the bound.

Suppose now that g(G) > 3. Let u0 be a vertex of degree ∆(G), and u1, u2 ∈ N(u0). Clearly, the

induced subgraph 〈N [u0]〉 is a star on ∆(G)+1 vertices (otherwise G would contain a triangle). Then, no

vertex of S = N [u0] \ {u1, u2} resolves the pair {u1, u2} and so S is not a resolving set of G. Therefore,

|S| = ∆(G) − 1 ≤ res(G) − 1. The star K1,a on a + 1 vertices proves that the bound is tight since

res(K1,a) = ∆(K1,a) = a. ✷

We now show that only stars attain the bound when restricting the preceding result to trees.

Proposition 3.8 If T is a tree of order n that is not a path then ∆(T ) ≤ res(T ), and equality holds if and

only if T is isomorphic to a star K1,a with a = res(T ) ≥ 3.

Proof: The fact that ∆(T ) ≤ res(T ) follows immediately from Proposition 3.7 since g(T ) is defined to

be infinity. Also, as mentioned above res(K1,a) = ∆(K1,a) = a. Thus, it suffices to prove that a tree T
(not being a path) with ∆(T ) = res(T ) is isomorphic to K1,a with a = res(T ) ≥ 3.

Let u0 be a vertex of degree ∆(T ), and N [u0] = {u0, u1, ..., u∆(T )} its closed neighbourhood. Sup-

pose that there is a vertex u ∈ V (T ) such that d(u, u0) = 2. Assume, without loss of generality, that

u ∈ N(u1). Then, the set S = (N [u0] \ {u2, u3}) ∪ {u} is not a resolving set since the pair {u2, u3}
is resolved by no vertex of S. This contradicts |S| = ∆(T ) = res(T ) and so there does not exist such a

vertex u, which implies that T is a star K1,a with a = ∆(T ) = res(T ) ≥ 3. ✷

4 Characterization of the graphs G with res(G) = 3

As a natural extension of Theorem 2.5, we now determine all graphs with resolving number 3 using as

main tools the relations obtained in Section 3. We begin with three technical lemmas.

Lemma 4.1 If g(G) = ∆(G) = res(G) = 3 then G ∈ F1.

Proof: Let C = (u1, u2, u3) be a cycle in G. Suppose first that δ(u1) = 3 and δ(u2) = δ(u3) = 2,

and let u ∈ N(u1) \ {u2, u3}. Clearly n = 4, since otherwise no vertex v ∈ N(u) \ {u1} resolves

the pair {u2, u3} and so the set {u1, u, v} is not a resolving set, contradicting res(G) = 3. Therefore,

G ∼= G1 ∈ F1. Recall that the set of graphs F1 is illustrated in Figure 1.

Assume now that δ(u1) = δ(u2) = 3 and δ(u3) = 2. We distinguish two cases.
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Case 1. N(u1)∩N(u2) = {u3}: Let N(u1) = {u2, u3, u} and N(u2) = {u1, u3, v}. Since g(G) = 3,

by Proposition 3.5, we have n ≤ 6. If n = 5 then G is isomorphic to either G2 or G3 (both in F1). If

n = 6 then there is a vertex w ∈ (N(u) ∪ N(v)) \ {u1, u2}. Further, w ∈ N(u) ∩ N(v) (otherwise

either {u1, u, w} or {u2, v, w} is not a resolving set). Hence, G is isomorphic to either G4 or G5 (both

contained in F1).

Case 2. N(u1) ∩ N(u2) = {u3, u}: If it were the case that n ≥ 5 then there would be a vertex

v ∈ V (G) such that N(u) = {u1, u2, v}, and the set {u3, u, v} would not be a resolving set. Therefore,

n = 4 and so G ∼= K2 +K2 ∈ F1.

Suppose, finally, that δ(u1) = δ(u2) = δ(u3) = 3. By Proposition 3.3 it follows that G ∼= K4 ∈ F1

when N(u1) ∩N(u2) ∩N(u3) = {u}. Moreover, arguing as in Case 2 (when n ≥ 5), we deduce that it

cannot be the case that two of the ui’s, say u1, u2, have a common neighbour u /∈ N(u3). Assume then

that N(ui) ∩N(uj) = {uk} for all i 6= j 6= k.

Let N(u1) = {u2, u3, u}, N(u2) = {u1, u3, v} and N(u3) = {u1, u2, w}. Clearly, the size of

the induced subgraph H = 〈{u, v, w}〉 is either 3, 1 or 0. Indeed, if |E(H)| = 2, say E(H) =
{{u, v}, {u,w}}, then S = {u2, u, w} is not a resolving set since no vertex of S resolves the pair {u1, v}.

Hence, G is isomorphic to either G6, G7 or G8 (all contained in F1). ✷

Lemma 4.2 If ∆(G) = 4 and res(G) = 3 then G ∈ F1.

Proof: Let u0 ∈ V (G) be a vertex with δ(u0) = 4. By Lemma 4 of Jannesari and Omoomi (2011a),

the induced subgraph 〈N(u0)〉 is a path, say (u1, u2, u3, u4). Then g(G) = 3 and, by Proposition 3.5,

either n = 5 or n = 6. If n = 5 then G ∼= K1 + P4 ∈ F1. If n = 6 then there is a vertex u such

that d(u, u0) = 2. Only when δ(u) = 2 and N(u) is either {u1, u4} or {u2, u3} we obtain two possible

graphs G which are contained in F1: the graphs G9 and G10 (see Figure 1). In the remaining cases, we

next specify a set S with |S| ≥ 3 that is not a resolving set, obtaining a contradiction.

If δ(u) = 1, take S = {u0, u1, u} for N(u) = {u1}, and S = {u0, u2, u} for N(u) = {u2} (analogous

for N(u) = {u4} and N(u) = {u3}). If δ(u) = 2, consider S = {u2, u4, u} for N(u) = {u1, u2}, and

S = {u0, u2, u} for N(u) = {u1, u3} (similar for N(u) = {u3, u4} and N(u) = {u2, u4}). Finally, if

δ(u) ≥ 3 take S = N(u). ✷

Consider now the set of graphs F2 shown in Figure 3.

Lemma 4.3 If g(G) = 5 and ∆(G) = res(G) = 3 then G ∈ F2.

Proof: We first observe that any two different 5-cycles in G meet in at most one edge. Indeed, suppose

on the contrary that there are two 5-cycles meeting in two edges e, e′ ∈ E(G). Since g(G) = 5, one can

easily check that the edges e, e′ must be consecutive, and then the set formed by the three end vertices of

e, e′ is not a resolving set, which contradicts res(G) = 3.

Consider now a vertex u0 ∈ V (G) with δ(u0) = 3 and such that the number of 5-cycles through u0 is

maximum. Let N(u0) = {u1, u2, u3}. We distinguish three cases.

Case 1. Suppose that there exists a unique 5-cycle through u0, say C = (u0, u1, u, v, u2). If n = 6
then G ∼= G11 ∈ F2. Otherwise, let w ∈ V (G) \ (N [u0] ∪ {u, v}).

Clearly, w /∈ N(ui) for 1 ≤ i ≤ 3: the sets {u0, u1, w}, {u0, u2, w}, {u0, u3, w} would not be

resolving sets if it were the case that w is adjacent to, respectively, u1, u2, u3 (recall that u0 belongs to

exactly one 5-cycle).



The resolving number of a graph 165

Assume now that w ∈ N(u) (analogous for w ∈ N(v)). If n = 7 then G ∼= G12 ∈ F2. When n ≥ 8,

there is a vertex x ∈ V (G) \ (N [u0] ∪ {u, v, w}). Arguing as above, we conclude that x /∈ N(ui) for

every 1 ≤ i ≤ 3, and so either x ∈ N(w) or x ∈ N(v). In both cases, one reaches a contradiction with

res(G) = 3. Indeed, if x ∈ N(w) then d(x, u1) = d(x, v) = 3 since there is no 5-cycle going through u
other than C. This implies that {u,w, x} is not a resolving set. A similar reasoning gives that {u, v, x} is

not a resolving set when x ∈ N(v).

Case 2. Suppose that there are exactly two different 5-cycles through u0, say C1 = (u0, u1, u, v, u2)
and C2 = (u0, u2, u

′, v′, u3). If n = 8 then G ∼= G13 ∈ F2. Otherwise, there exists a vertex w ∈
V (G) \ (C1 ∪ C2). Distinguishing cases according to the adjacencies of w, we next give a set S with

|S| = 3 that is not a resolving set; a contradiction with res(G) = 3. One only has to note that: (1)

u0 belongs to exactly two 5-cycles, (2) two 5-cycles share at most one edge, (3) the number of 5-cycles

through u0 is maximum.

If w ∈ N(u1) (analogous for w ∈ N(u3)) then no vertex of S = {u0, u1, u3} resolves the pair {u,w}.

If w ∈ N(u) (similar for w ∈ N(v′)) then the pair {u0, u2} is resolved by no vertex of S = {u, v′, w}.

Finally, if w ∈ N(v) (analogous for w ∈ N(u′)) then no vertex of S = {u2, v, u
′} resolves {u,w}.

Case 3. There are three different 5-cycles Ci, 1 ≤ i ≤ 3, through u0: By Proposition 3.5, n = 10.

Moreover, arguing as above one can easily prove that the set E(G) contains no edges other than those of

the three cycles Ci. Therefore, G ∼= G14 ∈ F2. ✷

G11 G12 G13 G14

Fig. 3: The set of graphs F2.

We are now ready for proving the main result in this section.

Theorem 4.4 res(G) = 3 if and only if G is an even cycle, the star K1,3 or G ∈ F1 ∪ F2.

Proof: It is easy to check that even cycles, K1,3 and all graphs of F1 ∪ F2 have resolving number 3.

Consider now a graph G with res(G) = 3. By Theorem 2.5, G is neither a path nor an odd cycle. We

can also assume that G is not an even cycle (otherwise the result follows).

Proposition 3.7 yields ∆(G) ≤ 5. Moreover, ∆(G) > 2 since the only connected graphs with maxi-

mum degree 2 are paths and cycles.

Suppose first that ∆(G) = 3. If G is a tree, by Proposition 3.8, we have G ∼= K1,3. Otherwise,

Proposition 3.2 gives g(G) ≤ 5. Lemmas 4.1 and 4.3 lead to G ∈ F1 and G ∈ F2 when g(G) = 3
and g(G) = 5, respectively. Moreover, g(G) 6= 4. Indeed, suppose on the contrary that g(G) = 4 and

let C = (u1, u2, u3, u4) be a minimum cycle in G. Assume that δ(u1) = 3 and so there is a vertex

u ∈ N [u1] \ C. Hence, no vertex of the set {u1, u3, u} resolves the pair {u2, u4}, which contradicts

res(G) = 3.

By Lemma 4.2, we obtain G ∈ F1 when ∆(G) = 4. Assume, finally, that ∆(G) = 5, and let

u ∈ V (G) with δ(u) = 5. Since res(G) = 3, by Lemma 3 of Jannesari and Omoomi (2011a), we have

that the induced subgraph 〈N(u)〉 is a 5-cycle. Then g(G) = 3 and, by Proposition 3.5, it follows that

n = 6. Therefore, G is isomorphic to the wheel graph W1,5 ∈ F1. ✷
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5 Concluding remarks

In this paper, we have studied a graph parameter related to the metric dimension: the resolving number. We

first establish an important difference between both parameters: res(G) is polynomial-time computable

while computing dim(G) is NP-hard (see Khuller et al. (1996)). We then relate the resolving number to

classical graph parameters, and characterize the graphs with resolving number 3 by using those relations.

As it was said before, our study follows the same vein as several papers on metric dimension, and most of

our results either improve relationships obtained in other papers or continue with the studies developed in

them.

Although we provide an O(n3) time algorithm for computing the resolving number of an arbitrary

graph, it would be interesting to find the exact computational complexity of this parameter, even in specific

families of graphs. Also, the non-tight upper bounds of Proposition 3.5 could be improved. Moreover,

we use very small examples (the graph G14 in Figure 3 and the wheel graph W1,5 in Figure 1) to show

the tightness of two bounds given in Propositions 3.5 and 3.7, respectively, and so it appears that they are

not tight for large enough values of res(G). Finally, the problem of characterizing the graphs with fixed

resolving number a ≥ 4 remains open.
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