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One of the first and most famous results of cellular automata theory, Moore’s Garden-of-Eden theorem has been

proven to hold if and only if the underlying group possesses the measure-theoretic properties suggested by von

Neumann to be the obstacle to the Banach-Tarski paradox. We show that several other results from the literature,

already known to characterize surjective cellular automata in dimension d, hold precisely when the Garden-of-Eden

theorem does. We focus in particular on the balancedness theorem, which has been proven by Bartholdi to fail on

amenable groups, and we measure the amount of such failure.
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1 Introduction

Cellular automata (CA) are local descriptions of global dynamics. Given an underlying uniform graph

(e.g., the square grid on the plane) a CA is defined by a finite alphabet, a finite neighborhood for the nodes

of the graph, and a local function that maps states of a neighborhood into states of a point. By synchronous

application of the local function at all nodes, a global function on configurations is defined.

The study of global properties of CA and their relations with the local description has been a main

topic of research since the field was established. Indeed, the Garden-of-Eden theorem by Moore [19]

and its converse by Myhill [20], which link surjectivity of the global map of 2D CA to pre-injectivity (a

property that may be described as the impossibility of erasing finitely many errors in finite time) also have

the distinction of being the first rigorous results of cellular automata theory. Since then, several more

properties were later proven to be equivalent to surjectivity for d-dimensional CA. Among them are:
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• Balancedness [18]: each pattern of a given shape has the same number of preimages.

• Preservation of Martin-Löf randomness [3]: the image of any algorithmically incompressible con-

figuration is itself algorithmically incompressible.

With the subsequent efforts to extend the definition of CA to the more general situation of Cayley graphs

of finitely generated groups, an unexpected phenomenon appeared: the Garden-of-Eden theorem actually

depends on properties of the involved groups. This phenomenon dates back to Machı̀ and Mignosi’s 1993

paper [15], where counterexamples to both Moore’s and Myhill’s theorems on the free group on two

generators are presented, but the theorems themselves are proven for groups of subexponential growth,

a class which includes the Euclidean groups. Comparing the original papers [19] and [20], a key fact

emerges, which is crucial for the proofs: in Z
d, the size of a hypercube is a d-th power of the side, but the

number of sites on its outer surface is a polynomial of degree d − 1. In other words, it seems that, to get

Moore’s or Myhill’s theorems for CA on a group G, we need that in G the sphere grows more slowly than

the ball.

What is actually sufficient for the Garden-of-Eden theorem to hold is a slightly weaker property called

amenability, which was formulated by von Neumann in an attempt to explain the Banach-Tarski paradox:

the unit ball in the space can be decomposed into finitely many parts, and those parts reassembled so to

form two unit balls! Informally, a group is amenable if, however given a finite shape for the sphere, it is

always possible to find a finite ball whose sphere is proportionally as small as wished: it turns out that

the Hausdorff phenomenon takes place in the space because the group of rotations of the space has a free

subgroup on two generators, which precludes amenability. Ceccherini-Silberstein et al. [7] proved then

that Moore’s theorem holds for CA on any amenable group, but fails for groups that have a free subgroup

on two generators. After about a decade, Bartholdi [1] completed the proof for every non-amenable group,

and added preservation of the uniform product measure to the list of properties verified by surjective CA on

all and only the amenable groups. This can also be related to characterizations by Ornstein and Weiss [22]

of groups whose full shifts over distinct alphabets factor onto one another.

In this paper, we extend the range of Bartholdi’s theorem by characterizing amenable groups as those

where surjective CA have additional properties. We start by considering balancedness, which is the com-

binatorial variant of preservation the product measure: thus, amenable groups are precisely those where

surjective CA are balanced. We then include several properties studied in topological dynamics: CA with

any of these properties are surjective, and we show that the converse implications holds precisely for CA

on amenable groups.

Theorem 1 Let G be a group. The following are equivalent.

1. G is amenable.

2. Every surjective CA on G is pre-injective.

3. Every surjective CA on G preserves the uniform product measure.

4. Every surjective CA on G is balanced.

5. Every surjective CA on G is recurrent for the uniform product measure.

6. Every surjective CA on G is nonwandering.
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We then show a fact which is remarkable by its own right. Not only preservation of the uniform product

measure by surjective CA characterizes amenable groups: it also fails catastrophically for non-amenable

ones, in the sense given by the following statement.

Theorem 2 Let G be a non-amenable group. There exist an alphabet Q, a subset U of QG such that

µΠ(U) = 1, and a surjective cellular automaton A over G with alphabet Q such that µΠ(F
−1
A (U)) = 0,

where FA is the global function of A and µΠ the uniform product measure on QG.

To prove Theorem 2, we introduce a definition of normality for configurations, which is modeled on the

one for infinite words over a finite alphabet. Such a trick has been successfully applied before on the

Euclidean groups Zd: however, in our more general setting, several properties do not hold, which forces

us to add further conditions to ensure that the set of normal configurations (the set U in Theorem 2) has

full measure. In turn, the cellular automaton A will be a variant of Bartholdi’s counterexample, modified

so that it has a spreading state.

Finally, for finitely generated groups with decidable word problem, Martin-Löf randomness can be

defined: such definition depends on the measure defined on the Borel σ-algebra, which for our aims will

be the product measure. Under these additional hypotheses, we show that the result by Calude et al. [3]

about surjective CA preserving Martin-Löf randomness, holds precisely for amenable groups.

Theorem 3 Let G be a finitely generated group with decidable word problem. Then G is amenable if and

only if for every surjective CA A on G, whenever a configuration c is Martin-Löf random with respect to

the product measure µΠ, so is its image FA(c).
In addition, if G is not amenable, there exists a surjective CA on G such that every Martin-Löf random

configuration w.r.t. µΠ has a nonrandom image and only nonrandom preimages. In particular, the set U
in Theorem 2 can be taken as the set of Martin-Löf random configurations w.r.t. µΠ.

The paper is organized as follows. Section 2 provides a background. Section 3 deals with balancedness,

and Section 4 with the nonwandering property. Section 5 is devoted to the proof of Theorem 2, and

Section 6 to that of Theorem 3.

2 Background

Given a set X , we denote by PF(X) the set of all finite subsets of X .

2.1 Groups

Let G be a group. We call 1G, or simply 1, its identity element. Given a set X , the family σ = {σg}g∈G

of transformations of XG = {c : G→ X}, called translations, defined by

σg(c)(z) = cg(z) = c(gz) ∀z ∈ G ∀g ∈ G (1)

is a right action ofG onXG, that is, σgh = σh◦σg for every g, h ∈ G. This is consistent with defining the

product φψ of functions as the composition ψ ◦ φ. Other authors (cf. [6]) define σg(c)(x) as c(g−1x), so

that σ becomes a left action. However, most of the definitions and properties we deal with do not depend

on the “side” of the multiplication: we will therefore stick to (1).

A set of generators for G is a subset S ⊆ G such that for each g ∈ G there is a word w = w1 . . . wn on

S ∪ S−1 such that g = w1 · · ·wn. The minimum length of such a word is called the length of g w.r.t. S,

and indicated by ‖g‖S , or simply ‖g‖. G is finitely generated (briefly, f.g.) if S can be chosen finite. A
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group G is free on a set S if it is isomorphic to the group of reduced words on S ∪ S−1: a word w is said

to be reduced if for every s ∈ S the pairs ss−1 and s−1s do not appear in w. For r ≥ 0, g ∈ G the disk

of radius r centered in g is Dr(g) = {h ∈ G | ‖g−1h‖ ≤ r}. The points of Dr(g) can be “reached” from

the “origin” 1G by first “walking” up to g, then making up to r steps: this is consistent with the definition

of translations by (1), where to determine cg(z) we first move from 1 to g, then from g to gz. We write

Dr for Dr(1). We also put U−r = {z ∈ G | Dr(z) ⊆ U} and ∂−rU = U \ U−r.
A group G is residually finite (briefly, r.f.) if for every g 6= 1 there exists a homomorphism φ : G→ H

such that H is finite and φ(g) 6= 1. Equivalently, G is r.f. if the intersection of all its subgroups of finite

index is trivial. It follows from the definitions that, if G is r.f. and U ⊆ G is finite, then there exists

H ≤ G such that [G : H] <∞ and U ∩H ⊆ {1G}.

Lemma 4 ([10, Lemma 2.3.2]) Let G be a residually finite group and F a finite subset of G not contain-

ing 1G. There exists a subgroup H of finite index in G, which does not intersect F , and such that the right

cosets Hu, u ∈ F , are pairwise disjoint.

The stabilizer of c ∈ XG is the subgroup st(c) = {g ∈ G | cg = c}: be aware, that st(c) might not be

a normal subgroup. The configuration c is periodic if [G : st(c)] < ∞; if [G : H] < ∞ and H ≤ st(c)
we say that c is H-periodic. The family of periodic configurations in XG is indicated by Per(G,X).

A group G is amenable if it satisfies the following equivalent conditions:

1. There exists a finitely additive probability measure µ on G such that µ(gA) = µ(A) for every

g ∈ G, A ⊆ G.

2. For every U ∈ PF(G) and ε > 0 there exists K ∈ PF(G) such that

|UK \K| < ε|K| . (2)

3. There exists a net {Xi}i∈I of finite nonempty subsets of G such that, for every U ∈ PF(G),

lim
i∈I

|UXi \Xi|

|Xi|
= 0 . (3)

Similar definitions want µ right-invariant and (2) replaced by |KU \ K| < ε|K|—and similarly for

(3)—or µ both left- and right-invariant and set-theoretic differences in (2) and (3) replaced by symmetric

difference (recall that A△ B = (A \ B) ∪ (B \ A)): in fact, all these definitions are equivalent. Also, a

group is amenable if and only if all of its finitely generated subgroups are amenable.

Example 5 Z
d is amenable: {Xi}i≥1 with Xi = [0, . . . , i− 1]d satisfies (3) for every U ∈ PF(Zd).

A (left) paradoxical decomposition of a group G is a finite set of pairs {(α1, A1), . . . , (αn, An)} ⊆

G × 2G with a separator k < n such that G =
⊔n

i=1Ai =
⊔k

i=1 αiAi =
⊔n

i=k+1 αiAi (the symbol
⊔

meaning that the union is disjoint). A group has a left paradoxical decomposition if and only if it has

a right paradoxical decomposition, satisfying G =
⊔n

i=1Ai =
⊔k

i=1Aiαi =
⊔n

i=k+1Aiαi instead. A

group is paradoxical if it has a paradoxical decomposition.

Proposition 6 (Tarski alternative; cf. [6, Theorem 4.9.2]) A group is paradoxical if and only if it is not

amenable.
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A bounded-propagation two-to-one compressing map over a group G is a map φ : G → G such that,

for some finite propagation set S ⊆ G, φ(g)−1g ∈ S and |φ−1(g)| = 2 for every g ∈ G. In particular,

such a map must be surjective, and |S| ≥ 2. By [6, Theorem 4.9.2], a group has a bounded-propagation

two-to-one compressing map if and only if it is paradoxical.

Example 7 LetG = F2 be the free group on two generators a, b; for g ∈ G letw = w(g) = w1w2 · · ·wm

be the unique reduced word on {a, b, a−1, b−1} that represents g. Define:

• A1 = {g ∈ G | wm = a−1} ∪ {an | n ≥ 0},

• A2 = {g ∈ G | wm = a} \ {an | n ≥ 0},

• A3 = {g ∈ G | wm = b−1}, and

• A4 = {g ∈ G | wm = b},

so that G = A1 ⊔ A2 ⊔ A3 ⊔ A4 = A1 ⊔ A2a
−1 = A3 ⊔ A4b

−1. For g ∈ G put φ(g) = g if g ∈ A1,

φ(ga) = g if g ∈ A2a
−1, φ(g) = g if g ∈ A3, φ(gb) = g if g ∈ A4b

−1. Then φ is a bounded-propagation

two-to-one compressing map with S = {1, a, b}.

2.2 Cellular automata

A cellular automaton (briefly, CA) on a group G is a triple A = 〈Q,N , f〉 where the alphabet Q is a

finite set, the neighborhood N ⊆ G is finite and nonempty, and f : QN → Q is a local function. This, in

turn, induces a global function on the space QG of configurations, defined by

FA(c)(g) = f (cg|N ) = f
(
c|gN

)
. (4)

Hedlund’s theorem [6, Theorem 1.8.1] states that global functions of CA are exactly those functions from

QG to itself that commute with translations and are continuous in the prodiscrete topology, i.e., the product

topology where Q is considered as a discrete space. A base for this topology is given by the cylinders

of the form C(E, p) = {c : G → Q | c|E = p}, with E a finite subset of G and p : E → Q
a pattern: observe that, for countable groups, this base is countable. Also, the elementary cylinders

C(g, q) = {c : G → Q | c(g) = q} with g ∈ G and q ∈ Q form a subbase. The set E is called the

shape of the pattern p. Through (4) we also consider, for every finite E ⊆ G, a function f : QEN → QE

between patterns, defined by f(p)(j) = f(p|jN ).
As a consequence of Hedlund’s theorem, CA behave well with respect to periodic configurations.

Lemma 8 If F : QG → QG commutes with translations, then st(c) ⊆ st(F (c)) for every c ∈ QG. In

particular, if F is bijective then st(c) = st(F (c)).

An occurrence of a pattern p : E → Q in a configuration c : G → Q is an element g ∈ G such that

cg|E = p; in other words, the pattern pg : gE → Q defined by pg(gz) = p(z) is a copy of p. We indicate

as occ(p, c) the set of occurrences of the pattern p in the configuration c.
Let A = 〈Q,N , f〉 be a CA on the group G. A configuration c : G → Q is a Garden-of-Eden (briefly,

GOE) for A if it has no predecessor according to A, i.e., if c 6∈ FA(Q
G). A pattern p : E → Q is an

orphan for A if there is no p′ : EN → Q such that f(p′) = p.

The following can be seen as an example of folkloric consequence of the compactness of the configu-

ration space.
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Proposition 9 (Orphan pattern principle; cf. [6, Proposition 5.1.1]) A cellular automaton with finite

alphabet has a GOE configuration if and only if it has an orphan pattern.

A configuration is rich (or shift-transitive) if it contains occurrences of every pattern. The orphan pattern

principle can then be restated as follows: a CA is surjective if and only if it sends rich configurations into

rich configurations.

Two configurations are asymptotic if they differ on at most finitely many points; a CA is pre-injective if

distinct asymptotic configurations have distinct images.

Proposition 10 (Moore’s Garden-of-Eden theorem [19]) Let A be a bidimensional CA. If A is surjec-

tive then A is pre-injective.

Proposition 11 (Myhill [20]) Let A be a bidimensional CA. If A is pre-injective then A is surjective.

Proposition 12 (Ceccherini-Silberstein, Machı̀ and Scarabotti [7]) Let G be an amenable group and

let A be a CA on G. Then A is surjective if and only if it is pre-injective.

Let N ∈ PF(G), G ≤ Γ, and f : QN → Q. The triple 〈Q,N , f〉 describes both a CA A over G and a

CA A′ on Γ. We then say that A′ is the CA induced by A on Γ, or that A is the restriction of A′ to G.

Proposition 13 (cf. [5, Theorem 1.2]) Let N ∈ PF(G), G ≤ Γ; let A = 〈Q,N , f〉 be a CA on G and

let A′ be the CA induced by A on Γ.

1. A is surjective if and only if A′ is surjective.

2. A is pre-injective if and only if A′ is pre-injective.

3. A is injective if and only if A′ is injective.

2.3 Measures

Let Σ be a σ-algebra on QG. If µ : Σ → [0, 1] is a measure on QG, a measurable function F : QG → QG

determines a new measure Fµ : Σ → [0, 1] defined as Fµ(U) = µ(F−1(U)). We say that U ∈ Σ is

µ-null if µ(U) = 0; we say that µ-almost every point satisfies a property P if the set of the points which

do not satisfy P is µ-null. We say that F preserves µ if Fµ = µ. If ΣC is the σ-algebra generated by

the cylinders, by the Carathéodory extension theorem and the Hahn-Kolmogorov theorem a probability

measure on ΣC is completely determined by its value on the cylinders. The measure µΠ : ΣC → [0, 1]
defined by µΠ(C(E, p)) = |Q|−|E| is called the uniform product measure. Observe that ΣC coincides

with the Borel σ-algebra generated by the open sets if and only if G is countable. Also observe that CA

global functions are both Borel measurable and ΣC-measurable.

Proposition 14 (Bartholdi’s theorem [1]) Let G be a group. The following are equivalent.

1. G is amenable.

2. Every surjective CA on G is pre-injective.

3. Every surjective CA on G preserves the uniform product measure µΠ.

Let µ be a probability measure over QG. We say that F : QG → QG is µ-recurrent if for every

measurable set A ⊂ QG of measure µ(A) > 0 there exists t ≥ 1 such that µ(A ∩ F t(A)) > 0.

Proposition 15 (Poincaré recurrence theorem; cf. [12, Theorem 4.1.19]) Let (X,Σ, µ) be a probabil-

ity space and let F : X → X be a measurable function. If F preserves µ, then F is µ-recurrent.
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3 Balancedness

Let A = 〈Q,N , f〉 a CA on Z
d such that N = {−r, . . . , r}d. According to Maruoka and Kimura [18], A

is n-balanced if each pattern on a hypercube of side n has |Q|(n+2r)d−nd

pre-images. The authors then

prove that such A is surjective if and only if it is n-balanced for every n. On the other hand, the majority

CA on {0, 1}Z such that f(c(−1), c(0), c(1)) = 0 if and only if at most one of the arguments is 1, is

1-balanced but not 2-balanced, as 0011 and 0101 are easily checked to be the only two preimages of 01:

also, it has the Garden-of-Eden pattern 01001. Such GOE is also of minimal length: for example, 0100
has the preimage 010100.

The balancedness condition is the same as saying that each pattern on a given shape has the same

number of pre-images: to see how, just “patch” arbitrary shapes to “fill” a hypercube. This allows to

extend the definition to CA over arbitrary groups.

Definition 16 Let G be a group and let A = 〈Q,N , f〉 be a CA on G. A is balanced if for every finite

nonempty E ⊆ G, every pattern p : E → Q has the same number of preimages:

|f−1(p)| = |Q||EN|−|E|. (5)

The neighborhood N seems to have a crucial role in Definition 16: which may make the reader suspect

it to be ill-posed. However, as we will see in a moment, what looks like a property of the presentation,

is actually a property of the dynamics: balancedness of A only depends on its global function FA, not on

the choice of the neighborhood N or the local function f—provided FA remains the same.

Proposition 17 A cellular automaton is balanced if and only if it preserves the uniform product measure.

Proof: The argument is similar to the one used in [3] for G = Z
d. Let A = 〈Q,N , f〉 and p : E → Q:

then

µΠ

(
F−1
A (C(E, p))

)
=

∑

f(p′)=p

µΠ (C(EN , p′)) =
∑

f(p′)=p

|Q|−|EN| .

As A is balanced if and only if the right-hand side has |Q||EN|−|E| summands whatever p is, and preserves

µΠ if and only if the left-hand side equals |Q|−|E| whatever p is, the thesis follows. ✷

Remark 18 Let A = 〈Q,N , f〉 be a CA onG ≤ Γ and A′ the CA induced by A on Γ. Then A is balanced

if and only if A′ is balanced.

Since the r.h.s. in (5) is always positive, no pattern is an orphan for a balanced CA. In [7], two CA on the

free group on two generators are shown, one being surjective but not pre-injective, the other pre-injective

but not surjective: both have an unbalanced local function. Therefore, balancedness in general groups is

strictly stronger than surjectivity, and possibly uncorrelated with pre-injectivity.

Balancedness allows us to generalize [3, Point 1 of Theorem 4.4] to finitely generated amenable groups.

Lemma 19 (Step 1 in proof of [7, Theorem 3]) Let G be a finitely generated amenable group, q ≥ 2,

and n > r > 0. For L = Dn there exist m > 0 and B ⊆ G such that B contains m disjoint copies of L
and

(q|L| − 1)m · q|B|−m|L| < q|B
−r| . (6)
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Proposition 20 Let G be a finitely generated amenable group and let A = 〈Q,Dr, f〉, r > 0, be a CA

on G. If c is not rich then FA(c) is not rich.

Proof: Suppose there is a pattern with support L = Dn, n > r, that does not occur in c. Choose m and

B according to Lemma 19. By hypothesis, the number of patterns with support B which occur in c is at

most (q|L| − 1)mq|B|−m|L|, with q = |Q|; therefore, the number of patterns with support B \ ∂rB which

occur in FA(c) cannot exceed this number too. By Lemma 19, this is strictly less than q|B|−|∂rB|, which

is the total number of patterns with supportB \∂rB: hence, some of those patterns do not occur in FA(c).
✷

The last statement of this section is a strengthening of a result by Lawton [14] (also stated in [24,

Theorem 1.3]) which states that injective CA on residually finite groups are surjective.

Theorem 21 Let G be a residually finite group and A = 〈Q,N , f〉 an injective CA over G. Then A is

balanced.

Proof: Let E be a finite subset of G: it is not restrictive to suppose 1 ∈ E ∩ N , so that E,N ⊆ EN .
Suppose, for the sake of contradiction, that p : E → Q satisfies |F−1

A (p)| = M > |Q||EN|−|E|. Since

G is residually finite, by Lemma 4 there exists a subgroup H ≤ G of finite index such that H ∩ EN =
H ∩N = {1} : if J is a set of representatives of the right cosets of H such that EN ⊆ J , then

|{π : J → Q | FA(π)|E = p}| =M · |Q|[G:H]−|EN| > |Q|[G:H]−|E| . (7)

The r.h.s. in (7) is the number of H-periodic configurations that coincide with p on E. Since A is

injective and G is r.f., by [14], A is reversible, and by Lemma 8, FA sends H-periodic configurations

into H-periodic configurations. But because of (7) and the pigeonhole principle, there must exist two

H-periodic configurations with the same image according to FA, which contradicts injectivity of A. ✷

4 The nonwandering property

Bartholdi’s theorem can be expanded by adding more properties that are satisfied by every surjective CA

if and only if the underlying group is amenable.

Definition 22 Let A = 〈Q,N , f〉 be a cellular automaton over a group G. A is nonwandering if for

every nonempty open set U ⊂ QG there exists t ≥ 1 such that F t
A(U) ∩ U 6= ∅.

Remark 23 If A is µ-recurrent for some probability measure µ with full support—i.e., no nonempty open

set is µ-null—then A is nonwandering.

Observe that, for the latter to hold, it is not necessary that every open set be measurable: it is sufficient

that every open set contains a measurable open set of positive measure, which is the case for µΠ.

We say that a state q0 ∈ Q is spreading for A = 〈Q,N , f〉 if for every u ∈ QN such that ui = q0 for

some i ∈ N we have f(u) = q0.

Lemma 24 A nonwandering nontrivial CA has no spreading state.
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By nontrivial, we mean that |N | > 1 and |Q| > 1.

Proof: Suppose that the nontrivial CA A = 〈Q,N , f〉 has a spreading state q0. Let U = C(N ∪{1G}, p)
where pi = q0 6= p1G for some i ∈ N \ {1G}. Then F t

A(U) ∩ U = ∅ for every t ≥ 1. ✷

It follows from the definitions and the orphan pattern principle that if a CA is nonwandering (or µΠ-

recurrent), then it is surjective. The next two statements are immediate consequences of the Poincaré

recurrence theorem.

Proposition 25 Let G be a group and let A be a CA on G. If A preserves µΠ (equivalently, if A is

balanced) then A is µΠ-recurrent.

Corollary 26 Let A be a CA on an amenable group G. If A is surjective then A is µΠ-recurrent.

We might ask what the role of amenability in Corollary 26 is. The following counterexample shows

that surjective CA on paradoxical groups may fail to be nonwandering.

Example 27 Let G be a non-amenable group, φ a bounded-propagation two-to-one compressing map

with propagation set S, � a total ordering of S andQ = S×{0, 1}×S⊔{q0}, where q0 /∈ S×{0, 1}×S.

Let A = 〈Q,S, f〉 with:

f : QS → Q

u 7→

∣∣∣∣∣∣

q0 if ∃s ∈ S, us = q0,
(p, α, q) if ∃!(s, t) ∈ S × S, s ≺ t, us = (s, α, p), ut = (t, 1, q),
q0 otherwise.

Clearly, such a CA cannot be nonwandering, as it is nontrivial and has the spreading state q0. In particular,

it is neither µΠ-recurrent nor balanced.

Proposition 28 The cellular automaton A from Example 27 is surjective.

Proof: Let x ∈ QG, i ∈ G, j = φ(i): then i = js for some s ∈ S, and there exists a unique t ∈ S \ {s}
such that φ(jt) = j. If xj = q0, then set yi = (s, 0, s): otherwise, we can write xj = (p, α, q). If s ≺ t,
then set yi = (s, α, p); otherwise set yi = (s, 1, q). This definition has the property that for every i ∈ G,

yi ∈ {φ(i)−1i} × {0, 1} × S.

Let us prove that the configuration y is a preimage of x by the global map of the CA. Let j ∈ G and

s, t ∈ S such that s ≺ t, yjs ∈ {s} × {0, 1} × S, and yjt ∈ {t} × {0, 1} × S. Then s = φ(js)−1js and

t = φ(jt)−1jt, and φ(js) = φ(jt) = j: hence, there exists exactly one such pair (s, t). If xj = q0, then

the definition of y gives yjt = (t, 0, t), and f will apply its third subrule. If xj is written (p, α, q), then

yjs = (s, α, p) and yjt = (t, 1, q), and f will apply its second subrule. ✷

Observe that, in the proof of Proposition 28, for every configuration we construct a preimage which

does not contain the state q0. This, together with Proposition 20, leads us to the following.

Remark 29 A finitely generated group G is paradoxical if and only if there exists a CA on G which takes

a nonrich configuration into a rich one.
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5 Normal configurations

The results from Sections 3 and 4, together with the existing literature, show that Theorem 1 is true. We

now move on to Theorem 2 and search for a suitable set U ⊆ QG of full measure with a null preimage.

To construct such a set, we introduce the concept of normal configuration, according to some parameters:

normality shall thus be a quantitative concept, more precise than the nonwandering property which is a

qualitative one.

Our definition is based on the one for normal infinite words. Let U ⊂ N, and denote P (U |n) =
|{i < n | i ∈ U}|/n for n ∈ N. The lower density, upper density and density of U are, respectively, the

liminf, limsup and limit, when it exists, of P (U |n) when n goes to infinity. Given an infinite word w, an

occurrence in w of a finite word u is a position i ≥ 0 such that w[i:i+|u|−1] = u. Call occ(u,w) the set of

occurrences of u in w. An infinite word w on the alphabet Q is said to be m-normal, m ∈ N, if for every

u ∈ Qm the set occ(u,w) has density |Q|−m; w is normal if it is m-normal for every m ∈ N.

The notion of m-normality admits a characterization which will be helpful in the next section.

Theorem 30 (Niven and Zuckerman; cf [21]) Let m ≥ 1 and let Q be a finite set. An infinite word over

Q is m-normal if and only if it is 1-normal when considered as a word over Qm.

Let now h : N → G be an injective function. For U ⊆ G we define the lower density dens infh U ,

upper density dens suph U , and density (if it exists) densh U as those of the preimage h−1(U).
Note that we do not require that h be bijective. The reason for this, is that the structure of general

groups is usually not as convenient as that of Zd, and it is not always possible to subdivide a group into

“nicely shaped blocks” (such as the hypercubes of Z
d) and see a configuration as a “coarser-grained”

configuration on the same group. We will discuss this in further detail later on in this section.

Definition 31 Let h : N → G be an injective function. A configuration c : G → Q is normal on support

E w.r.t. h (briefly, h-E-normal) if for every pattern p : E → Q

densh occ(p, c) = |Q|−|E| . (8)

For E = {1G} we say that c is h-1-normal. If c is h-E-normal for every E ∈ PF(G), we say that c is

h-normal. We omit h if it is clear from the context.

This definition passes a basic “sanity check”: normality on larger sets ensures normality on smaller

sets.

Remark 32 Let E,F ∈ PF(G) with E ⊆ F . If c : G→ Q is F -normal, then it is also E-normal.

Proof: Let p : E → Q. Every z ∈ G which is an occurrence of p in c, is also an occurrence of exactly

one of the |Q||F | patterns p̃ : F → Q that extend p; vice versa, if p̃|E = p, then each occurrence of p̃ is

also an occurrence of p. Hence, whatever n is,

|{i < n | h(i) ∈ occ(p, c)}|

n
=

∑

p̃:F→Q, p̃|E=p

|{i < n | h(i) ∈ occ(p̃, c)}|

n
.

As the right-hand side has |Q||F |−|E| summands, each converging to |Q|−|F | by hypothesis, the left-hand

side converges to |Q|−|E|. As p is arbitrary, c is E-normal. ✷

The vice versa of Lemma 32 does not hold: being h-E-normal for every proper subset E of F does not

imply being h-F -normal.
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Example 33 Let G = Z, Q = {0, 1}, h(i) = i for every i ≥ 0, c(x) = x mod 2 for every x ∈ Z. Then

c is h-{0}-normal and h-{1}-normal but not h-{0, 1}-normal.

Our aim is to prove that, at least under certain conditions on h and E, µΠ-almost all configurations are

h-E-normal: to do this, we need criteria for h-E-normality. A basic test is provided by

Lemma 34 Let |Q| > 1, E ∈ PF(G),c : G→ Q. The following are equivalent.

1. c is h-E-normal.

2. For every p : E → Q, dens infh occ(p, c) ≥ |Q|−|E|.

3. For every p : E → Q, dens suph occ(p, c) ≤ |Q|−|E|.

Proof: Clearly, Point 1 implies Points 2 and 3, and Points 2 and 3 together imply Point 1. We then only

have to prove that Points 2 and 3 are equivalent: this will be easy once we observe that, for every n > 0,

∑

p:E→Q

|{i < n | h(i) ∈ occ(p, c)}| = n , (9)

which expresses the obvious fact that every point is an occurrence of some pattern with support E. Sup-

pose that for some p̄ : E → Q, δ > 0 we have |{i < n | h(i) ∈ occ(p̄, c)}|/n < |Q|−|E|− δ for infinitely

many values of n: because of (9), for those values we also have

∑

p:E→Q, p 6=p̄

|{i < n | h(i) ∈ occ(p, c)}|

n
>

(
1− |Q|−|E|

)
+ δ .

Therefore, for all such values of n, there must be some p : E → Q, p 6= p̄ with |{i < n | h(i) ∈
occ(p, c)}|/n > |Q|−|E|+ δ/(|Q||E|−1) : since the n’s are infinitely many and the p’s are finitely many,

there must be at least one p : E → Q such that lim supn→∞ |{i < n | h(i) ∈ occ(p, c)}|/n > |Q|−|E|.
The converse implication is proven similarly. ✷

Lemma 34 has an immediate consequence, which will have great importance later.

Lemma 35 Let A = 〈Q,N , f〉 be a nontrivial CA on G with a spreading state q0 and s, t two distinct

elements of N . For every injective function h : N → G, if c : G → Q is h-{s, t}-normal, then FA(c) is

not h-1-normal.

Proof: Since q0 is spreading, occ(q0, FA(c)) contains occ(p, c) for every {s, t}-pattern p such that p(s) =
q0 or p(t) = q0. Given c’s h-{s, t}-normality, each of these 2|Q|−1 patterns has density 1/|Q|2: therefore,

dens infh occ(q0, FA(c)) ≥ (2|Q| − 1)/|Q|2 > 1/|Q| since |Q| > 1, and FA(c) cannot be h-1-normal.

✷

For p : E → Q, k ≥ 1, and h : N → G injective, let

Lh,p,k,n =

{
c : G→ Q

∣∣∣∣
|{i < n | h(i) ∈ occ(p, c)}|

n
≤

1

|Q||E|
−

1

k

}
. (10)

Observe that Lh,p,n,k is a finite union of cylinders. By definition, dens infh occ(p, c) < |Q|−|E| if

and only if there exists k ≥ 1 such that c ∈ Lh,p,k,n for infinitely many values of n, i.e., if c ∈
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lim supn Lh,p,k,n =
⋂

n≥1

⋃
m≥n Lh,p,k,m : this set, which we call Lh,p,k, belongs to the σ-algebra

ΣC generated by the cylinders. Then

Lh,E =
⋃

p∈QE ,k≥1

Lh,p,k (11)

is the set of all the configurations c ∈ QG that are not h-E-normal. If each Lh,p,k has measure 0, then—

as the p’s are finitely many and the k’s are countably many—so has Lh,E , and almost all configurations

are h-E-normal. This, in the classical case of infinite words over a |Q|-ary alphabet, is achieved for

E = {0, . . . , r − 1}, via estimates such as the following.

Proposition 36 (Chernoff bound [8]; cf. [2, Lemma 6.56]) Let Y0, . . . , Yn−1 be independent nonnega-

tive random variables; let Sn = Y0 + . . . + Yn−1, and let µ = µ(n) be the average of Sn. For every

δ ∈ (0, 1),

P (Sn < µ · (1− δ)) < e−
µδ2

2 . (12)

In particular, if the Yi’s are Bernoulli trials with probability p, and 0 < ε < min(p, 1 − p), then for

δ = ε/p
∑

0≤k<n·(p−ε)

(
n

k

)
pk(1− p)n−k < e−

ε2n
2p . (13)

The Chernoff bound, together with the Borel-Cantelli lemma, allows to prove that the set of non-normal

infinite words has product measure zero. However, one of the reasons why we can expressm-normality of

sequences as 1-normality of other sequences, is that the interval {0, . . . ,m−1} is a coset of a submonoid

of N isomorphic to N: as any subgroup of finite index of Zd is isomorphic to Z
d, it is possible to adapt the

classical argument for infinite words so that it works for d-dimensional configurations. But a subgroup

of index 2 of the free group on two generators is free on three generators (cf. [16, Theorem 2.10]) and

thus is not isomorphic to it; therefore, if we just mimic the classical argument and consider patterns with

support a coset of a subgroup, we need in general to change the underlying group! Otherwise, when

estimating the number of occurrences of a pattern, we have to deal with non-independent events, and

cannot (straightforwardly) apply the Chernoff bound.

This is the key reason we mentioned earlier for our hypothesis that h may be non-surjective. In fact,

if the E-shaped neighborhoods of the points of h(N) are pairwise disjoint, then the events of the form

“h(i) is an occurrence of p” for p : E → Q are independent, and we can apply the Chernoff bound while

keeping the same underlying group.

Lemma 37 Let E be a finite subset of G and let h : N → G satisfy h(n)E ∩ h(m)E = ∅ for every

n 6= m. Then µΠ(Lh,E) = 0, i.e., µΠ-almost all c : G→ Q are h-E-normal.

Proof: As the sets h(i)E, i ≥ 0, are pairwise disjoint, the Boolean random variables Yi which take

value 1 if and only if ch(i)
∣∣
E

= p, are independent and identically distributed according to a Bernoulli

distribution of parameter t = |Q|−|E|. If Sn = Y0 + . . .+ Yn−1, then

Lh,p,k,n = {c : G→ Q | Sn < n · |Q|−|E| · (1− |Q||E|/k)} :
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as µ = n · |Q|−|E| is precisely the average of Sn, for δ = |Q||E|/k the Chernoff bound tells us that

µΠ(Lh,p,k,n) = P ({Sn < µ · (1− δ)}) < e−
|Q||E|

2k2
n

decreases exponentially in n for fixed k and p. By the Borel-Cantelli lemma,

µΠ(Lh,p,k) = µΠ

(
lim sup

n≥1
Lh,p,k,n

)
= 0 :

as this holds for each of the countably many pairs (p, k) with p : E → Q and k ≥ 1, the thesis follows. ✷

Observe that there is no need for the group G to be countable.

Proof of Theorem 2: Choose S, Q, and A as by Example 27; let h : N → G be a function such that

h(n)S ∩ h(m)S = ∅ for n 6= m. Let U be the set of h-1-normal configurations: the hypotheses of

Lemma 37 are also satisfied for E = {1G}, which means that µΠ(U) = 1. By Lemma 35, the images

via FA of h-S-normal configurations are not h-1-normal: thus, the preimages of the elements of U must

belong to Lh,S , which is a µΠ-null set by Lemma 37. ✷

Observe that Theorem 2 holds precisely because on non-amenable groups there are surjective CA which

are not balanced.

Proposition 38 Let G be an infinite group and let A = 〈Q,N , f〉 be a CA on G. The following are

equivalent.

1. A is balanced.

2. For every injective function h : N → G and E ∈ PF(G), if c : G → Q is h-EN -normal then

FA(c) is h-E-normal.

Proof: Let c ∈ QG, p ∈ QE . An arbitrary g ∈ G is an occurrence of p in FA(c) if and only if it is an

occurrence in c of one of the patterns p̄ : EN → Q such that f(p̄) = p. Consequently, for every n ∈ N,

|{i < n | h(i) ∈ occ(p, FA(c))}|

n
=

∑

f(p̄)=p

|{i < n | h(i) ∈ occ(p̄, c)}|

n
. (14)

If A is balanced and c is h-EN -normal, then the right-hand side of (14) is a sum of |Q||EN|−|E| sum-

mands, each converging to |Q|−|EN| for n→ ∞: as p is arbitrary, FA(c) is h-E-normal.

Suppose then that A is not balanced. Then there exist E ∈ PF(G) and p : E → Q such that

|f−1(p)| > |Q||EN|−|E|. Let h : N → G be a function such that h(n)EN ∩ h(m)EN = ∅ for n 6= m:

then µΠ(Lh,EN ) = 0 by Lemma 37, so there exists an h-EN -normal configuration c. For such c, the

right-hand side of (14) is a sum of more than |Q||EN|−|E| summands, each converging to |Q|−|EN| for

n→ ∞: hence FA(c) is not h-E-normal. ✷

Corollary 39 Let G be an infinite amenable group, A = 〈Q,N , f〉 a surjective CA on G and h : N → G
an injective function. If c : G→ Q is h-normal then so is FA(c).
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6 Martin-Löf random configurations

We are now left with the task of proving Theorem 3. To do this, we need to define Martin-Löf randomness

for configurations. This requires some hypotheses on the underlying group: we must be able not only to

enumerate its elements, but also to do it in a computable way.

Let G be a group, S a set of generators for G, and R a set of words on S ∪ S−1. We say that 〈S,R〉
is a presentation of G, and write G = 〈S,R〉, if G is isomorphic to the quotient GS/KR, where GS is

the free group on S (consisting of reduced words on S ∪ S−1) and KR is the normal subgroup of GS

generated byR, i.e., the intersection of all normal subgroups ofGS that contain the elements identified by

the words in R. The word problem (briefly, w.p.) for the group G = 〈S,R〉 is the set of words on S∪S−1

that represent the identity element of G. Although this set depends on the choice of the presentation, its

decidability does not; and although the problem is not decidable even for finitely generated groups, it is

so for the Euclidean groups Zd, the free groups, Gromov’s hyperbolic groups [11] which generalize free

groups, and many more.

An indexing of a countable group G is a bijection φ : N → G; we often write G = {gi | i ≥ 0}, to

mean gi = φ(i). An indexing is admissible if there exists a computable function m : N × N → N such

that gi · gj = gm(i,j) for every i, j ∈ N. In this case, there is also a computable function ι : N → N such

that g−1
i = gι(i) for every i ∈ N: in fact, ι(i) is the only j ∈ N such that m(i, j) = φ−1(1G).

Proposition 40 (Rabin, 1960; cf. [23, Theorem 4]) A finitely generated group has an admissible index-

ing if and only if it has decidable word problem.

Proof: Assume G = {gi | i ≥ 0} is an admissible indexing, i.e., gi · gj = gm(i,j) for every i, j ∈ N and

m is computable. Let S be a set of generators forG, and u = u1 . . . uℓ a word over S∪S−1; say ur = gir
for every r ∈ {1, . . . , ℓ}. We can decide whether u and 1G identify the same element of G by inductively

computing the sequence (ar) with a1 = i1 and ar = m(ar−1, ir) for r = 2, . . . , ℓ; u = 1G if and only if

aℓ is the (unique) index representing 1G.

Suppose now that G has decidable word problem. Let S be a finite set of generators for G: define

an ordering on S ∪ S−1. A computable bijection φ : N → G can be obtained by enumerating, in

lexicographic order, first D0 = {1G}, then D1 \D0 = S ∪ S−1, then D2 \D1, and so on. Moreover, the

function m : N×N → N given by m(i, j) = φ(w) where w is a word on S ∪ S−1 representing gi · gj , is

computable. ✷

Throughout this section, G will be an infinite, finitely generated group with decidable word problem,

and φ : N → G an admissible indexing: we write G = {gi}i≥0 to mean gi = φ(i).
We recall the definition of Martin-Löf randomness for infinite words (cf. [17] and [2, Sections 5.4 and

6.2]). A sequential Martin-Löf test (briefly, M-L test) is a recursively enumerable set U ⊆ N × Q∗ such

that the level sets Un = {x ∈ Q∗ | (n, x) ∈ U} satisfy the following conditions:

1. For every n ≥ 1, Un+1 ⊆ Un.

2. For every n ≥ 1 and m ≥ n, |Un ∩Qm| ≤ |Q|m−n/(|Q| − 1).

3. For every n ≥ 1 and x, y ∈ Q∗, if x ∈ Un and y ∈ xQ∗ then y ∈ Un.

An infinite word w fails a sequential M-L test U if w ∈
⋂

n≥0 UnQ
N; the word w is Martin-Löf random

if w does not fail any sequential M-L test. Observe that, according to this definition, if η : N → N is a
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computable bijection, then w is M-L random if and only if w ◦η is M-L random. It is well known (cf. [17]

and [2, Theorem 6.61]) that M-L random words are normal.

Thanks to an approach by Hertling and Weihrauch, it is possible to define Martin-Löf randomness of

infinite words in a way that allows to introduce the concept in the more general context of configura-

tions. The prodiscrete topology and product measure on QN are defined similarly as on QG. Given two

sequences U = {Ui}i≥0,V = {Vj}j≥0 of open subsets of QN, we say that U is V-computable if there is

a recursively enumerable set A ⊆ N such that

Ui =
⋃

j∈N:π(i,j)∈A

Vj ∀i ≥ 0 , (15)

where π(i, j) = (i + j)(i + j + 1)/2 + j is the standard primitive recursive bijection from N × N to

N. Given an ordering Q = {q0, . . . , q|Q|−1}, let B̃i = wiQ
N where wi is the i-th element of Q∗ in the

length-lexicographic order—i.e., w0 is the empty word, w1 = q0, . . . , w|Q| = q|Q|−1, w|Q|+1 = q0q0,

w|Q|+2 = q0q1, and so on—and let B̃′
i =

⋂
j∈E(i+1) B̃j , where n ∈ E(i) if and only if the n-th bit in

the binary expansion of i is 1: then B̃′ is an enumeration of a base of the prodiscrete topology of QN.

Observe that the property “w ∈ B̃′
j” only depends on a prefix u of w which can be computed from j.

Proposition 41 (Hertling and Weihrauch; cf. [2, Theorem 6.99]) Let w : N → Q be an infinite word.

The following are equivalent.

1. w is Martin-Löf random.

2. For every B̃′-computable sequence U = {Un}n≥0 of open subsets of QN such that µΠ(Un) < 2−n

we have w 6∈
⋂

n≥0 Un.

We can now define Martin-Löf randomness for configurations, in analogy with the previous formalism.

Given an ordering Q = {q0, . . . , q|Q|−1}, we define a computable bijective enumeration B of the ele-

mentary cylinders as B|Q|i+j = C(gi, qj). To enumerate the cylinders, we define a computable bijection

Ψ : PF(N) → N as Ψ(E) =
∑

n∈E 2n (so that Ψ(∅) = 0) and set B′
i =

⋂
j∈Ψ−1(i)Bj . Observe that the

property “c ∈ Bj” only depends on the values of c on a finite subset which can be computed from j. If U
and V are families of open subsets of QG, we say that U is V-computable if there exists a r.e. set A such

that (15) holds.

Definition 42 Let G be a f.g. group with decidable word problem; let ΣC ⊆ QG be the σ-algebra

generated by the cylinders (i.e., as G is countable, the Borel σ-algebra) and let µ : ΣC → [0, 1] be a

computable probability measure. A B′-computable family U = {Un}n≥0 of open subsets of QG is a

Martin-Löf µ-test (briefly, M-L µ-test) if µ(Un) ≤ 2−n for every n ≥ 0. A configuration c ∈ QG fails a

M-L µ-test U if c ∈
⋂

n≥0 Un. c is µ-random in the sense of Martin-Löf (briefly, M-L µ-random) if it does

not fail any M-L µ-test.

As the set of configurations failing a given M-L µΠ-test is µΠ-null, and the family of M-L µΠ-tests is

countable, the set of M-L µΠ-random configurations has full measure.

The next statement has been used by Calude et al. ([3]; cf. [2, Section 9.5]) for CA on Z
d and one

specific admissible indexing. We need it in our more general context: however, the proof is similar.

Lemma 43 Let φ : N → G be an admissible indexing.
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1. The function φ̄ : QG → QN defined by φ̄(c) = c ◦ φ is a homeomorphism.

2. For every U ∈ ΣC , µΠ(φ̄(U)) = µΠ(U).

3. A family U of open subsets of QG is B′-computable if and only if the corresponding family φ̄(U) of

open subsets of QN is B̃′-computable.

Corollary 44 (cf. [2, Theorem 9.10]) Let φ : N → G be an admissible indexing. Then c : G → Q is

M-L µΠ-random if and only if c ◦ φ : N → Q is M-L random.

As a consequence of Corollary 44, the definition of Martin-Löf µΠ-randomness does not depend on the

choice of the admissible indexing. In fact, if φ, ψ : N → G are admissible indexings, then η = φ−1 ◦ ψ :
N → N is a computable bijection such that (c ◦ φ) ◦ η = c ◦ ψ.

Given a pattern p, the set of configurations where p has no occurrence is an intersection of a countably

infinite, computable family of cylinders Ui having equal product measure µΠ(Ui) = m < 1. It is then

straightforward to construct a M-L µΠ-test that every such configuration fails. We have thus

Remark 45 Every µΠ-random configuration is rich.

We can now prove Theorem 3. Let us start with the “only if” direction.

Lemma 46 Let U be a B′-computable sequence and A a CA on G. Then F−1
A (U) is a B′-computable

sequence.

Proof: Let π(i, j) = (i+j)(i+j+1)/2+j and let L,K : N → N be the two primitive recursive functions

such that π(L(n),K(n)) = n for every n ∈ N. Let A ⊆ N be a r.e. set such that Ui =
⋃

π(i,j)∈AB
′
j :

then

F−1
A (Ui) =

⋃

π(i,j)∈A

F−1
A (B′

j) .

As A is a CA, for every j ∈ N there exists Ej ∈ PF(N) such that F−1
A (B′

j) =
⋃

k∈Ej
B′

k; moreover, the

function j 7→ Ej is computable because G has decidable word problem. Then

Z = {n ∈ N | ∃j ∈ N : π(L(n), j) ∈ A,K(n) ∈ Ej}

is a recursively enumerable set such that F−1
A (Ui) =

⋃
π(i,k)∈Z B

′
k for every i ≥ 0. ✷

Proposition 47 Let A be a CA over G. If FA(c) is µΠ-random whenever c is, then A is surjective. If A
preserves µΠ, then FA(c) is µΠ-random whenever c is.

Proof: Since µΠ-random configurations form a set of measure 1 and contain occurrences of every pattern,

the first part is immediate. For the second part, if FAµΠ = µΠ, then by Lemma 46 the preimage of a M-L

µΠ-test is still a M-L µΠ-test: but if FA(c) fails U , then c fails F−1
A (U). ✷

Proof of Theorem 3, sufficiency of amenability: SupposeG is an amenable group. Let A be a surjective

CA on G with alphabet Q: by Bartholdi’s theorem, A preserves µΠ. Let c : G→ Q be a M-L µΠ-random

configuration: by Proposition 47, FA(c) is also M-L µΠ-random. ✷
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To prove the “if” part of Theorem 3(i), we resort to normal configurations; in doing this, we need a

result which is of interest by itself. We say that a ∈ QN is M-L random relatively to b ∈ QN if it is M-L

random when computability is considered according to Turing machines with oracle b.

Proposition 48 (van Lambalgen’s theorem [13]; cf. [9, Corollary 6.9.3]) Let a and b be two infinite

words over the alphabetQ and let c be the interleaving of a and b, i.e., c(2n) = a(n) and c(2n+1) = b(n)
for every n ≥ 0. The following are equivalent.

1. c is M-L random.

2. a is M-L random, and b is M-L random relatively to a.

3. b is M-L random, and a is M-L random relatively to b.

The necessity of conditions 2 and 3 is clear: if, for example, a = b, then c is not M-L random.

Lemma 49 Let G be an infinite f.g. group with decidable word problem. For every nonempty E ∈
PF(G) there exists a computable injective function h : N → G satisfying the following properties:

1. h(N) is a recursive subset of G with infinite complement.

2. h(n)E ∩ h(m)E = ∅ for every n 6= m.

3. For any alphabet Q, every M-L µΠ-random configuration c : G→ Q is h-E-normal.

Proof: Let G = {gi}i≥0 be an admissible indexing of G. Define an injective function ι : N → N by

putting ι(0) = 0, and ι(n+1) the smallest k such that gι(0)E, . . . , gι(n)E, gkE are pairwise disjoint: then

ι is computable. If E = {e0, . . . , ek−1}, then h̃(kn + j) = gι(2n) · ej and h(n) = gι(2n) are injective,

computable, and satisfy point 1, and in addition, h satisfies point 2. Taking every other value of ι ensures

that the complement of the codomain is infinite: we will need this in the next step.

Let now c : G → Q be a M-L µΠ-random configuration. Then v(i) = c(gi) is a M-L random infinite

word. As the codomain of h̃ is recursive and its complement is infinite, there exists a computable bijection

π : N → N such that gπ(2m) = h̃(m) for every m ∈ N. Then v ◦π is a M-L random infinite word: by van

Lambalgen’s theorem, w(i) = (v ◦ π)(2i) is M-L random, thus also k-normal. By Theorem 30, for every

u ∈ Qk,

lim
n→∞

|occ(u,w) ∩ {0, k, . . . , (n− 1)k}|

n
=

1

|Q|k
,

which, as w(kn+ j) = c(h̃(kn+ j)) = c(h(n) · ej), is the same as saying that c is h-E-normal. ✷

Proof of Theorem 3, necessity of amenability: Let G be a non-amenable f.g. group with decidable

word problem. Define S, Q and A as by Example 27. Construct h : S → G as by Lemma 49, with

E = S ∪ {1G}. Let c ∈ QG: we will show that at most one between c and FA(c) is M-L µΠ-random.

Suppose that c is indeed M-L µΠ-random. Then c is h-E-normal by the choice of h, thus h-S-normal

by Lemma 32. By Lemma 35, FA(c) is not h-1-normal, and cannot be M-L µΠ-random. ✷

(i) The proof in [4] actually presented an error.
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Figure 1: A diagram of implications between cellular automata properties. Full lines hold for every group; dotted

lines hold for amenable groups; dashed lines hold for residually finite groups; wavy lines hold for finitely generated

groups with decidable word problem. Starred implications are proven in the present paper. Implications with a ques-

tion mark are conjectured. Transitivity and ergodicity have not been discussed here, but we include their implications

since they are similarly conjectured equivalent for CA.

7 Conclusions

We have shown that several characterizations of surjective CA, which were known from [3] to hold on

Z
d, also hold in the more general case of amenable groups: actually, not only do they hold, but each of

them characterizes amenable groups in the sense that it holds for CA on G if and only if G is amenable.

This allows us to draw the graph of implications in Figure 1. In addition to this, we have determined the

level to which the balancedness theorem fails on non-amenable groups: as in this case there are sets of

full measure with null preimages, such failure can rightly be called catastrophic.

This is a remarkable result that sheds new light on the links between cellular automata theory and

group theory. There are, however, several more questions left open. The most important of these, is surely

whether Myhill’s theorem as well holds only for CA on amenable groups, i.e., whether pre-injectivity

implies surjectivity if and only if the underlying group is amenable. The question is open and presumably

very difficult (cf. the discussion in [1]) also because, contrary to the other properties examined—which

always imply surjectivity regardless of the properties of the underlying group—pre-injectivity appears to

be independent of it, as follows from the counterexamples in [15] and [7]. Another open problem con-

cerns the existence of an injective CA which is not balanced: a negative answer would solve Gottschalk’s

conjecture that injective CA over arbitrary groups are surjective. Further questions arise from Remark 29,

such as which cellular automata are capable of taking a nonrich configuration into a rich one, and whether

this is linked to balancedness. More generally, the relationships between all properties linked here to

surjectivity are, in many cases, yet to be explored.
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versità di Roma.

[11] Gromov, M. (1987) Hyperbolic Groups. In Essays on Group Theory, MSRI Publ. 8, 75–263,

Springer, New York.

[12] Katok, A. and Hasselblatt, B. (1995) Introduction to the Modern Theory of Dynamical Systems.

Cambridge University Press.

[13] van Lambalgen, M. (1987) The axiomatization of randomness. J. Symb. Logic 55, 1143–1167.

[14] Lawton, W. (1972) Note on symbolic transformation groups. Not. Am. Math. Soc. 19, A375 (ab-

stract).

[15] Machı̀, A. and Mignosi, F. (1993) Garden of Eden configurations for cellular automata on Cayley

graph of groups. SIAM J. Disc. Math. 6, 44–56.



60 Silvio Capobianco, Pierre Guillon, Jarkko Kari

[16] Magnus, W., Karrass, A. and Solitar, D. (1976) Combinatorial Group Theory. Dover.
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