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Let g(n) denote the minimum number of edges of a maximal nontraceable (MNT) graph of order n. In 2005 Frick
and Singleton (Lower bound for the size of maximal nontraceable graphs, Electronic Journal of Combinatorics, 12(1)
R32, 2005) proved that g(n) = [%} for n > 54 as well as for n € I, where I = {12, 13,22, 23, 30, 31, 38, 39,
40, 41,42, 43,46, 47,48,49, 50, 51} and they determined g(n) for n < 9. We determine g(n) for 18 of the remain-
ing 26 values of n, showing that g(n) = [%] forn > 54 as well as forn € TU{18, 19, 20, 21, 24, 25, 26, 27, 28,
29, 32,33} and g(n) = [37"] forn € {10,11,14,15,16,17}. We give results based on “analytic” proofs as well as
computer searches.
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1 Introduction

We consider only simple, finite graphs GG and denote the vertex set, the edge set and the size (number of
edges) of G by V(G), E(G) and e(G), respectively. We denote the complement of G by G. The degree
of a vertex v in a graph G is denoted by dg (v). If no confusion can result we simply write d(v). A vertex
v € V(G) is a universal vertex of G if it is adjacent to all vertices in G — v. The open neighbourhood of
a vertex v in G is the set Ng(v) = {z € V(G) : va € E(G)}. The open neighbourhood of a subgraph
H of Gisthe set No(H) = {z € V(G) — V(H) : vz € E(G) foratleastonev € V(H)}. If Sis a
nonempty subset of V(G), then (.S) denotes the subgraph of G induced by S.

A graph G is hamiltonian if it has a Hamilton cycle (a cycle containing all the vertices of (), and
traceable if it has a Hamilton path (a path containing all the vertices of G). A graph G is maximal
nonhamiltonian (MNH) if G is not hamiltonian, but G + e is hamiltonian for each e € F(G). A graph
G is maximal nontraceable (MNT) if G is not traceable, but G + e is traceable for each e € F(G). Let
x and y be distinct vertices in G. Then G is zy—traceable if G is traceable between x and y, i.e. has a
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Hamilton path with = and y as endvertices. Also, G is xy—maximal nontraceable (xy—-MNT) if G is not
xy-traceable (vy-nontraceable), but G + e is zy—traceable for each e € E(G). A graph G is z—traceable
if it is traceable from z (i.e. there exists a Hamilton path with z as an endvertex), and it is z—maximal
nontraceable (:~MNT) if G is not z—traceable, but G + e is z—traceable for each ¢ € E(G). A graph G
is hypohamiltonian if it is not hamiltonian, but G — v is hamiltonian for every v € V (G).

In [[1] Bollobas posed the problem of finding the least number of edges in an MNH graph of given order.
This problem was solved by combined results given in [2,15,16,[9]. A similar problem was investigated for
MNT graphs (also referred to as hamiltonian path saturated (HPS) graphs) as well as for m—path cover sat-
urated (mPCS) graphs, which are generalizations of HPS graphs, in [[7, [8, [12} [13]]. Suppose g(n) denotes
the minimum number of edges of an MNT graph of order n. Frick and Singleton [8] showed that g(n) =
(3"2_21 forn > b4 aswellasforn € I, where I = {12, 13,22, 23, 30, 31, 38, 39,40,41, 42, 43,46, 47, 48,
49,50,51} and determined g(n) for n < 9. In this paper we show that g(n) = [22] forn = 10,11, 14,15,
16,17 and g(n) = [22-2] for n € {18,19,20, 21,24, 25, 26,27, 28,29, 32, 33} and supply graphs hav-
ing the minimum number of edges.

Many MNT graphs have either xy—MNT graphs or z—MNT graphs as subgraphs and thus we have a

section devoted to xy—MNT graphs and z—MNT graphs of smallest size.

2 Preliminary results

For easy reference we include certain results from [S§]].

Lemma 2.1 [8]] If G is a connected MNT graph and v € V(G) with d (v) = 2, then the neighbours of v
are adjacent. Also, one of the neighbours has degree at least 4 and the other neighbour has degree 2 or
at least 4.

Theorem 2.2 [8]] Suppose G is a connected MNT graph without vertices of degree 1 or adjacent vertices
of degree 2. If G has order n > 7 and m vertices of degree 2, then ¢(G) > 1(3n + m).

We include the main steps of the proof of the following theorem, as the proofs of our main results relate
to the construction and cases used in this proof.

Theorem 2.3 [8] If G is an MNT graph of order n, then

Proof: If (G is not connected, then G = K}, U K,,_, for some positive integer k£ < n and then, clearly,
e(G) > 222 for n > 10. Thus we assume that G is connected.

We need to prove that the sum of the degrees of the vertices of G is at least 3n — 2. In view of
Theorem 2.2} we let

M = {v € V(G) | d(v) = 2 and no neighbour of v has degree 2}.
The remaining vertices of degree 2 can be dealt with simultaneously with the vertices of degree 1. We let

S={veV(G)—M|dv)=2ord(v) =1}.
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Letm = |M| and s = |S|. If S = (), then it follows from Theoremthat e(G) > 3(3n + m). Thus
we assume S # 0.

We observe that, if H is a component of the graph (S), then either H = K; or H & K5 and N¢(H)
consists of a single vertex, which is a cut-vertex of G.

An example of such a graph G is depicted in Figure|I]

K

K

Fig. 1: Example of G

Since G is MNT the graph (S) has at most three components. We consider three cases:
Case 1. (S) has exactly three components, say Hi, Ha, Hs:
In this case the neighbourhoods of Hy, Ho, H3 are pairwise disjoint, G — S is a complete graph of order
at least 4 and hence
n—s

e(G) = < 5 >—|—25—3for3—3,4,50r6.

This case is a Zelinka Type II construction, cf. [[14].
Case 2. (S) has exactly two components, say Hy, Ho:
There are two subcases.
Case 2.1. Ng(H,) = Ng(Ho):
Then G — S is a complete graph and hence

e(G) = (n;8)+25—2f0rs:2,30r4.

This case is a Zelinka Type I construction, cf. [14]].
Case 2.2. Ng(Hy) # N¢g(Ho):

Let Nc;(Hz) =1y, t=1,2and y; ?é yo. Then y1yo € E(G)

Now G — S is not complete. If v and w are nonadjacent vertices in V(G — S), then (G — S) 4 vw has
a Hamilton cycle containing y;y2. Hence G — S is either hamiltonian or MNH. We consider these two
cases separately:
Case 2.2.1. G — S is hamiltonian:

We note that no Hamilton cycle in G — S contains y;y2, otherwise G would be traceable. Also
dg_s(y;) > 3 fori = 1,2. We have

e(G)=e(G—M—S)+2m+2s—22%(3n+m+s—4). (1)

Case 2.2.2. G — S is nonhamiltonian, i.e. G — S is MNH:
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‘We have

e(G)=e(G—-95)+2s—2> —-(3n+s—4). (2)

N | =

Case 3. (S) has exactly one component, say H:

Since
ng(v) =3s—2,fors=1,2
vES
it follows that
e(G) = e(G—M)+2m
1
= 5 Z dG,M(U) + Z dcfju(’v) +2m
veV(G—-M)-S veS
1
> 5(3(n—m—5)+3s—2)+2m.
Hence 1
e(G)Z§(3n+mf2). 3)
O

Remark 2.4 We note the following:
(a) If G is an MNT graph as described in Case 1 of Theorem[2.3] then

3
e(G) > 7” ifn > 10.
(b) If G is an MNT graph as described in Case 2.1 of Theorem[2.3] then
3
e(G) > ?n ifn > 8.

(¢) The subgraphs G — S in Cases 2.2.1 and 2.2.2 are y1y>—MNT graphs. The subgraph G — S in Case
3 is a z=—MNT graph, where z = Ng(H).

We introduce the following terminology which we require in proving certain results in order to show
that g(10) = 15.

A vertex v in a subgraph H of a graph G is an attachment vertex of H if v has a neighbour in V(G) —
V(H). The circumference ¢(G) of a graph G is the order of a longest cycle in G. We suppose that a cycle
C has an orientation. If u,v € V(C') we denote the path on C' from w to v (with same orientation as C)
by C[u, v] and the other path on C' from u to v by C[u, v]. The paths obtained by deleting the endvertices
u, v are denoted by C'(u, v) and C(u, v), respectively.

Lemma 2.5 Suppose C is a circumference cycle of a graph G and G — V (C') has a path P = yLz with
endvertices y and z, where we also consider V(L) = () as well as y = z. If y is adjacent to u € V(C)
and z is adjacent tov € V(C'), u # v, then

V(C(u,v))| = [V(P)| and [V (C(u,v))| = [V (P)].
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Proof: Suppose |V (C(u,v))| < [V(P)|. Then C' = Clu,v]zLyu is a cycle such that [V/(C")| > [V(C)]
which is a contradiction since C'is a circumference cycle. A similar argument holds if |V (C(u,v))| <

[V (P)|. O
The following lemma is a direct result of Lemma[2.5]

Lemma 2.6 Suppose ¢(G) = k. Let C be a circumference cycle of G. Suppose u,v € V(G — V(C))
are endvertices of a path in G — V (C) of order at least L%j If both w and v are attachment vertices of
G —V(C), then |Nc({u,v})| = 1.

We also require the following lemma in order to prove g(10) = 15.

Lemma 2.7 Suppose G is a graph of order 10 as described in Case 3 of Theorem[2.3] with H = K; and
dg(v) =3forallv € V(G) — S. Then G — S is 2—connected.

Proof: Suppose G — S has a cut vertex y and that G has the structure as depicted in Figure[2]

<

Fig. 2: Sketch for Lemma[2.7]

Consider G + zy. Since G + zy is traceable it follows that B is traceable from y. If B is not complete,
then A is traceable between z and y making G traceable. Hence B is complete.

If B = K3, then G has two vertices of degree 2, and if B = K, then dg(y) > 3, both of which lead
to contradictions.

Hence G — S is 2—connected. a

3 xy—MNT and -—MNT graphs

In this section we investigate some properties of xy—MNT and z—MNT graphs and show how these graphs
can be used in constructing MNT graphs. We also present some zy—MNT graphs of small order and
smallest size, as well as some cubic xy—MNT graphs of larger orders.

Lemma 3.1 Suppose F' is an xy—MNT graph.
(a) Then zy € E(F).
(b) If x is not a universal vertex of F, then F' — x is traceable from .

(©) If N(x) N N(y) =0, then F — {z,y} is traceable from every vertex in V (F) — {z,y}.
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Proof:
(a) If zy ¢ E(F), then F + zy is not xy—traceable.

(b) Suppose z ¢ N (x). Then F'+xz has a Hamilton path 22Qy and consequently F'—x has a Hamilton
path zQy. Hence F' — x is traceable from y.

(¢) Letu € V(F) — {=x,y}. Since N(z) N N(y) = 0 it follows that uz ¢ E(F) or uy ¢ E(F).
Suppose ux ¢ E(F). Then F' + ux has a Hamilton path zu Py, and hence uP is a Hamilton path
of ' — {x,y},i.e. F — {x,y} is traceable from u. A similar proof holds if uy ¢ E(F).

d

Lemma 3.2 Suppose F'is an xy—MNT graph with n > 6, where neither x nor y is a universal vertex and
w € V(F) - {x,y} with d(w) = 2.

(a) Then w is nonadjacent to x and y.

(b) If N(w) = {v1,v2} and d(v;) = 4 fori = 1,2, then (v1,ve,x,y) is not complete.

Proof:

(a) Suppose w is adjacent to x and u ¢ N(x). Then F + zu is not xy—traceable, a contradiction. A
similar argument holds if w is adjacent to y.

(b) Suppose d(v;) = 4 fori = 1,2 and (vy, ve, x,y) is complete. Then F' + zw is not zy—traceable, a
contradiction.

a

Lemma 3.3 Suppose F' is a z—~MNT graph with n. > 5, where z is not a universal vertex and w €
V(F) = {z} with d(w) = 2.

(a) Then w is nonadjacent to z.

(b) If N(w) = {v1,v2} and d(v;) = 4 for i = 1,2, then (v1,va, z) is not complete.

Proof:

(a) Suppose w is adjacent to z and v, and u ¢ N(z). Then F + zu has a Hamilton path of the form
zuPvw. But then uPvwz is a Hamilton path in F', a contradiction.

(b) Suppose d(v;) = 4 fori = 1,2 and (v, vs, 2) is complete. Then F'+ zw has a Hamilton path of the
form zww;v; P or zwv; Quj, where {3, j} = {1,2}. But then zv,wv; P or zv;Qu;w is a Hamilton
path in F', a contradiction.
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We consider the following construction.

Construction 1: Suppose F' is an zy—MNT graph and H, = K, and H, = K,,, for positive integers
n and m. Suppose the vertex sets V(F'), V(H,) and V(H,) are disjoint. Then [F, H,, H,] denotes the
graph obtained by joining each vertex of H, to x and each vertex of H, to y.

Theorem 3.4 Suppose F' is an xy—MNT graph and neither x nor y is a universal vertex of F. If Np(x) N
Np(y) =0, then G = [F,H,, H,] is MNT.

Proof: Since F' is not xy—traceable it follows that GG is not traceable. We now prove that G + uwv is
traceable for all u, v € V(G), where uv ¢ E(G).

Suppose that u,v € V(F). Since F' + uv has a Hamilton path between x and y it follows that G + uv
is traceable.

Suppose u € V(H,)U {z} and v € V(H,). Then, since x is not a universal vertex it follows from
Lemma 3.[b) that there is a Hamilton path in G 4 uv.

Suppose u € V(H,) and v € V(F) — {z,y}. Then, from Lemma[3.1{c), there is a Hamilton path in
G + wv.

All other cases for u and v follow from symmetry. O

If G = [F, H,, Hy], where F is xzy-MNT and Np(z) N Ng(y) # 0, then in order to show that G is
MNT one needs to check if G + uw is traceable for (i) u € H, and v € Hy, (ii) v € H, and v = y, (iii)
u=zandv € Hy,and (iv)u € H, UH, andv € N(z) N N(y).

We now consider z—MNT graphs. It follows from the definition that if F'* is a z—MNT graph, then
F# — z is traceable from each v ¢ Np=(z), but not traceable from any u € Np-(z).

Construction 2: Suppose F* is a z—MNT graph and H, = K,,. Suppose the vertex sets V (F*) and
V(H),) are disjoint. Then [F'*, H,| denotes the graph obtained by joining each vertex of H, to z.

It is easy to see that the graph G = [F'*, H,|, where F* is z—MNT, is MNT if G 4 uv is traceable for
uelF?—zandv e H,.

Suppose F' is an zy—MNT graph and F'* is a z—MNT graph, where = and z are universal vertices and
[F,H,, Hy| and [F*, H.] are MNT graphs of order n > 10. Then (V(F) UV (Hy)) — = and F* — z
are themselves MNT. If each of H,, H, and H, is either a K; or K>, then by using Theorem and
results for the minimum size of MNT graphs of orders less than 10 given in [8] it is not difficult to check
that [F, H,, H,) and [F*, H,] have size greater than [22]. Thus, since smallest MNT graphs of a specific
order may arise from xy—MNT or z—MNT graphs, we searched, with the aid of a computer, for zy—-MNT
and z—MNT graphs of given order and smallest size in which neither x nor y nor z is a universal vertex.
The algorithm for zy—MNT graphs F' of order n starts with an initial graph of order n that is necessarily
a subgraph of any xy—-MNT graph of order n. From Lemmas [3.1(a) and (b) we choose an n—path of
the form xy( as the initial graph. The algorithm then performs a depth—first tree search, systematically
adding all possible combinations of edges, but keeping the graph xy—nontraceable. When a predetermined
upper bound on the number of edges is reached, that branch is terminated.

We could find all zy—MNT graphs of minimum size of order 5 up to 13 in reasonable computing time.
These graphs are depicted in the Figures [3H6|
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F; Fg Fg*

Fig. 3: Smallest xty—MNT graphs of order 5 (6 edges) and order 6 (9 edges)

€ Yy
Y
Fy Fr*

Fy

Fig. 4: Smallest xty—MNT graphs of order 7 (12 edges) and of order 8 (13 edges)

Y y
Xz
y ~
Y
FQ FlO Fll

Fig. 5: Smallest xy—MNT graphs of order 9 (15 edges), order 10 (15 edges) and order 11 (17 edges)
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Fio Fio* Fi3 Fig*

Fig. 6: Smallest xy—MNT graphs of order 12 (19 edges) and order 13 (21 edges)

We also established, by computer, that the smallest MNH graphs G14 of order 14 and size 22, and G5
of order 15 and size 24 (see Figure[7) given in [9] are in fact 2y—MNT.

Z Y
G14 G15

Fig. 7: Smallest maximal nonhamiltonian graphs G14 and G15

A similar search for z—MNT graphs of minimum size was undertaken for orders up to 12. We noted
that for 7 < n < 12 all 2~MNT graphs of minimum size can be constructed from xy—MNT graphs of
minimum size in one or both of the following ways:

(1) Attach a K to z (or y) of a smallest xy—MNT graph of order n — 1.
(2) Attach a K5 to z (or y) of a smallest xy—MNT graph of order n — 2.
If K;,1 = 1,2 is attached to x (or y), then z is y (or x).

We therefore do not include sketches of these graphs. Table 1 gives the minimum sizes of xy—MNT

graphs and z—MNT graphs of orders up to 15 and 13 respectively.

n 516|789 10|11 |12 13 14 15
Smallest xty—-MNT | 6 | 9 | 12 | 13 | 15| 15| 17 | 19| 21 <22 |1 <24
Smallest z—MNT S1719 (12|14 |16|16| 18| <20

Tab. 1: Sizes of smallest xty—MNT and z—MNT graphs
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Remark 3.5 We note the following:

(a) The xy—MNT graphs Fg, F11, F1o and F3 are hamiltonian whereas the others in Figuresare
MNH. The MNH ones for orders 5,6, 7,9 and 10 are those listed as the MNH graphs of smallest size
in [9)]. Each of the MNH graphs of orders 12 and 13 have one more edge than the corresponding
MNH graphs of smallest size listed in [|9]

(b) Ng,(x) N Ng,(y) # 0 for j € {5,6,6%,7,7%,9,12*,13,13"}. In these cases it is easy to check
that [F;, H,, H,] is MNT.

(c) The graph F7 is also a z—MNT graph (but not of smallest size), where z is the universal vertex.

(d) The xy—MNT graphs F5, Fg, Fg and Fig were used in [3|] and [|8] to construct smallest size MNT
graphs of orders 7, 8, 9, 10, 12 and 13.

(e) In Fyy and in G15, x and y can be any two adjacent vertices of the graphs.

A cubic zy-MNT graph with N(z) N N(y) = 0 of order n can be used to construct an MNT
graph of order n’ = n + 2 or ' = n + 3 by attaching a K; to = and a K; or Ky to y. These
MNT graphs realise the lower bound [LQ_Z} This is the construction used by Dudek, Katona and
Wojda in [7] to produce MNT graphs of order n and size [3"2—_21 for n > 54 as well as for n €
{22, 23, 30,31, 38,39,40,41, 42,43, 46,47,48,49,50,51}. This fact motivated us to search for cubic
xy—MNT graphs of relevant orders. We used cubic graphs from Gordon Royle’s Collection of small
graphs (cf. [11]]) and found 2y—MNT graphs for orders 16, 18 and 22 (see Figure[8)), but none of order 14.
We also found zy—MNT graphs of orders 24, 26 and 30 (see Figure[9) from Brendan McKay’s collection

of cubic hypohamiltonian graphs (cf. [10]). We label these graphs @Q;, where ¢ is the order of the graph.

AN

(a) Cubic graph Q16 (b) Cubic graph Q18 (c) Cubic graph Q22

Fig. 8: Cubic zy—MNT graphs of order 16, 18 and 22
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Y
T | VNVl
' Y y
X ’/y/
.:C/, y// T
(a) Cubic graph Q24 (b) Cubic graph Q26

P

(c) Cubic graph Q30

Fig. 9: Cubic hypohamiltonian zy—MNT graphs of order 24, 26 and 30

Remark 3.6 We note the following:

(a) The graphs Q;, i = 16,18,22,24,26,30 all have N(x) N N(y) = 0 and neither x nor y is a
universal vertex of Q;.

(b) The graphs Q16, Q18 are hamiltonian. This is to be expected since the smallest MNH graphs of
orders 16 and 18 listed in [9] have 25 and 28 edges respectively.

(©) In Q30, x and y can be any two adjacent vertices of the graph and in Q22, Q24 and (26, where
applicable, x,y can be x',y' or 2", y".

(d) There are no cubic xy—MNT graphs of order 14.

4 Main Results

In this section we determine g(n) for n = 10,11, 14 — 21,24 — 29, 32, 33.
Theorem 4.1 Forn € {18,19,20,21,24,25,26, 27, 28,29, 32,33}, g(n) = [22=2],
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Proof: Let F' = Q; for ¢ = 16, 18,22, 24, 26,30, H, = K; and H, = K; or H, = K>. The result then
follows from Theorems[2.3]and [3.4and Remark 3.6{a). O

We now prove that g(n) = [32] for n = 10,11, 14, 15, 16, 17.

We prove g(n) = [32] for n = 10 as a separate theorem using “analytic” arguments. Alternatively,
this result can be obtained by using computer results. The cases n = 11,14,15,16 and 17 are proved
using computer results.

Theorem 4.2 The minimum size of an MNT graph of order 10 is 15.

Proof: According to Theorem g(10) > 14. Suppose G is an MNT graph of order 10 and size 14.
We define M, S, m and s as in Theorem It follows from Theorem [2.2] that s # 0. We consider the
various cases given in the proof of Theorem [2.3]

Case 1 ({S) has 3 components)

The smallest graph of order 10 for this case is the Zelinka type II graph depicted in Figure [I0] which
has 15 edges.

Fig. 10: Zelinka type II graph of order 10

Case 2 ((S) has 2 components, H; and Hy)
Case 2.1 Ng(H1) = Ng(Ha)
According to Remark 2.4[b) we need not consider this case.
Case 2.2 Ng(H;) # Ng(Hs)
Case 2.2.1 G — S is hamiltonian

From inequality (T)) of Section [2it follows that the only values of m and s that may produce an MNT
graph G of order 10 and 14 edges are m = 0 and s = 2, i. e. G — S has no vertices of degree 2. Hence
G — S is a cubic xy—MNT graph of order 8. We show that no such graph G — S exists.

The subgraphs G5 of G can have one of the three structures depicted in Figure[TT]
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(a) (b) (©)

Fig. 11: Structures of G5

We prove the subcase for G shown in Figure[TT[b). The proofs of the other subcases are similar.
Firstly ac,bf ¢ E(G), otherwise G — S is zy—traceable. Due to symmetry all subcases follow from
the following three cases.
(i) Suppose ad € E(G). Then bc, be ¢ E(G). Hence G — S is not cubic.
(ii) Suppose ae € E(G). Then bd ¢ E(G). If be, df € E(G), then G — S is xy—traceable.
(iii) Suppose af € E(G). Then be,be ¢ E(G). If bd, ce € E(G), then G — S is xy—traceable.
Thus there is no MNT graph G with 14 edges having G as subgraph.
Case 2.2.2 G — S is MNH
From inequality (2)) of Section [2]it follows that the only value of s that may produce an MNT graph G
of order 10 and 14 edges is s = 2.
According to [9]] the smallest MNH graph of order 8 has 15 edges and thus e¢(G) > 14.
Case 3 ((S) has 1 component, H)
According to inequality (3) of Section [2]the only possibility for a graph of order 10 to have 14 edges is
when m = 0, i. e. when dg(v) # 2 forallv € V(G) — S.
Fors=1,e(G) =14 < dg(v) =3forallv € V(G) — S.
For s = 2, taking Lemmainto account, we have

% Z de(v) + Z de(v)

vES veV(G)-S

e(G)

1
> 5(4+4+6(3)+4):15.

Thus we only consider s = 1, i. e. H = K. Then, according to Lemma G — S is 2—connected.

Let z denote the vertex adjacent to H in G, and F = G — S. Then dp(z) = 2 and the other 8 vertices
of F must have degree 3 each. Note that F’ is not traceable from z, otherwise G will be traceable. We
show that such a graph G does not exist by attempting to construct F' by considering circumference cycles
of F.

Let C be a circumference cycle of F'. We define, respectively, the degree deficiency, dd(C), of C, and
the degree deficiency, dd(F — V(C)), of F — V(C) in F as

dd(C) = Y dp(v) —2|V(C)]

veV (C)
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and

dd(F -V (C)) = Z dr(v) — Z dr_v(c)(v).

veV(F-V(C)) veV(F-V(C))

Since F' is connected dd(F — V(C')) > 0 and thus
dd(C) > dd(F — V(C)) > 0.

Since F is not traceable from z it follows that ¢(F) < 8. Suppose C' is a circumference cycle of F’
of order £ < 8. We denote the vertices on C in an anti-clockwise direction by xg, x1, ..., Tx—1, Where
xg = z when z € V(C). We denote the vertices of F' — V(C') by vg, v1, ..., vs—k, where vy = z when
ze V(F-V(C)).

Since similar techniques are used in proving the cases ¢(F') = 8 and ¢(F') = 7 as in the case ¢(F') = 6,
we only prove the following:
c(F)=6

(@zeV(C)

Now dd(C') = 5 and the only graphs (v, vy, vs) with 0 < dd({vg, v1,v2)) < 5 are P3 and K3. Each
of P3 and K3 have vertices v;, v;;1 # j54,7 = 0,1,2 such that dp_v (¢)(v;) < 3 and dp_v () (vy) < 3
and v; and v; are endvertices of a path of order 3. Since, according to Lemma [2.7} F" is 2—connected it
follows that v; and v; have distinct neighbours on C' which contradicts Lemmag Hence dp(v;) < 3
and dr(v;) < 3, a contradiction.

b)ze F-V(C)

Now dd(C) = 6 and the only graphs (z, vy, vs) with 0 < dd({z,v1,v2)) < 6 are Ky U K5, P3 and
K3. Using reasoning similar to that in (a) it can be seen that (z, v1, v2) cannot be isomorphic to P3 or
K3. Now consider K1 U K5. Let V(K;) = wy and V(K3) = {we, w3}, where z = wy or z = ws.
Then dp(ws) = 3. Then, according to Lemma we may assume wsxo, wsrs € E(F), but then
wax; ¢ E(F)fori=1,2,4,5 and hence dp(w3) < 3.
c¢(F) at most 5

Clearly at least one component of F' — V(C'), say A, has at least two vertices. Then there are two
distinct vertices in A which, since F' is 2—connected, have distinct neighbours on C. This contradicts
Lemmal[2.6l

Thus g(10) > 15 and since there exist MNT graphs of order 10 and size 15 (for example, the graph in
Figureand [Fs, K1, K] which was first reported in [3]]) it follows that g(10) = 15. O

In the proof of Theorem .5 we will consider degree sequences of graphs. Since all values in the
degree sequences that we consider are less than 10, we will use, for example, the notation 1234 for a
graph having degrees 1, 2, 3, 3, 3, 3,4. We use a computer search using the same algorithm as described
in Section 3} but with a restriction on the degree sequence of a specific path, where we define the degree
sequence of a path P = vyvy ... v, in G as dg(v1), dg(v2), . . ., dg(v,). These extra restrictions enabled
the relevant searches to be completed in a reasonable time. The following two lemmas describe the paths
used for different cases in the computer algorithms.

Lemma 4.3 Suppose F'is an xy—MNT graph with n > 6 and neither x nor y is a universal vertex of F.
Then the following hold.

(a) There is a Hamilton path xyP in F.
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(b) Letu € V(F) —{z,y}. If v ¢ N(u), then F has a Hamilton path xyPu. If x € N (u), then F has
a Hamilton path xyPuQ.

©) Ifw e V(F) — {z,y} has degree 2 and N(w) = {v1,v2} with d(v;) = 4 fori = 1,2, then F has
a Hamilton path xyPv;wv; or yzPv;wv;, where {i,j} = {1,2}.

Proof:
(a) and (b) follow directly from Lemma[3.1]

(¢) From Lemmas a) and (b) it follows that v; and v5 are distinct from x and y, and that not both are
adjacent to x or y. If x and v;, j € {1, 2} are nonadjacent, then F' has a Hamilton path zy Pv,wv;,
where {4, j} = {1,2}. Similarly, if y and v;, j € {1,2} are nonadjacent, then F' has a Hamilton
path yaz Pv;wv;, where {i, j} = {1, 2}.

Lemma 4.4 Suppose F' is a z—MNT graph withn > 5 and z is not a universal vertex of F'.
(a) There is a Hamilton path P in F' — 2.

(b) Letu € V(F) — {z}. If 2 ¢ N(u), then F — z has a Hamilton path uP. If z € N(u), then F — z
has a Hamilton path Pu(Q.

(©) Ifw € V(F)—{z} has degree 2 and N(w) = {v1, v} with d(v;) = 4 fori = 1,2, then F' — z has
a Hamilton path Pv;wv;, where {i,j} = {1,2}.

Proof:
(a) and (b) are obvious.

(c) From Lemmab) v1 and vo are not both adjacent to z. Say v, is not adjacent to z for j € {1,2}.
Then F' + zv; must be z—traceable. Therefore there is a Hamilton path zv;wv; P in F'. (Note the
path cannot end in w, otherwise F' — z is hamiltonian, making F' z—traceable.) Therefore F' — z has
a Hamilton path Pv,wv;, where {7, j} = {1,2}.

Theorem 4.5 Forn = 11,14,15,16 and 17, g(n) = [22].

Proof: According to Theorem g(n) > [22=2] for n > 10. In order to show that there are no
MNT graphs of order n and size [3"2—_2] for n = 11,14,15,16 and 17, it follows from Theorem
and Remarks [2.4[a) and (b), that we need only consider Cases 2.2 and 3 of Theorem [2.3] This implies
from Remark [2.4[c) that we need only consider MNT graphs constructed from zy—MNT and z-MNT
graphs. In some cases we are able to use Table 1 to determine the minimum size of an MNT graph of a
specific order constructed from an xy—MNT graph and/or a z—MNT graph of minimum size. If not, we

consider values of m and s that could possibly produce MNT graphs G of order n with (#1 edges
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and determine possible degree sequences for such graphs. In most cases, for the sake of brevity, we
will only state the degree sequence(s) of GG and the relevant lemma(s) used for the computation. When
determining the degree sequences for G, we use Lemmas a) and a), and the fact that d(v) > 3
forv € V(G) — S — M. In the case where G — S is a hamiltonian zy—MNT graph we use the fact
that dg_s(x) > 3 and dg_s(y) > 3 (see Case 2.2.1 of Theorem . For all cases, no graphs with the
relevant degree sequences were found when doing a computer search and hence we do not state this in
every case.
Casel:n =11
According to Table 1 the smallest MNT graphs of order 11 which can be constructed from xy—MNT or z—
MNT graphs have 17 edges. Hence g(11) = 17. The graphs [Fg, K1, K3] and [Fy, K, K1] are examples
of such graphs.
CaselIl: n = 14
From Table 1 it follows that the smallest MNT graph of order 14 that can be constructed from an xy—MNT
graph has 21 edges.

Suppose G =[F, H_] is an MNT graph of order 14 and size 20. Then from inequality (3) of Section 2]
we can only have m = 0. We consider subcases according to possible values of s.

(i) m = 0 and s = 1: The only possible degree sequence is 13!* and we use Lemma a) in our
computation.

(i) m = 0 and s = 2: It follows from Table 1 that the minimum number of edges is 21.

We have shown that g(14) = 21. The graphs [Fio, K1, K11, [F}5, K1, K11, [F11, K1, K2] and
[Fio, K2, K3] are examples of MNT graphs of order 14 and size 21.
CaseIll: n = 15
From Table 1 it follows that the smallest MNT graph of order 15 that can be constructed from an xy—MNT
graph has 23 edges.

Suppose G =[F, H.]is an MNT graph of order 15 and size 22, where F’is a z—MNT graph. Then from
inequality (3 of Section[2]we have m < 1. Table 2 summarizes the possible subcases.

m s degree sequence Lemma used for computer search

0 1 1374 B.4b) if de(2) = 3 with d(u) = 4 4a) if dg(z) = 4
0 2 2234 a) [Same as Case I1(i)]

11 123%44 c)

1 2 None

Tab. 2: Subcases for n = 15, where G — S is z—MNT

We have thus shown that g(15) = 23. The graphs [Fi3, K1, K11, [Fis*, K1, K11, [Fi2, K1, Ko,
[Fiox, K1, Ko] and [FY1, Ko, K] are examples of MNT graphs of order 15 and size 23.

CaseIV:n =16
We show that no MNT graph G of order 16 and size 23 exists.

We first consider the case where G — S is an xy—MNT graph and G — S is MNH. The smallest such
MNT graph of order 16 has G14 as subgraph and has 24 edges. We now assume G — S is hamiltonian. It
follows from inequality of Section that m + s < 2. Thus m = 0 and s = 2, and the only possible
degree sequence is 1131244 since dg_g(x) > 3 and dg_s(y) > 3. Hence G — S must be cubic. Applying
Lemma[4.3]a) and a computer search, no graph was found.
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We next consider the case where G—.S5 is a z—MNT graph. If such a graph exists then from inequality (3)
of Section 2] we have m = 0. The possible subcases are:

(i)m = 0 and s = 1: The degree sequence is 13'5 and we use Lemma a).

(i) m = 0 and s = 2: No degree sequence for G is possible.

We have thus shown that g(16) = 24 and that [G14, K1, K1] is an MNT graph with order 16 and size
24 (see Figure[7).
Case V:in =17
We show that no MNT graph G of order 17 and size 25 exists. We first consider the case where G — S
is an xy—MNT graph and G — S is MNH. The smallest such MNT graphs of order 17 have either G4 or
(15 as subgraphs and have 26 edges. We thus need to consider the case where G — S is a hamiltonian
xzy-MNT graph in which case m + s < 3 (inequality (I))); and the case where G — S is a z—MNT graph
in which case m < 1 (inequality (3)). Table 3 summarizes all possible subcases.

G-S m s degree sequence Lemma used for computation
hamiltonian 0 2 113'3450r l4.3a)
2y—-MNT 0 2 1132444 b) with d(u) = 4

0 3 1223'245 a)

1 2 1123194444 c)

Zz—MNT 0 1 1314 b) if dg(z) = 3 with d(u) = 4;

a)if de(2) = 4

0 2 2234 a) [Same as Case IV(i)]
1 1 1231344 c)
1 2 None

Tab. 3: Subcases for n = 17, where G — S is hamiltonian zy—MNT or z—-MNT

Hence g(17) = 26 and [G14, K1, K2] and [G15, K1, K] are examples of MNT graphs of order 17 and
size 26. O

Obviously, there can be some doubt about the correctness of an algorithm when no graphs are found.
The fact that MNH graphs of certain orders that were found in [9] were also found with this algorithm
is reassuring. Furthermore, since the algorithm does not take into account isomorphisms of graphs, it is
unlikely that a graph would be missed since the algorithm has usually more than one chance to find a
graph if it exists. The source code for the algorithm can be viewed at [4].

We summarize the results contained in 8] and in Theorems @ @] and@] in the following theorem:

Theorem 4.6 Let g(n) denote the minimum number of edges of an MNT graph of order n. Then

138]  forn e J={10,11,14,15,16,17}
g(n) =
32221 forn >10,n ¢ J UK where K = {34,35,36,37,44,45,52, 53}.
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5 Conclusion

The smallest size of an MNT graph of order n has now been determined for all except 8 values of n,
namely n € K = {34, 35,36,37,44,45,52,53}. The minimum size of MNT graphs of order n > 18,
where n ¢ K, is (%1 and graphs of this size are constructed from cubic xy—MNT graphs. We suspect

that g(n) = [22-2] also for n € K and that these remaining cases could be resolved by finding cubic

xy—MNT graphs of orders 32, 34, 42 and 50 either by construction or by the use of more sophisticated
algorithms.
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