List Edge and List Total Colorings of Planar Graphs without non-induced 7-cycles ${ }^{\dagger}$

${ }^{1}$ School of science, Shandong Jiaotong University, Jinan 250023, P. R. China
${ }^{2}$ School of Mathematics, Shandong University, Jinan 250100, P. R. China

received $22^{\text {nd }}$ November 2010, revised $11^{\text {th }}$ October 2011, 10 th July 2012, accepted $19^{\text {th }}$ February 2013.

Giving a planar graph G, let $\chi_{l}^{\prime}(G)$ and $\chi_{l}^{\prime \prime}(G)$ denote the list edge chromatic number and list total chromatic number of G respectively. It is proved that if G is a planar graph without non-induced 7 -cycles, then $\chi_{l}^{\prime}(G) \leq \Delta(G)+1$ and $\chi_{l}^{\prime \prime}(G) \leq \Delta(G)+2$ where $\Delta(G) \geq 7$.

Keywords: List coloring; Planar graph; Choosability.

1 Introduction

The terminology and notation used but undefined in this paper can be found in [1]. Let G be a graph and we use $V(G), E(G), F(G), \Delta(G)$ and $\delta(G)$ to denote the vertex set, edge set, face set, maximum degree, and minimum degree of G, respectively. Let $d_{G}(x)$ or simply $d(x)$, denote the degree of a vertex (resp. face) x in G. A vertex (resp. face) x is called a k-vertex (resp. k-face), k^{+}-vertex (resp. k^{+}-face), or k^{-}-vertex, if $d(x)=k, d(x) \geq k$, or $d(x) \leq k$. We use $\left(d_{1}, d_{2}, \cdots, d_{n}\right)$ to denote a face f if $d_{1}, d_{2}, \cdots, d_{n}$ are the degrees of vertices which are incident with the face f. If $u_{1}, u_{2}, \cdots, u_{n}$ are the vertices on the boundary walk of a face f, then we write $f=u_{1} u_{2} \cdots u_{n}$. Let $\delta(f)$ denote the minimal degree of vertices which are incident with f. We use $f_{i}(v)$ to denote the number of i-faces which are incident with v for each $v \in V(G)$. Let $n_{i}(f)$ denote the number of i-vertices which are incident with f for each $f \in F(G)$. A cycle C of length k is called k-cycle, and if there is at least one edge $x y \in E(G) \backslash E(C)$ and $x, y \in V(C)$, the cycle C is called non-induced k-cycle.

The mapping L is said to be a total assignment for a graph G if it assigns a list $L(x)$ of possible colors to each element $x \in V(G) \cup E(G)$. If G has a proper total coloring $\phi(x) \in L(x)$ for all $x \in V(G) \cup E(G)$, then we say that G is total-L-colorable. Let $f: V(G) \cup E(G) \rightarrow N$ where f is a function into the positive integers. We say that G is total-f-choosability if it is total- L-colorable for every total assignment L

[^0]satisfying $|L(x)|=f(x)$ for all $x \in V(G) \cup E(G)$. The list total coloring number $\chi_{l}^{\prime \prime}(G)$ of G is the smallest integer k such that G is total- f-choosability when $f(x)=k$ for each $x \in V(G) \cup E(G)$. The list edge coloring number $\chi_{l}^{\prime}(G)$ of G is defined similarly in terms of coloring edges alone; and so is the concept of edge-f-choosability. On the list coloring number of a graph G, there is a famous conjecture known as the List Coloring Conjecture.

Conjecture 1 For a multigraph G,

$$
\text { (a) } \chi_{l}^{\prime}(G)=\chi^{\prime}(G) ; \quad \text { (b) } \chi_{l}^{\prime \prime}(G)=\chi^{\prime \prime}(G)
$$

Part (a) of Conjecture 1 was formulated independently by Vizing, by Gupta, by Alberson and Collins, and by Bollobás and Harris [6, 11]. It is well known as the List Coloring Conjecture. Part (b) was formulated by Borodin, Kostochka and Woodall [2]. Part (a) has been proved for bipartite multigraphs [5]. Part (a) and Part (b) have been proved for outerplanar graphs [15], and graphs with $\Delta \geq 12$ which can be embedded in a surface of nonnegative characteristic [2]. There are several related results for planar graphs, such as planar graphs without 4-cycles by Hou et al.[9], planar graphs without 4- and 5-cycles or planar graphs without intersecting 4 -cycles by Liu et al.[13], planar graphs without triangles adjacent 4 -cycles by Li et al.[14], planar graphs without intersecting triangles by Sheng et al.[18].

To confirm Conjecture 1 is a challenging work. From the Vizing Theorem and the Total Coloring Conjecture, the following weak conjecture is presented.

Conjecture 2 For a multigraph G,

$$
\text { (a) } \chi_{l}^{\prime}(G) \leq \Delta(G)+1 ; \quad \text { (b) } \chi_{l}^{\prime \prime}(G) \leq \Delta(G)+2
$$

Part (a) of Conjecture 2 has been proved for complete graphs of odd order [7]. Wang et al. confirmed part (a) of Conjecture 2 for planar graphs without 6 -cycles or without 5 -cycles [17, 16]. Zhang et al. proved part (a) of Conjecture 2 for planar graphs without triangles [19]. Hou et al. proved part (a) of Conjecture 2 for planar graphs without adjacent triangles or 7 -cycles [8]. Cai et al. confirmed part (a) of Conjecture 2 for planar graphs without chordal 5-cycles [3]. Part (b) of Conjecture 2 was proved by Hou et al. for planar graphs G with $\Delta(G) \geq 9$ [10]. Dong et al. confirmed Conjecture 2 for planar graphs without 6 -cycles with chord [4].

In this paper, we shall show the following result.
Theorem Let G be a planar graph without non-induced 7 -cycles, if $\Delta(G) \geq 7$, then $\chi_{l}^{\prime}(G) \leq \Delta(G)+1$ and $\chi_{l}^{\prime \prime}(G) \leq \Delta(G)+2$.

2 Planar graphs without non-induced 7-cycles

First let us introduce some important lemmas.
Lemma 3 Let G be a planar graph without non-induced 7 -cycles. Then there is an edge $u v \in E(G)$ such that $\min \{d(u), d(v)\} \leq\left\lfloor\frac{\Delta(G)+1}{2}\right\rfloor$ and $d(u)+d(v) \leq \max \{9, \Delta(G)+2\}$.

Proof: Suppose to the contrary that G is a minimal counterexample to Lemma 3 in terms of the number of vertices and edges. Then we have $\delta(G) \geq 3$.

By Euler's formula $|V|-|E|+|F|=2$ and $\sum_{v \in V(G)} d(v)=\sum_{f \in F(G)} d(f)=2|E|$, we have

$$
\sum_{v \in V(G)}(2 d(v)-6)+\sum_{f \in F(G)}(d(f)-6)=-6(|V|-|E|+|F|)=-12
$$

Define an initial charge function w on $V(G) \cup F(G)$ by setting $w(v)=2 d(v)-6$ if $v \in V(G)$ and $w(f)=d(f)-6$ if $f \in F(G)$, so that $\sum_{x \in V(G) \cup F(G)} w(x)=-12$. Now redistribute the charge according to the following discharging rules.

For convenience, let $\bar{w}(v)$ denote the total charge transferred from a vertex v to all its incident 4- and 5 -faces where $d(v)=5$.
$D 1$ Let f be a 3-face incident with a vertex v. Then v gives f charge $\frac{4-\bar{w}(v)}{f_{3}(v)}$ if $d(v)=5, \frac{3}{2}$ if $d(v) \geq 6$.
$D 2$ Let f be a 4-face incident with a vertex v. Then v gives f charge $\frac{1}{2}$ if $d(v)=4,5$ and 6,1 if $d(v) \geq 7$.
$D 3$ Let f be a 5 -face incident with a vertex v. Then v gives f charge $\frac{1}{5}$ if $d(v)=4,5$ and $6, \frac{1}{3}$ if $d(v) \geq 7$.

Let the new charge of each element x be $w^{\prime}(x)$ for each $x \in V(G) \cup F(G)$.
In the following, let us check the new charge $w^{\prime}(x)$ of each element $x \in V(G) \cup F(G)$.
Suppose $d(v)=3$. Then $w^{\prime}(v)=w(v)=0$.
Suppose $d(v)=4$. Then $w(v)=2, f_{4}(v) \leq 4$. If $2 \leq f_{4}(v) \leq 4$, then $f_{5}(v)=0$ for G contains no non-induced 7 -cycles. We have $w^{\prime}(v) \geq 2-\frac{1}{2} \times 4=0$ by $D 2$. Otherwise, i.e. $f_{4}(v) \leq 1$, then $f_{5}(v) \leq 4$. Thus we have $w^{\prime}(v)>2-\frac{1}{2}-\frac{1}{5} \times 4=\frac{7}{10}>0$ by $D 2$ and $D 3$.

Suppose $d(v)=5$. Then $w(v)=4, f_{3}(v) \leq 5$. If $1 \leq f_{3}(v)$, then $w^{\prime}(v) \geq 4-\frac{4-\bar{w}(v)}{f_{3}(v)} f_{3}(v)-\bar{w}(v)=0$ by $D 1$. Otherwise, i.e. $f_{3}(v)=0$, then $f_{4}(v)+f_{5}(v) \leq 5$. It is clear that $w^{\prime}(v)>4-\frac{1}{2} \times 5=\frac{3}{2}>0$ by $D 2$ and $D 3$.

Suppose $d(v)=6$. Then $w(v)=6, f_{3}(v) \leq 4$ for G contains no non-induced 7 -cycles. If $f_{3}(v)=4$, then $f_{4}(v)=0$ and $f_{5}(v)=0$ for G contains no non-induced 7 -cycles. We have $w^{\prime}(v) \geq 6-\frac{3}{2} \times 4=0$ by $D 1$. If $f_{3}(v) \leq 3$, then it is clear that $w^{\prime}(v)>6-\frac{3}{2} \times 3-\frac{1}{2} \times 3=0$ by $D 1, D 2$ and $D 3$.

Suppose $d(v)=7$. Then $w(v)=8, f_{3}(v) \leq 5$ for G contains no non-induced 7 -cycles.
Suppose $f_{3}(v)=5$. Then $f_{4}(v)=0$ and $f_{5}(v)=0$ for G contains no non-induced 7 -cycles. We can get $w^{\prime}(v) \geq 8-\frac{3}{2} \times 5=\frac{1}{2}>0$ by $D 1$.

Suppose $f_{3}(v)=4$. Then $f_{4}(v) \leq 2$. If $f_{4}(v)=2$, then $f_{5}(v)=0$ for G contains no non-induced 7 -cycles. We have $w^{\prime}(v) \geq 8-\frac{3}{2} \times 4-1 \times 2=0$ by $D 1$ and $D 2$. If $f_{4}(v) \leq 1$, then $f_{5}(v) \leq 1$ for G contains no non-induced 7 -cycles. We have $w^{\prime}(v) \geq 8-\frac{3}{2} \times 4-1-\frac{1}{3}=\frac{2}{3}>0$ by $D 1, D 2$ and $D 3$.

Suppose $f_{3}(v)=3$. Then $f_{4}(v) \leq 2$ and $f_{5}(v) \leq 2$ for G contains no non-induced 7-cycles. It is clear that $w^{\prime}(v)>8-\frac{3}{2} \times 3-1 \times 2-\frac{1}{3} \times 2=\frac{5}{6}>0$ by $D 1, D 2$ and $D 3$.

Suppose $f_{3}(v) \leq 2$. Then it is clear that $w^{\prime}(v)>8-\frac{3}{2} \times 2-1 \times 5=0$ by $D 1, D 2$ and $D 3$.
Suppose $d(v)=8$. Then $w(v)=10, f_{3}(v) \leq 6$ for G contains no non-induced 7 -cycles. If $f_{3}(v)=6$, then $f_{4}(v)=0$ and $f_{5}(v)=0$ for G contains no non-induced 7 -cycles. We have $w^{\prime}(v) \geq 10-\frac{3}{2} \times 6=$ $1>0$ by $D 1$. If $f_{3}(v)=5$, then $f_{4}(v) \leq 1$ and $f_{5}(v) \leq 1$ for G contains no non-induced 7 -cycles. We can get $w^{\prime}(v) \geq 10-\frac{3}{2} \times 5-1-\frac{1}{3}=\frac{7}{6}>0$ by $D 1, D 2$ and $D 3$. If $f_{3}(v) \leq 4$, then it is clear that $w^{\prime}(v) \geq 10-\frac{3}{2} \times 4-1 \times 4=0$ by $D 1, D 2$ and $D 3$.

Suppose $d(v)=9$. Then $w(v)=12, f_{3}(v) \leq 7$ for G contains no non-induced 7 -cycles. If $f_{3}(v)=7$, then $f_{4}(v)=0$ and $f_{5}(v)=0$ for G contains no non-induced 7 -cycles. We can get $w^{\prime}(v) \geq 12-\frac{3}{2} \times 7=$ $\frac{3}{2}>0$ by $D 1$. If $f_{3}(v) \leq 6$, then it is clear that $w^{\prime}(v)>12-\frac{3}{2} \times 6-1 \times 3=0$ by $D 1, D 2$ and $D 3$.

Suppose $d(v) \geq 10$. Then $w(v)=2 d(v)-6, f_{4}(v)+f_{5}(v) \leq d(v)-f_{3}(v)$. Thus we have $w^{\prime}(v) \geq$ $2 d(v)-6-\frac{3}{2} f_{3}(v)-f_{4}(v)-\frac{1}{3} f_{5}(v) \geq d(v)-6-\frac{1}{2} f_{3}(v)$ by $D 1, D 2$ and $D 3$. Since $f_{3}(v) \leq \frac{4}{5} d(v)$, we have $w^{\prime}(v) \geq \frac{3}{5} d(v)-6 \geq 0$.

Suppose $d(f)=3$. Then $w(f)=-3$.
Suppose $\delta(f)=3$. Then f is a $\left(3,7^{+}, 7^{+}\right)$-face by assumption. We have $w^{\prime}(f)=-3+\frac{3}{2} \times 2=0$ by D1.

Suppose $\delta(f)=4$. Then f is a $\left(4,6^{+}, 6^{+}\right)$-face by assumption. We have $w^{\prime}(f)=-3+\frac{3}{2} \times 2=0$ by D1.

Suppose $\delta(f)=5$. Then f is a $\left(5,5^{+}, 5^{+}\right)$-face.
Suppose f is a $(5,5,5)$-face. For convenience, let $f=u v w$. Of the three vertices u, v and w, there is at most one vertex which is incident with at least four 3 -faces for the reason that G contains no non-induced 7 -cycles. Without loss of generality, let $f_{3}(u) \geq 4$. Then $f_{3}(u)+f_{4}(u)+f_{5}(u) \leq 5, f_{3}(v)+f_{4}(v)+$ $f_{5}(v) \leq 3$ and $f_{3}(w)+f_{4}(w)+f_{5}(w) \leq 3$ for G contains no non-induced 7 -cycles. We have $\frac{4-\bar{w}(v)}{f_{3}(u)} \geq \frac{4}{5}$, $\frac{4-\bar{w}(v)}{f_{3}(v)} \geq \frac{4}{3}, \frac{4-\bar{w}(v)}{f_{3}(w)} \geq \frac{4}{3}$ by $D 2$ and $D 3$. Thus $w^{\prime}(f) \geq-3+\frac{4}{5}+\frac{4}{3} \times 2=\frac{7}{15}>0$ by $D 1$. Now we assume that $f_{3}(u) \leq 3, f_{3}(v) \leq 3, f_{3}(w) \leq 3$. Then we have $\frac{4-\bar{w}(v)}{f_{3}(v)} \geq 1$ for G contains no non-induced 7 -cycles and by $D 1, D 2$ and $D 3$. Thus $w^{\prime}(f) \geq-3+1 \times 3=0$ by $D 1$.

Suppose f is a $\left(5,5,6^{+}\right)$-face. For convenience, let $f=u v w$ where $d(u)=d(v)=5$. Since $f_{3}(u)+f_{4}(u)+f_{5}(u) \leq 5, f_{3}(v)+f_{4}(v)+f_{5}(v) \leq 5$, we have $\frac{4-\bar{w}(v)}{f_{3}(u)} \geq \frac{4}{5}, \frac{4-\bar{w}(v)}{f_{3}(v)} \geq \frac{4}{5}$ by $D 2$ and $D 3$. Thus $w^{\prime}(f) \geq-3+\frac{4}{5} \times 2+\frac{3}{2}=\frac{1}{10}>0$ by $D 1$.

Suppose f is a $\left(5,6^{+}, 6^{+}\right)$-face. Then we have $w^{\prime}(f)>-3+\frac{3}{2} \times 2=0$ by $D 1$.
Suppose $\delta(f) \geq 6$. Then we have $w^{\prime}(f)=-3+\frac{3}{2} \times 3=\frac{3}{2}>0$ by $D 1$.
Suppose $d(f)=4$. Then $w(f)=-2$. If $\delta(f)=3$, then f is a $\left(3,3^{+}, 7^{+}, 7^{+}\right)$-face by assumption. We have $w^{\prime}(f) \geq-2+1 \times 2=0$ by $D 2$. If $\delta(f) \geq 4$, then f is a $\left(4^{+}, 4^{+}, 4^{+}, 4^{+}\right)$-face. We have $w^{\prime}(f) \geq-2+\frac{1}{2} \times 4=0$ by $D 2$.

Suppose $d(f)=5$. Then $w(f)=-1$.
Suppose $\delta(f)=3$. Then $n_{3}(f) \leq 2$ by assumption. If $n_{3}(f)=2$, then f is a $\left(3,3,7^{+}, 7^{+}, 7^{+}\right)$-face by assumption. We have $w^{\prime}(f) \geq-1+\frac{1}{3} \times 3=0$ by $D 3$. If $n_{3}(f)=1$, then f is a $\left(3,4^{+}, 4^{+}, 7^{+}, 7^{+}\right)$-face by assumption. We have $w^{\prime}(f) \geq-1+\frac{1}{3} \times 2+\frac{1}{5} \times 2=\frac{1}{15}>0$ by $D 3$.

Suppose $\delta(f) \geq 4$. Then we have $w^{\prime}(f) \geq-1+\frac{1}{5} \times 5=0$ by $D 3$.
Suppose $d(f) \geq 6$. Then $w^{\prime}(f)=w(f) \geq 0$.
From the above discussion, we obtain $-12=\sum_{x \in V(G) \cup F(G)} w^{\prime}(x) \geq 0$, a contradiction.
Lemma 4 Let G be a planar graph without non-induced 7 -cycles. Then $\chi_{l}^{\prime}(G) \leq k+1$ and $\chi_{l}^{\prime \prime}(G) \leq$ $k+2$ where $k=\max \{\Delta(G), 7\}$.

Proof: Suppose to the contrary that G^{\prime} and $G^{\prime \prime}$ are minimal counterexamples to the conclusions for χ_{l}^{\prime} and $\chi_{l}^{\prime \prime}$ respectively. Let L^{\prime} and $L^{\prime \prime}$ be list assignments such that $\left|L^{\prime}(e)\right|=k+1$ for each $e \in E(G), G^{\prime}$ is not edge- L^{\prime}-colorable, and $\left|L^{\prime \prime}(x)\right|=k+2$ for each $x \in V(G) \cup E(G), G^{\prime \prime}$ is not total- $L^{\prime \prime}$-colorable. By Lemma 3. G^{\prime} and $G^{\prime \prime}$ contain an edge $u v \in E(G)$ such that $\min \{d(u), d(v)\} \leq\left\lfloor\frac{\Delta(G)+1}{2}\right\rfloor$ and $d(u)+d(v) \leq \max \{9, \Delta(G)+2\}=k+2$.

Let $\bar{G}^{\prime}=G^{\prime}-u v$. Then \bar{G}^{\prime} is edge- L^{\prime}-colorable by assumption. For $d(u)+d(v) \leq k+2$, there are at most k edges which are adjacent to $u v$ in \bar{G}^{\prime}. Thus there is at lest one color in $L^{\prime}(u v)$ which we can use to color $u v$. Then G^{\prime} is edge- L^{\prime}-colorable, a contradiction.

Let $\overline{G^{\prime \prime}}=G^{\prime \prime}-u v$. Then $\bar{G}^{\prime \prime}$ is total- $L^{\prime \prime}$-colorable by assumption. With loss of generality, let $d(u)=$ $\min \{d(u), d(v)\}$. Erase the color on u, then there is at least one color in $L^{\prime \prime}(u v)$ which we can use to color $u v$ for $d(u)+d(v) \leq k+2$. For $d(u) \leq\left\lfloor\frac{\Delta(G)+1}{2}\right\rfloor \leq\left\lfloor\frac{k+1}{2}\right\rfloor$, then u is adjacent to at most $\left\lfloor\frac{k+1}{2}\right\rfloor$ vertices and is incident with at most $\left\lfloor\frac{k+1}{2}\right\rfloor$ edges. Thus there is at least one color in $L^{\prime \prime}(u)$ which we can use to color u. Then $G^{\prime \prime}$ is total- $L^{\prime \prime}$-colorable, a contradiction. From the above discussion, we have $\chi_{l}^{\prime}(G) \leq k+1$ and $\chi_{l}^{\prime \prime}(G) \leq k+2$ where $k=\max \{\Delta(G), 7\}$.

By Lemma 4 , it is easy to obtain the main theorem.
Theorem Let G be a planar graph without non-induced 7-cycles, if $\Delta(G) \geq 7$, then $\chi_{l}^{\prime}(G) \leq \Delta(G)+1$ and $\chi_{l}^{\prime \prime}(G) \leq \Delta(G)+2$.

References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North-Holland, New York, 1976.
[2] O. Borodin, A. Kostochka, D. Woodall, List edge and list total colourings of multigraphs, J. Combin. Theory Ser. B 71 (1997) 184-204.
[3] J. Cai, J. Hou, X. Zhang, G. Liu, Edge-choosability of planar graphs without non-induced 5-cycles, Information Processing Letters, 109 (7) (2009) 343-346.
[4] A. DONG, G. Liu, G. Li, List edge and list total colorings of planar graphs without 6-cycles with chord, Bull. Korean Math. Soc. 49 (2012) 359-365.
[5] F. Galvin, The list chromatic index of a bipartite multigraph, J. Combin. Theory Ser. B 63 (1995) 153-158.
[6] R. Hägkvist, A. Chetwynd, Some upper bounds on the total and list chromatic numbers of multigraphs, J. Graph Theory 16 (1992) 503-516.
[7] R. Hägkvist, J, Janssen, New bounds on the list-chromatic index of the complete graph and other simple graphs, Combin. Probab. Comput. 6 (1997) 295-313.
[8] J. Hou, G. Liu, J. Cai, Edge-choosability of planar graphs without adjacent triangles or without 7-cycle, Discrete Mathematics, 309 (2009) 77-84.
[9] J. Hou, G. Liu, J. Cai, List Edge and List Total Colorings of Planar Graphs without 4-cycles, Theoretical Computer Science, 369 (2006) 250-255.
[10] J. Hou, G. Liu, J. Wu, Some results on list total colorings of planar graphs, Lecture Note in Computer Science, 4489 (2007) 320-328.
[11] T. Jensen, B. Toft, Graph Coloring Problem, Wiley-Interscience, New York, 1995.
[12] A. Kostochka, List edge chromatic number of graphs with large girth, Discrete Math. 101 (1992) 189-201.
[13] B. Liu, J. Hou, G. Liu, List edge and list total colorings of planar graphs without short cycles, Information Processing Letters, 108 (2008) 347-351.
[14] R. Li, B. Xu, Edge choosability and total choosability of planar graphs without no 3-cycles adjacent 4-cycles, Discrete Mathematics, 311 (2011) 2158-2163.
[15] W. Wang, K. Lih, Choosability, edge-choosability and total choosability of outerplane graphs, European J. Combin. 22 (2001) 71-78.
[16] W. Wang, K. Lih, Choosability and edge choosability of planar graphs without five cycles, Appl. Math. Lett. (2002) 15 561-565.
[17] W. Wang, K. Lih, Structure properties and edge choosability of planar graphs without 6-cycles, Combin. Probab. Comput. 10 (2001) 267-276.
[18] H. Sheng, Y. Wang, A structural theorem for planar graphs with some applications, Discrete Applied Mathematics, 159 (2011) 1183-1187.
[19] L. Zhang, B. Wu, Edge choosability of planar graphs without small cycles, Discrete Math. 283 (2004) 289-293.

[^0]: ${ }^{\dagger}$ Supported by NSFC grants 11101243, 11161035.
 ${ }^{\ddagger}$ E-mail: dongaijun@mail.sdu.edu.cn
 §E-mail: gzliu@sdu.edu.cn.
 『E-mail: guojunsdu@gmail.com.

